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q-Dyson Conjecture (Andrews 1975)

CT
∏

1≤i<j≤n

(xi/xj ; q)ai
(xjq/xi; q)aj

=
(q; q)a1+a2+...+an

(q; q)a1 · · · (q; q)an

, where

(w; q)k = (1−w)(1−wq) · · · (1−wqk−1), ai ∈ N

and CT denotes “the constant term in”.
• case q = 1 Dyson Conjecture 1962: proved by
Wilson 1962 and Gunson 1962
• Proof of q-Dyson: Bressoud and Zeilberger 1985

Macdonald’s Constant Term Conjecture (1982)

CT
∏

α∈R+

(xα; q)k(x−αq; q)k =
∏

i

[
kdi

k

]
,

where R is a reduced root system and

k ∈ N,
∑

w∈W

q`(w) =
∏

i

1 − qdi

1 − q
,

[
m
k

]
=

(q; q)m

(q; q)k(q; q)m−k
.

• Type An−1 is ai ≡ k case of q-Dyson
• Kadell proved cases Bn and Dn



Recall that a polynomial f is a symmetric func-
tion if f(x1, . . . , xn) = f(xσ1 , . . . , xσn) for all σ ∈
Sn.
Example: The Schur function Sλ

Sλ =
∑

T∈SSY T (λ)

xT

s2,1 = x2
1x2+x1x

2
2+2x1x2x3+. . . = m2,1+2m1,1,1

corresponding to the weighted sum over the SSYT(2,1)
below. Here m2,1 and m1,1,1 are monomial sym-
metric functions.
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Selberg’s Integral For relevant k, a, b ∈ C,
∫

(0,1)n

|
∏

1≤i<j≤n

(xi − xj)|2k

n∏
i=1

xa−1
i (1 − xi)b−1dx1 · · · dxn

=
n∏

i=1

Γ(a + (i − 1)k)Γ(b + (i − 1)k)
Γ(a + b + (n + i − 2)k)

× Γ(ik + 1)
Γ(k + 1)

.

• In the 1980’s researchers realized additional sym-
metric functions of the xi could be inserted in the
integrand of Selberg’s Integral and still get a nice
product evaluation. In particular, Kadell found a
formula involving polynomials that were later real-
ized to be symmetric functions introduced earlier
by statistician H. Jack. In 1987 Kadell conjec-
tured that there existed a family of q-analogoues
of these, i.e. q-Jack symmetric functions, which
satisfied a q-analog of Selberg’s Integral, and he
showed how to define them for n = 1, 2.



Macdonald (1988) solved Kadell’s problem, in-
troducing the Pλ(X; q, t), λ a partition. They sat-
isfy
• q-analog of Selberg’s Integral
• orthogonal w.r.t. the scalar product

〈f, g〉0 =
1
n!

CT
[
f(x1, . . . , xn)g(1/x1, . . . , 1/xn)∆(X; q, qk)

]
,

where

∆(X; q, t) =
∏
i 6=j

(xi/xj ; q)∞
(txi/xj ; q)∞

=
∏
i 6=j

(xi/xj ; q)k when t = qk.

• contain Schur, Hall-Littlewood, Jack polynomi-
als as special cases
• there are versions of Pλ for other root systems.
Macdonald formed “norm conjecture”

〈Pλ, Pλ〉0 =
1

|W |
∏

α∈R+

k−1∏
i=1

(1 − q<λ+kρ,α∨+i>)
(1 − q<λ+kρ,α∨−i>)

,

where ρ is 1/2 the sum of positive roots, <, > is
the standard dot product on Rn, and α∨ = 2α/ <
α, α > is the coroot of α.



• 1993 − 1995: Cherednik proves CT and its gen-
eralization, the norm conjecture, in full generality.
Macdonald shows ∃! family Eβ(X; q, t) of (non-
symmetric) polynomials satisfying

(a) 〈Eλ, Eµ〉0 = 0 for λ 6= µ

(b) Eλ = xλ +
∑
µ<λ

cλ,µ(q, t)xµ

for a certain partial order on elements µ, λ of the
weight lattice of the underlying root system. He
obtains a norm formula for the Eβ. Cherednik in
turn obtains recurrence relations (known as the
intertwiner relations) for Eβ and outlines a proof
of the “duality theorem”.

