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Abstract. We give a combinatorial proof of the inequality in the title in terms
of Fibonacci numbers and Euler numbers. The result is motivated by Sidorenko’s
theorem on the number of linear extensions of the poset and its complement. We
conclude with some open problems.
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1. Introduction

We start with the inequality

(∗) π < 2φ, where φ =
1 +
√
5

2
is the golden ratio. The question in the title may seem rather innocent. Of course,
π ≈ 3.141593 < 2φ ≈ 3.236068. How deep can this be? Turns out, inequality (∗) has a
conceptual proof in terms of two classical combinatorial sequences. Let us set this up
first.

Our first sequence {Fn} is the Fibonacci numbers, defined by F0 = F1 = 1, Fn+1 =
Fn + Fn−1 for n ≥ 1. This is perhaps best known integer sequence which begins

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

See [Ko] and [OEIS, A000045] for a trove of information about this wonderful sequence.
Our second sequence {En} is the sequence of Euler numbers. This is a sequence

which begins
1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, . . .

Our favorite definition of the sequence is via the Euler–Bernoulli triangle:

1

0 → 1

1 ← 1 ← 0

0 → 1 → 2 → 2

5 ← 5 ← 4 ← 2 ← 0

0 → 5 → 10 → 14 → 16 → 16

Here one alternates direction,1 start the row with zero, and each new number equal to
the previous number plus the number above. For example, 14 = 10 + 4 as in the last
row of the triangle above. The last number in each row is the Euler number. We refer
to [S2] for an extensive survey and to [OEIS, A000111] for numerous result and further
references.

Theorem 1. For all n ≥ 1, we have:

En · Fn ≥ n!

For example, F3 ·E3 = 2 ·3 = 3!, F4 ·E4 = 5 ·5 = 25 > 4! = 24, F5 ·E5 = 8 ·16 = 128 >
5! = 120, etc. To understand the connection, recall the classical generating functions
for each sequence:

F(t) =

∞
∑

n=0

Fn t
n =

1

1− t− t2
and

E(t) =

∞
∑

n=0

En

tn

n!
= tan(t) + sec(t) =

1 + sin(t)

cos(t)
.

1This procedure is also called the ox-plowing and boustrophedon order.

http://oeis.org/A000045
http://oeis.org/A000111
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These formulas imply the following (also classical) asymptotics of the numbers:

Fn ∼
1√
5
φn+1 and

En

n!
∼ 4

π

(

2

π

)n

.

Here we use an ∼ bn as a notation for an/bn → 1 as n→∞.
In fact, we do not need the constants upfront, but only the base of exponent. Here

φ is the smallest root of 1 − t − t2 = 0. Similarly, π/2 is the smallest (in absolute
value) solution of cos(t) = 0. While the formula for Fibonacci numbers is written in
most Combinatorics textbooks, the asymptotic formula for Euler numbers is not as
well known. We refer to a marvelous monograph [FlS] where this is one of the first
motivating examples.

Now, the theorem and the asymptotics above give

1 ≤ Fn · En

n!
∼ 4φ√

5π

(

2φ

π

)n

.

This implies inequality (∗). See below why the inequality has to be strict.

The rest of the paper is structured as follows. First, we give a combinatorial proof of
the theorem in the next section. We then discuss the origin of the problem and state
some curious open problems (Section 3).

Remark 2. The picture on the first page shows part of the Fibonacci spiral that
approximates the golden spiral (see e.g. [Ma, §1.2]). If the height of the big rectangle
is r then the width of the rectangle is r · φ. The quarter-circle on the left has length
rπ̇/2. This length is smaller than the width of the rectangle.

2. Combinatorial proof of Theorem 1

We start with classical combinatorial interpretations of Euler and Fibonacci numbers.
These will be used to obtain a combinatorial proof of Theorem 1.

First, consider words in {⋄, ⊂, ⊃}, where each each open bracket is followed by a
closed bracket. Denote by Bn the set of such sequences. For example,

B4 =
{

⋄ ⋄ ⋄ ⋄, ⋄ ⋄⊂⊃, ⋄⊂⊃⋄, ⊂⊃⋄⋄, ⊂⊃⊂⊃
}

Proposition 3. We have |Bn| = Fn, for all n ≥ 1.

