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Permutation Statistics and q-Analogues

In combinatorics a statistic on a �nite set
S is a mapping from S ! N given by an
explicit combinatorial rule.
Ex. Given � = �1�2 � � � �n 2 Sn, de�ne

inv� = jf(i; j) : i < j and �i > �jgj

and
maj� =

X
�i>�i+1

i:

If � = 31542,

inv� = 2 + 2 + 1 = 5

and
maj� = 1 + 3 + 4 = 8:



Let

(n)q = (1� qn)=(1� q)

= 1 + q + : : :+ qn�1

and

(n!)q =

nY
i=1

(i)q

= (1+q)(1+q+q2) � � � (1+q+: : :+qn�1)

be the q-analogues of n and n!. Then

X
�2Sn

qinv� = (n!)q =
X
�2Sn

qmaj�:



Symmetric Functions

A symmetric function is a polynomial
f(x1; x2; : : : ; xn) which satis�es

f(x�1 ; : : : ; x�n) = f(x1; : : : ; xn);

i.e. �f = f , for all � 2 Sn.
Examples

� Themonomial symmetric functionsm�(X)

m(2;1)(x1; x2; x3) = x21x2 + x21x3

+ x22x1 + x22x3 + x23x1 + x23x2:

� The elementary symmetric functions ek(X)

e2(x1; x2; x3) = x1x2 + x1x3 + x2x3:

� The power-sums pk(X) =
P

i x
k
i :



� The Schur functions s�(X), which are
important in the representation theory of
the symmetric group:

s�(X) =
X
�`n

K�;�m�(X)

where K�;� equals the number of ways of
�lling the Ferrers shape of � with elements
of the multiset f1�12�2 � � � g, weakly in-
creasing across rows and strictly increas-
ing down columns. For exampleK(4;2);(2;2;1;1) =
4

2 3
1 1 2 4

2 2
1 1 3 4

2 4
1 1 2 3

3 4
1 1 2 2



Selberg's Integral For k; a; b 2 C ,Z
(0;1)n

j
Y

1�i<j�n

(xi � xj)j
2k

nY
i=1

xa�1i (1� xi)
b�1dx1 � � � dxn

=

nY
i=1

�(a+ (i� 1)k)�(b+ (i� 1)k)

�(a+ b+ (n+ i� 2)k)

�
�(ik + 1)

�(k + 1)
:

� Kadell (1988) conjectured there existed
symmetric functions which could be in-
serted into the integrand to generalize Sel-
berg's integral in a certain interesting way.

� Macdonald (1988) showed how to de�ne
such, by means of orthogonality with re-
spect to a generalization of the Hall scalar
product, or aternatively by means of a
complicated constant term identity.



Macdonald's generalization: There exist
symmetric functions P�(X; q; t) such that
if t = qk for some k 2 N ,

1

n!

Z
(0;1)n

P�(X; q; t)

Y
1�i<j�n

k�1Y
r=0

(xi � qrxj)(xi � q�rxj)

nY
i=1

xa�1i (xi; q)b�1dqx1 � � � dqxn

= qF
nY
i=1

�q(�i + a+ (i� 1)k)

�q(�i + a+ b+ (n+ i� 2)k)

� �q(b+ (i� 1)k)

�
Y

1�i<j�n

�q(�i � �j + (j � i+ 1)k)

�q(�i � �j + (j � i)k)



where k 2 N ,

F = k�(�)

+ kan(n� 1)=2 + k2n(n� 1)(n� 2)=3;

t = qk,

�q(z) = (1� q)1�z(q; q)1=(q
z; q)1

is the q-gamma function with

(x; q)1 =
Y
i�0

(1� xqi);

and

Z 1

0

f(x)dqx =

1X
i=0

f(qi)(qi � qi+1)

is the q-integral.



Plethysm: If F (X) is a symmetric func-
tion, then F [(w � 1)X] is de�ned by ex-
pressing F (X) as a polynomial in the pk(X) =P

i x
k
i 's and then replacing each pk(X) by

(wk�1)pk(X). Macdonald's construction
of the P� can be reformulated as follows.