Current theory involves “affine root systems”.
An affine root is a pair (r, m), where r ∈ R, m ∈ Z.
Let

〈(r, m), (α, p)〉 = 〈r, α〉 ,

(r, m)∨ =
2(r, m)
< r, r >

sα(β) = β − 〈α, β〉α∨.



Affine root systems are sets of affine roots satis-
fying a set of axioms, analogous to those for ordi-
nary root systems. In his book ”Affine Hecke Al-
gebras and Orthogonal Polynomials” Macdonald
classifies all affine root systems. There are ones
corresponding to ordinary root systems, such as

An, E6, E7, E8, F4, F
∨
4 , G2, G

∨
2 .

There are systems of type (C∨
n , Cn), which are the

same as polynomials introduced by Koornwinder,
and contain 5 t-variables. When n = 1 they be-
come the Askey Wilson polynomials. Specializa-
tions of the t-variables yield most of the other in-
finite families of affine root systems.
• There are Pλ and Eβ for each affine root system.
• Haiman has a new preprint on his website “Chered-
nik Algebras, Macdonald Polynomials, and Com-
binatorics” which develops the theory in some-
what greater generality, uses simpler notation, and
simplifies some proofs. A. Kirillov also has a nice
exposition of Cherednik’s work in a paper in the
Bulletin of the AMS.



We now describe a new combinatorial formula
for the type An−1 nonsymmetric Macdonald poly-
nomials, due to M. Haiman, N. Loehr and the
speaker. In type An−1 we can assume our weight
lattice elements β are compositions, i.e. β ∈ N

n.
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b

d ec

a
(10220)

basement

reading order: abcde12345

type A triples: 
ht qht p

p>= q

type B triples: ht qht p

p<q

= base square

arm(w) = # triples with w as base square,
leg(w) = # squares above w in column



Example:

1 2 3 4 5 1 2 3 4 5

arms legs

0 3 2

2 1

0 1

0

1

0

Each triple comes with a clockwise or counter-
clockwise orientation, determined by starting at
the smallest number of the triple, and go in a cir-
cular direction towards the next smallest then to
the largest. (If the triple has two equal numbers,
regard the one which occurrs first in the reading
order as smaller.)

Let coinv(σ) be the #of clockwise ype A triples
plus the # of counterclockwise type B triples, and
let maj(σ) be the sum, over all descents, of 1 plus
the leg of the topmost square of the descent. We
say two equal numbers attack each other if they
are in the same row, or in successive rows, with
the square in the row below strictly to the left.
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Theorem. (Haiman, Loehr, H. 2006). For any
β ∈ Nn,

Eβ(X; q, t) =
∑

σ:β′→{1,... ,n}
non-atttacking

xσqmaj(σ)tcoinv(σ)

∏
w∈β′

σ(w)=σ(South(w))

(1−qleg+1tarm+1)
∏

w∈β′
σ(w)6=σ(South(w))

(1−t),

where

Eβ = E(βn,... ,β1)(xn, . . . , x1; 1/q, 1/t)
∏
w

(1−qleg+1tarm+1).

Pf: In type An−1, Knop found a simplification in
Cherednik’s recurrence. Let

T̃i = tsi − 1 − t

1 − xi/xi+1
(1 − si),

where si is the transposition (i, i + 1). Then

(a) E(0,0,... ,0) = 1

(b) E(λn+1,λ1,... ,λn−1) = qλnx1Eλ(x2, . . . , xn, x1/q)

(c) Esi(λ) =
(

T̃i +
1 − t

1 − qλi−λi+1tci

)
Eλ, λi > λi+1
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where ci ∈ N. Part (a) is trivial, and (b) holds
on a filling-by-filling basis (see figure above). Part
(c) is the hard part to prove; we were only able to
show it held when λi+1 = 0, but this is enough to
recursively generate all the Eβ.

Let Jµ(X; q, t) =
∏

(1 − qatl+1)Pµ be Macdon-
ald’s integral form, and let β+ be the partition
formed by rearranging β into nonincreasing order.

Corollary. For any β with β+ = µ, if in the
formula for Eβ we change the basement to n +
1, . . . , n + 1, we get a formula for Jµ.

Corollary. Letting q = tα in Eβ, dividing by (1−
t)|β| and letting t → 1, we get Sahi and Knop’s
combinatorial formula for the nonsymmetric Jack
polynomial E(α)

β (X).