Let Sn denote the set of all permutations of {1, 2, . . . , n}, so |Sn| = n!. Permutation
σ ∈ Sn is called alternating if σ(1) < σ(2) > σ(3) < σ(4) > . . . Let An be the set of
alternating permutations in Sn.

Proposition 4. We have |An| = En, for all n ≥ 1.

These results are well known (see e.g. [GJ, S1]). The first is an easy exercise on
induction. The second is similar; one needs to define An,k = {σ ∈ An, σ(1) = k} and
realize that |An,k| are the numbers in the Euler–Bernoulli triangle.

We can now reformulate Theorem 1 as follows:
∣

∣An

∣

∣ ·
∣

∣Bn
∣

∣ ≥
∣

∣Sn

∣

∣
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Consider now the map Φ : An×Bn → Sn defined as follows: Φ(σ, w) = ω, where ω is a
permutation obtained from σ ∈ An by swapping numbers in the same pair of brackets
in w ∈ Bn. For example,

Φ
(

(3, 6, 2, 5, 4, 7, 1, 8), ⋄ ⋄⊂⊃⋄⊂⊃⋄
)

= (3, 6, 5, 2, 4, 1, 7, 8).

The theorem now follows from the following lemma.

Lemma 5. The map Φ : An × Bn → Sn is a surjection.

Proof. We need to show that for every ω ∈ Sn there exist σ ∈ An and w ∈ Bn such
that ω = Φ(σ, w). Denote by J = {ω(2), ω(4), . . .} the set of entries in even positions,
and let b = ω(i) be the smallest entry in J . Locally, permutation ω looks as follows:

ω = (. . . , x, a, b, c, y . . .).

Now, if b > a, c, do nothing. Since x, y > b, locally we have the desired inequalities
x > a < b > c < y. Then repeat the procedure by induction for sub-permutations
σ1 = (. . . , x, a) and σ2 = (c, y, . . .).

If b < max{a, c}, swap b with the largest of these elements. Say, this is a. Again,
locally we have the desired inequalities x > b < a > c. Make the word w have a pair
of brackets ⊂⊃ indicating that a and b are swapped. Then repeat the procedure by
induction for sub-permutations σ1 = (. . . , x) and σ2 = (c, y, . . .). In the case when
max{a, c} = c, proceed symmetrically with permutations σ1 = (. . . , x, a) and σ2 =
(b, y, . . .). Let σ denote the resulting permutation at the end of the process.

Observe that elements which move (b and possibly a/c) move at most once, so the
bracket sequence w is well defined. Note also that at every move elements at even
positions could only increase and at odd – decrease, and that the parity of positions
translates to σ1 and σ2. At the end we obtain alternating inequalities at every place in
σ1, σ2, and the last element of σ1/first element of σ2, decrease or increase depending on
the parity of their position and does not violate the inequalities with the fixed elements
in the middle (b and possibly a or c). Thus σ is alternating, as desired. Finally, note
that Φ(σ, w) = ω, by construction. This completes the proof. �

Exercise 6. Find a pair of permutations σ, σ′ ∈ S4 such that Φ(σ) = Φ(σ′). Use the

proof above to show that En · Fn > n!(1 + ε)n for some explicit ε > 0.

3. Linear extensions of posets

Let P be a poset on a set X of n = |X| elements, with linear ordering denoted by ≺. Let
e(P) be the number of linear extensions of P, defined as bijections f : X → {1, . . . , n}
such that f(u) < f(v) for all u, v ∈ X . For example, if the poset P forms a single
n-chain (every two elements are comparable), we have e(P) = 1. On the other hand,
if the poset P forms a single n-antichain (no two elements are comparable), we have
e(P) = n!. We refer to [T1, T2] for standard definitions and notation.