Theorem. (Macdonald) Given a partition
�, there exists a unique symmetric polyno-
mial ~H�[X; q; t] characterized by the fol-
lowing:

(i) ~H�[X(q � 1); q; t] 2 Q (q; t)fm� :
� � �0g

(ii) ~H�[X(t � 1); q; t] 2 Q (q; t)fm� :
� � �g

(iii) ~H�[1; q; t] = 1.

where we use the \dominance" partial or-
der on partitions;

� � � () �1 + : : :+ �i � �1 + : : :+ �i

for 1 � i � n.



The Combinatorics of ~H�[X;q; t]
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De�nition. Let Inv(�; �) denote the set
of inversion triples, and and Des(�; �) the
set of descents. Set

inv(�; �) = jInv(�; �)j;

maj(�; �) =
X

w2Des(�;�)

1 + leg(w)

Remark: maj(�; 1n) = maj(�) and inv(�; n) =
inv(�).

De�nition. Let X = (x1; x2; : : : ; xn) and
set

C�[X; q; t] =
X

�:�!Z
+;�i�n

qinv(�;�)tmaj(�;�)x�;

where x� =
Q

i x�i .

Theorem. (H., Haiman, Loehr; 2004) (Con-
jectured by H., PNAS (2004))

~H�[X; q; t] = C�[X; q; t]:



The Proof

Proposition. Let A be an alphabet of pos-
itive and negative letters, with any �xed
total ordering. Then

C�[X(w � 1); q; t] =
X

�:�!A

(�1)#neg

w#posqinvtmajxj�j

where #neg, #pos are the # of negative
and positive letters, respectively.
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Involution 1

(a) We say two squares \attack" each other
if they form a potential inversion pair. Find
last attacking pair of 1's, 1's in the read-
ing word (if none, �nd last attacking pair
of 2's, etc.).

(b) Switch the sign of �rst element (in
reading word order) of attacking pair.

(c) Use ordering 1 < 1 < � � � < n < n.

� The Descent set is �xed, so the t-weight
is �xed. The q-weight is also �xed

� The �xed points are those super �llings
without attacking pairs, so at most one
1; 1 in any row, at most one 2; 2 in any

row, so if the coeÆcient of x
�1
1 x

�2
2 � � � is

nonzero, we must have �1 � �01, �1+�2 �
�01 + �02, etc., where �0 is the conjugate
partition obtained by rotating the Ferrers
graph of �.



Involution 2

(a) Find lst 1 or 1 in reading word, not in
the bottom row. (if none, �nd �rst 2 or 2
not in the bottom two rows, etc.).

(b) Switch the sign of this element.

(c) Use the ordering

1 < 2 < � � � < n < n < � � � < 2 < 1:

� The q and t weights are preserved.
� The �xed points have 1; 1's only in the
bottom row, 2; 2's only in the bottom two

rows, etc. Thus if coeÆcient of x
�1
1 x

�2
2 � � �

is nonzero, we must have �1 � �1, �1 +
�2 � �1 + �2, etc.

The fact that C�[1; q; t] = 1 is easy to
show, and the proof is complete.



Using the well-known relation ~H�[Z; q; t] =
~H�0 [Z; t; q], involution (1) from the proof
of our theorem gives a interpretation for

t�(�)+n ~H�0 [X(t�1�1); t�1; q] = J�[X; q; t]

in terms of super �llings of �0. By group-
ing super �llings � according to the value
of j�j we get

Corollary. For any partition �,

J�[X; q; t] =X
nonattacking �llings (T;�0)

xT qmaj(T;�0)t�(�)�inv(T;�
0)

�
Y
w2�0

T (w)=T (South(w))

(1�q1+leg(w)t1+arm(w))

�
Y
w2�0

T (w)6=T (South(w))

(1� t):



Theorem. (Lascoux - Sch�utzenberger) 1978
(cocharge formula for Hall-Littlewood poly-
nomials)

~H�[X; 0; t] =
X
�

s�
X

T2SSY T (�;�)

tcocharge(T ):

2
3
4

1 3
4

5
2
1

4 3 5 2 2 4 1 1 3

4 3 5 2 1 t 9

1 342 t
4

t13

Proof: DiÆcult, using recurrences.