Remark. It was comparing the Sahi-Knop for-
mula with our earlier Jµ formula which led to the
Eβ formula.



Example. Taking the coef of x3
1x

2
2x1 in J3,2,1 re-

sults in a sum of 8 terms, while taking the same
coef in J(1,2,3) gives an equivalent formula with
only 1 term.
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It is known that

Jµ =
∑

β+=µ

∏ 1 − q∗t∗

1 − q∗t∗
Eβ ,

for simple expressions * involving arms and legs.
Letting q = t = 0 above we get

sµ =
∑

β+=µ

Eβ(X; 0, 0) =
∑

β+=µ

NSβ

say. S. Mason has a bijective proof of this. The
NSβ are “standard bases” introduced by Lascoux
and Schützenberger in the study of Schubert vari-
eties.

Let pk(X) =
∑

i xk
i and define the plethystic

substitution of X(1 − t) into pk via

pk [X(1 − t)] =
∑

i

xk
i (1 − tk).

Define f [X(1−t)] by expanding f(X) into the pk’s
and using the above formula. Set

Jµ(X; q, t) =
∑

λ

Kλ,µ(q, t)Sλ [X(1 − t)] ,

K̃λ,µ(q, t) = tn(µ)Kλ,µ(q, 1/t), n(µ) =
∑

i

(i−1)µi.

H̃µ(X; q, t) =
∑

λ

K̃λ,µ(q, t)Sλ(X).



Corollary. For any β with β+ = µ′,

H̃µ =
∑

σ:β′→{1,2,... ,n}
xσtmajqinv,

where inv is the number of inversion triples (coun-
terclockwise type A or clockwise type B triples).
Here we use n + 1’s in the basement as in the for-
mula for Jµ.

Diagonal Harmonics
Let

DHn = {f ∈ C[x1, . . . , xn, y1, . . . , yn] :
n∑

i=1

∂j
xi

∂k
yi

f = 0, ∀j + k > 0}.

Diagonal Action:

σf = f(xσ1 , . . . , xσn , yσ1 , . . . , yσn).

Alternates: σf = sign(σ)f ∀σ ∈ Sn.



Example. n = 2: basis {1, x2 − x1, y2 − y1}.
Hilb(DH2) = 1 + q + t

Hilb(DHε
2) = q + t (subspace of alternates)

Frob(DH2) = S2 + S1,1(q + t).

Here Hilb is the Hilbert series, bigraded by x and
y degree, and Frob is the “Frobenius series”, i.e.
the bigraded character, with each occurrence of the
irreducible Sn-character χλ weighted by the Schur
function Sλ.

Let ∇ be the linear operator

∇H̃µ = tn(µ)qn(µ′)H̃µ.

F. Bergeron first noticed that many identities in-
volving Macdonald polynomials can be elegantly
phrased in terms of the ∇ operator.

Theorem. (Haiman 2000)

Frob(DHn) = ∇S1n .

Pf. Based on the geometry of Hn, the Hilbert
scheme of n points in the plane

Hn = {I ⊂ C[x, y] : dim(C[x, y]/I) = n}.



Corollary.

dim(DHn) = (n+1)n−1 dim(DHε
n) =

1
n + 1

(
2n

n

)
.

Theorem. (Garsia, H. 2000)

Hilb(DHε
n) =

∑
π∈Dn

qareatbounce.

Pf. Uses ∇ results of F. Bergeron, Garsia,
Tesler and others.



Example.

< ∇S1n , S1n > = the “(q, t)-Catalan sequence” Cn(q, t)

= Hilb(DHε
n).

C1(q, t) =
t − q

t − q
= 1

C2(q, t) =
t2

t − q
+

q2

q − t
=

t2 − q2

t − q
= t + q

C3(q, t) =
t6

(t2 − q)(t − q)
+

q6

(q2 − t)(q − t)
+

q2t2(1 + q + t)
(q − t2)(t − q2)

= t3 + t2q + qt + tq2 + q3.

Here the sum is over all Dyck paths π (lattice
paths from (0, 0) to (n, n) consisting of unit N and
E steps which never go below the main diagonal
x = y) and area is the number of complete squares
below π and above the diagonal. We let ai(π)
denote the number of area squares in the ith row
(from the bottom) of π. To compute the bounce
statistic, first form the bounce path (shaded line
in figure on next page) by starting at (n, n) and
going left until you hit a N step of π, then bounce
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down to the diagonal and iterate. The statistic
bounce(π) is the sum of the coordinates where the
bounce path intersects the diagonal.