The following geometric construction is our main source of examples. Let S ⊂ R
2

be a finite set of points. Define an ordering (x1, y1) 4 (x2, y2) when x1 ≤ x2 and
y1 ≤ y2. The resulting poset PS is called two-dimensional. For example a poset Hp,q
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with p+ q+1 elements forming a hook (two incomparable chains with p and q elements
with an extra minimal element) has

(

p+q

p

)

linear extensions. Similarly, poset Un forming

a zigzag pattern with n points as in in Figure 1, has Euler number e(Un) = En of linear
extensions.

Another notable example is the poset Ck with 2× k elements forming a grid. It has
Catalan number of linear extensions:

e(Ck) =
1

k + 1

(

2k

k

)

(see e.g. [S1, S3] and [OEIS, A000108]).

H4,5 C6 U11

Figure 1. Two-dimensional posets H4,5, C6 and U11.

For a poset P on set S, denote by C(P) the comparability graph of P. A poset P
on S is called a complement if its comparability graph C(P) is the complement of C(P).
Note that a poset can have more than one complement.

Proposition 7. Every two-dimensional poset P has a complement poset P.
We leave the proof of the proposition to the reader with a hint given in Figure 2.

Exercise 8. Describe the complement poset Hp,q. Show that e(Hp,q) = (p+ q+1)p!q!.

Exercise 9. Similarly to the previous exercise describe the complement poset Un. Use

induction to prove that e(Un) = Fn.

Exercise 10. Describe the complement poset Ck. Prove that Qk := e(Ck) is the number

of permutations (a1, . . . , ak, b1, . . . , bk) ∈ S2k, such that ai < bj for all 1 ≤ i < j ≤ k.

Remark 11. The problem of computing e(P) is known to be #P-complete [BW], and
is difficult even in some seemingly simple cases (see e.g.[BBS, ERZ, MPP]).

We are now getting to the heart of the motivation behind Theorem 1.

Theorem 12 (Sidorenko [Sid]). Let P be a two-dimensional poset with n elements,

and let P be a complement of P. We have:

e(P) e(P) ≥ n!

Clearly, when P is an n-chain, we have P is an n-antichain, and the inequality is
tight. Similarly, by Exercise 8, we have e(Hp,q)e(Hp,q) = n! since n = |Hp,q| = p+q+1
in this case, so the inequality is tight again.

http://oeis.org/A000108
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P P

Figure 2. Two-dimensional poset P, its complement P, and the Hasse
diagram of P.

Observe that Exercise 9 and Sidorenko’s theorem immediately Theorem 1. Note that
the proof of Sidorenko’s theorem is non-bijective and uses Stanley’s interpretation of
e(P) as volumes of certain polytopes. Our proof suggests that there might be a direct
combinatorial proof for all two-dimensional posets. If this is too much to hope for,
perhaps the following problem can be resolved.

Open Problem 13. Give a combinatorial proof that QkCk ≥ (2k)!, where Qk = e(Ck).
A direct computation shows that the sequence {Qk} starts with 12, 150, 3192, 106290,
etc. Find the generating function

Q(t) = 1 +

∞
∑

n=1

Qk

tk

k!

and exact asymptotics for Qk. Note that by Sidorenko’s theorem and Exercise 10, we
have Qk ≥ n!/4k.

Remark 14. We should mention a counterpart to Sidorenko’s theorem in [BBS], giving
the following upper bound:

e(P) e(P) ≤ n!
(π

2

)n

as n→∞.

The proof uses Santaló’s inequality for polar polytopes, which is sharp for convex bodies.
The authors of [BBS] suggest that this bound can be further improved, although not
by much.

Open Problem 15. Denote by Rk the poset corresponding to [k×k] square of points
in the grid. It is known that

log e(Rk) =
1

2
n logn +

(

1

2
− 2 log 2

)

n + O
(√

n log n
)

.

(see e.g. [MPP] and [OEIS, A039622]). Find the asymptotics of e(Rk). Note that since

e(Rk) ≤
√
n!, we have e(Rk) ≥

√
n!, where n = k2. Note also that by the the remark

above we have:

log e(Rk) =
1

2
n logn + Θ(n).

http://oeis.org/A039622
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