6 7

1 1 2 2 2 1 3 2 3 4 1 1 2 3

51
1
4
1

4
2

31
2
3
2 a

b

a
a b

c

c

ab

a < b < c

New Proof:

~H�[X; 0; t] =
X

�:inv(�;�)=0

tmaj(�;�)x�:

Now use well-known properties of the RSK
algorithm to get the Schur expansion:X

�

(
X

P2SSY T (�;�)

tcocharge(P ))

(
X

Q2SSY T (�)

xQ)



LLT Polynomials

In 1997, Lascoux, Leclerc and Thibon
introduced ribbon tableaux generating func-
tions, or spin generating functions, com-
monly known as LLT polynomials, which
depend on x1; : : : xn and a parameter q.
They proved (non-combinatorially) these
polynomials are symmetric in the xi and
conjectured they are Schur positive.

Theorem. (H., Haiman, Loehr, Remmel,
Ulyanov; 2003) (to appear in Duke Math.
J.) The LLT polynomial equals a power
of q times the sum, over all tuples T of
SSYT of skew shape, of qdinv(T), where
dinv(T) is the total number of inversion
pairs, described below.

� Schilling, Schimizono and White have a
similar result, with dinv replaced by the
number of \inversion triples", more com-
plicated to describe.
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� In H., Haiman, Loehr we show how ~H�[X; q; t]
can be expressed as a sum of LLT polyno-
mials times nonnegative powers of t. We
also give a new, combinatorial proof of
LLT symmetry.



Theorem. If we �x a descent set D, thenX
�:Des(�)=D

tmaj(�;�)qinv(�;�)x�

is a �xed power of t times a �xed power of
q times an LLT product of ribbons.

Proof: There is a bijection between �llings
with a �xed descent set D and tuples of
SSYT of ribbons:

2
1
3
1
4

3
2
1
5

7
21

1
31

4

1
2

51
2
3

2
7

Now use the fact that

inv(�; �) = dinv�
X

w2Des(�)

arm(w):



We de�ne the (q; t)-Kostka coeÆcients
as follows:

~H�[X; q; t] =
X
�

~K�;�(q; t)s�[X]:

Macdonald conjectured these coeÆcients
were in N [q; t]. He proved ~K�;�(1; 1) =
K�;1n and asked if

~K�;�(q; t) =
X
T

qa(�;T )tb(�;T )

for some statistics a; b on partitions � and
standard tableaux T .

By the previous result, understanding
the Schur coeÆcients is equivalent to un-
derstanding the Schur coeÆcients of LLT
products of ribbons. (LLT products of tu-
ples of partition diagrams are known to be
Schur positive. A combinatorial interpre-
tation is known for tuples of length 2).



Theorem. (HHL) If � has at most two
columns, i.e. �1 � 2, then

~K�;�(q; t) =
X
�

tmaj(�;�)qinv(�;�)x�;

summed over all �llings � of � for which
the reading word �1�2 � � ��n is Yamanouchi,
i.e. each �nal segment �k�k+1 � � ��n has
partition content.

Proof: This also follows from van Leeuwen's
(2000) theorem on LLT Schur coeÆcients
for 2-tuples, but our proof is simpler, avoid-
ing domino tableaux.

� H. (PNAS 2004) contains a conjectured
combinatorial formula for three column
shapes, which reduces to above when �
has 2 columns.



The n! Conjecture

= (2,2,1)
(1,1)(1,0)

(0,1)(0,0)

(2,0)

µ

�(�) =

���������

1 y1 x1 x1y1 x21
1 y2 x2 x2y2 x22
1 y3 x3 x3y3 x23
1 y4 x4 x4y4 x24
1 y5 x5 x5y5 x25

���������



For � ` n let V (�) denote the linear
span over Q of all partial derivatives of all
orders of �(�). V (�) decomposes as a di-
rect sum of its bihomogeneous subspaces
V i;j(�) of degree i in the x-variables and
j in the y-variables. There is an Sn-action
on V i;j(�) given by

�f = f(x�1 ; : : : ; x�n ; y�1 ; : : : ; y�n)

called the diagonal action.
The Frobenius Series is the symmetric

function

X
�`n

s�(X)
X
i;j�0

qitjmij ;

where mij is the multiplicity of the irre-
ducible Sn-character �� in the diagonal
action on V i;j(�).



Theorem. (Haiman; JAMS 2001) (The
\n! Conjecture", advanced by Garsia and
Haiman in the early 1990's). The Frobe-
nius Series of V (�) is given by the modi-

�ed Macdonald polynomial ~H�[X; q; t]. In
particular, the dimension of V (�) is n!,
where n =

P
i �i.

Corollary.