The fact that (area, bounce) generates Cn(q, t)
was conjectured by Haglund. Haiman, indepen-
dently, conjectured that

Cn(q, t) =
∑

π∈Dn

qdinvtarea,

where

dinv = #(i, j) : 1 ≤ i < j ≤ n and ai = aj or ai = aj+1.
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It is easy to see that (dinv, area) and (area, bounce)
have the same distribution. Start with a typical
π as on the previous page, and create a new path
φ(π) by first counting the number of ai = 0 in π:
this is the length of your first bounce step in φ.
The number of ai = 1 is the length of your 2nd
bounce step, etc. We get the bounce path on the
page two previous to this. Now consider the sub-
sequence of the ai from π consisting of ai = 0 or
ai = 1 (all ai except a5 in our example). Start at
the topmost NE corner of the bounce path and
for each ai = 0 go S one step, and for each ai = 1
go W one step. We end up going SSWWSWS,
drawing the corresponding portion of φ. Next con-
sider the subsequence of ai equaling 1 or 2, and
draw the next section of φ, etc.

If we read along 45◦ diagonals, top to bottom,
outside to in, then the order in which we encounter
the squares whose left border is a N step of π is
called the reading order. For the ith square w in
this order, let bi be the number of such squares
before w in the reading order whose row forms a
contribution to dinv with the row containing w,
so b1 = 0 and dinv = b1 + . . . + bn. Note that
bi(π) = ai(φ(π)).



For a partition µ, let Bµ = {qa′
tl

′}, i.e. the set
of all coarms and colegs, as in the figure below.

a

l

qtt

1 q

a  = coarm, l  = coleg

B      ={1,q,t,qt}2,2

Let ∆f be a linear operator defined via

∆f H̃µ = f [Bµ]H̃µ,

where f [Bµ] is f evaluated at the alphabet Bµ.
Below <, > is the Hall scalar product, with respect
to which the Schur functions are orthonormal, and
|zk means “the coefficient of zk in”.



Conjecture. (Can, H.) For any k ∈ N, the fol-
lowing four expressions are all equal

(a) 〈∆Sk
∇S1n−k , S1n−k〉

(b)
〈∇S1n , Sk+1,1n−k−1

〉
(c)

∑
π∈Dn

qdinvtarea
∏

ai>ai−1

(1 + z/tai)|zk

(d)
∑

π∈Dn

qdinv
∏

bi>bi−1

(1 + z/qbi)tarea|zk .

Remarks. Can has recently extended some of Haiman’s
results on the Hilbert scheme to the nested Hilbert
scheme Hn,n−1, defined as

Hn,n−1 = {(I1, I2) : dim(C[x, y]/Ij) = n,

dim(C[x, y]/I2) = n − 1, I1 ⊂ I2}.
Can obtains an associated (q, t)-Catalan sequence
Cn,n−1(q, t), which is (a) above. The statement
that (b) = (d) is a theorem of H., first conjectured
by Egge, Killpatrick, Kremer and H. It gives a for-
mula for the hook shapes in Frob(DHn). The proof
involves extensions of the ∇ identities occurring in
the work of Garsia and H. on Cn(q, t).
• case k = 1 of (a) is Can’s Hn−1,n−2.



Let

Fn(q, t, z, w) =
∑

π∈Dn

qdinv
∏

bi>bi−1

(1 + z/qbi)

tarea
∏

ai>ai−1

(1 + w/tai).

Conjecture. (Can, H.)

Fn(q, t, z, w) = Fn(q, t, w, z) = Fn(t, q, z, w).

Remarks. It is an easy exercise using the map
φ to show that Fn(1, 1, z, w) = Fn(1, 1, w, z). The
fact that Fn(q, t, 0, 0) = Fn(t, q, 0, 0) is equivalent
to symmetry of Cn(q, t), which follows from the re-
sult of Garsia and H., but for which there is (still)
no known combinatorial proof. Perhaps the study
of this four parameter function will shed some light
on this problem.

• Fn(q, t, z, w) satisfies a recurrence, which gener-
alizes the known recurrence for Cn(q, t).