~K�;�(q; t) 2 N [q; t]

The proof uses algebraic geometry and
commutative algebra. It doesn't yield any
combinatorial interpretation for the ~K�;�(q; t).

Since the coeÆcient of m1n in the ex-
pansion of the Frobenius series into mono-
mials equals the Hilbert series, the above
theorem and our formula together imply

Corollary. (HHL) The Hilbert Series of
V (�) is given byX

�2Sn

tmaj(�;�)qinv(�;�):



What led to the statistics?

Garsia and Haiman pioneered the study
of the space of diagonal harmonics DHn,
which is

ff :

nX
i=1

@xhi @y
k
i f = 0;8h+ k > 0g:

The space DHn decomposes as a direct
sum of subspaces of bihomogeneous de-
gree (i; j); DHn =

L
i;j DH

i;j
n . TheHilbert

Series is the sum

X
i;j�0

qitjdim(DHi;j
n ):

Example: If n = 2, a basis for the space
is 1; x2 � x1; y2 � y1, and the Hilbert Se-
ries is 1 + q + t.



The Frobenius Series is the sumX
�`n

s�(X)
X
i;j�0

qitjmi;j

where mi;j is the multiplicity of �
� in the

character of DHi;j
n under the diagonal ac-

tion of Sn.
Example: If n = 2, the Frobenius series
is

s2(X) + s12(X)(q + t):

Let r be a linear operator on the basis
~H�(X; q; t) given by

r ~H�(X; q; t) = t�(�)q�(�
0) ~H�(X; q; t):

Theorem. (Haiman, Inventiones 2002)
The Frobenius Series of DHn is given by
ren(X).

Corollary. The dimension of the space
DHnof diagonal harmonics, as a vector
space over Q , is (n+ 1)n�1.



Corollary. The dimension of the space
DH�

n of diagonal harmonic alternants, cor-

responding to the sign character �1
n
, is

the nth Catalan number

Cn =
1

n+ 1

�
2n

n

�
:

Garsia and Haiman (1995) introduced
the q; t-Catalan sequence, Cn(q; t), de�ned
by

Cn(q; t) = hren; s1ni:

Using some of Macdonald's original re-
sults, Cn(q; t) can be expressed as a com-
plicated sum of rational functions in q; t.
They posed the problem of �nding com-
binatorial statistics to describe Cn(q; t).



Example. From the rational function def-
inition of Cn(q; t), for n = 2 we have

C2(q; t) =
t2

t� q
+

q2

q � t
=

t2 � q2

t� q
= t+q:

After simpli�cation the terms in C3(q; t)
are

� = 3;
q6

q2 � t)

� = 21;
t2q2(1 + q + t)

(q � t2)(t� q2)

� = 13;
t6

(t2 � q)(t� q)

So
C3(q; t) =

q6(t2 � q) + t2q2(1 + q + t)(q � t) + t6(t� q2)

(q2 � t)(t2 � q)(q � t)

= q3 + q2t+ qt2 + qt+ t3:
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Theorem. (Garsia, H., 2001, PNAS)
(First conjectured by H. (Adv. Math.) in
a di�erent form, and later independently
by Haiman)

Cn(q; t) =
X
�2Dn

qdinv(�)tarea(�);

where dinv(�) = #f(i; j); i < jg with

areai = areaj or areai = areaj � 1:
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dinv = #f(i; j); i < jg satisfying either

areai = areaj and cari < carj ; or

areai = areaj � 1 and cari > carj



Conjecture. (H., Loehr) The Hilbert Se-
ries of DHn is given by

X
�

qdinv(�)tarea(�);

where the sum is over all parking func-
tions on n cars.

Conjecture. (H., Haiman, Loehr, Rem-
mel, Ulyanov, 2003, to appear in Duke
Math. J.)

ren =
X
�

qdinv(�)tarea(�)x�;

where the sum is over all \word parking
functions" with n cars.

Open Problem. Prove Cn(q; t) = Cn(t; q)
bijectively, and similarly for the Hilbert
series, etc.
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� q = 1: Macdonald's work implies that

~H�[X; 1; t] =
X
�

tmaj(�;�)x�:

� descents everywhere:

inv(�; �) = dinv�
X
i>1

�
�i
2

�

� no descents : inv(�; �) = dinv
� in general:

inv(�; �) = dinv�
X

w2Des

arm(w)


