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Abstract. We develop a new method for studying the asymptotics of symmetric
polynomials of representation–theoretic origin as the number of variables tends to
infinity. Several applications of our method are presented: We prove a number of
theorems concerning characters of infinite–dimensional unitary group and their q–
deformations. We study the behavior of uniformly random lozenge tilings of large
polygonal domains and find the GUE–eigenvalues distribution in the limit. We also
investigate similar behavior for Alternating Sign Matrices (equivalently, six–vertex
model with domain wall boundary conditions). Finally, we compute the asymptotic
expansion of certain observables in O(n = 1) dense loop model.
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1. Introduction

1.1. Overview. In this article we study the asymptotic behavior of symmetric func-
tions of representation–theoretic origin, such as Schur rational functions or characters
of symplectic or orthogonal groups, etc, as their number of variables tends to infinity.
In order to simplify the exposition we stick to Schur functions in the introduction
where it is possible, but most of our results hold in a greater generality.

The rational Schur function sλ(x1, . . . , xn) is a symmetric Laurent polynomial in
variables x1, . . . , xn. They are parameterized by N–tuples of integers λ = (λ1 ≥ λ2 ≥
· · · ≥ λN) (we call such N–tuples signatures, they form the set GTN) and are given
by Weyl’s character formula as

sλ(x1, . . . , xN) =
det
[
x
λj+N−j
i

]N
i,j=1∏

i<j(xi − xj)
.

Our aim is to study the asymptotic behavior of the normalized symmetric polynomials

(1.1) Sλ(x1, . . . , xk;N, 1) =
sλ(x1, . . . , xk,

N−k︷ ︸︸ ︷
1, . . . , 1)

sλ(1, . . . , 1︸ ︷︷ ︸
N

)

and also

(1.2) Sλ(x1, . . . , xk;N, q) =
sλ(x1, . . . , xk, 1, q, q

2, . . . , qN−k−1)

sλ(1, . . . , qN−1)
,

for some q > 0. Here λ = λ(N) is allowed to vary with N , k is any fixed number
and x1, . . . , xk are complex numbers, which may or may not vary together with N ,
depending on the context. Note that there are explicit expressions (Weyl’s dimension
formulas) for the denominators in formulas (1.1) and (1.2), therefore, their asymptotic
behavior is straightforward.

The asymptotic analysis of expressions (1.1), (1.2) is important because of the var-
ious applications in representation theory, statistical mechanics and probability, in-
cluding:

• For any k and any fixed x1, . . . , xk, such that |xi| = 1, the convergence of
Sλ(x1, . . . , xk;N, 1) (from (1.1)) to some limit and the identification of this
limit can be put in representation–theoretic framework as the approximation
of indecomposable characters of the infinite–dimensional unitary group U(∞)
by normalized characters of the unitary groups U(N), the latter problem was
first studied by Kerov and Vershik [VK].
• The convergence of Sλ(x1, . . . , xk;N, q) (from (1.2)) for any k and any fixed
x1, . . . , xk is similarly related to the quantization of characters of U(∞), see
[G1].
• The asymptotic behavior of (1.1) can be put in the context of Random Matrix

Theory as the study of the Harish–Chandra-Itzykson–Zuber integral

(1.3)

∫
U(N)

exp(Trace(AUBU−1))dU,

where A is a fixed Hermitian matrix of finite rank and B = B(N) is an N ×N
matrix changing in a regular way as N →∞. In this formulation the problem
was thoroughly studied by Guionnet and Mäıda [GM].
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• A normalized Schur function (1.1) can be interpreted as the expectation of
a certain observable in the probabilistic model of uniformly random lozenge
tilings of planar domains. The asymptotic analysis of (1.1) as N → ∞ with

xi = exp(yi/
√
N) and fixed yis gives a way to prove the local convergence of

random tiling to a distribution of random matrix origin — the GUE–corners
process (the name GUE–minors process is also used). Informal argument ex-
plaining that such convergence should hold was suggested earlier by Okounkov
and Reshetikhin in [OR1].
• When λ is a staircase Young diagram with 2N rows of lengths N − 1, N −

1, N−2, N−2, . . . , 1, 1, 0, 0, (1.1) gives the expectation of an observable( closely
related to the Fourier transform of the number of vertices of type a on a given
row) for the uniformly random configurations of the six–vertex model with
domain wall boundary conditions (equivalently, Alternating Sign Matrices).

Asymptotic behavior as N → ∞ with xi = exp(yi/
√
N) and fixed yi gives a

way to study the local limit of the six–vertex model with domain wall boundary
conditions near the boundary.
• For the same staircase λ the expression involving (1.1) with k = 4 and Schur

polynomials replaced by the characters of symplectic group gives the mean of
the boundary-to-boundary current for the completely packed O(n = 1) dense
loop model, see [GNP]. The asymptotics (now with fixed xi, not depending on
N) gives the limit behavior of this current, significant for the understanding of
this model.

In the present article we develop a new unified approach to study the asymptotics of
normalized Schur functions (1.1), (1.2) (and also for more general symmetric functions
like symplectic characters and polynomials corresponding to the root system BCn),
which gives a way to answer all of the above limit questions. There are 3 main
ingredients of our method:

(1) We find simple contour integral representations for the normalized Schur poly-
nomials (1.1), (1.2) with k = 1, i.e. for

(1.4)
sλ(x, 1, . . . , 1)

sλ(1, . . . , 1)
and

sλ(x, 1, q, . . . , q
N−2)

sλ(1, . . . , qN−1)
,

and also for more general symmetric functions of representation–theoretic ori-
gin.

(2) We study the asymptotics of the above contour integrals using the steepest
descent method.

(3) We find formulas expressing (1.1), (1.2) as k × k determinants of expressions
involving (1.4), and combining the asymptotics of these formulas with asymp-
totics of (1.4) compute limits of (1.1), (1.2).

In the rest of the introduction we provide a more detailed description of our results.
In Section 1.2 we briefly explain our methods. In Sections 1.3, 1.4, 1.5, 1.6, 1.7 we
describe the applications of our method in asymptotic representation theory, proba-
bility and statistical mechanics. Finally, in Section 1.8 we compare our approach for
studying the asymptotics of symmetric functions with other known methods.

In the next papers we also apply the techniques developed here to the study of
other classes of lozenge tilings [Pa] and to the investigation of the asymptotic behavior
of decompositions of tensor products of representations of classical Lie groups into
irreducible components [BuG].
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1.2. Our method. The main ingredient of our approach to the asymptotic analysis
of symmetric functions is the following integral formula, which is proved in Theorem
3.8. Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λN), and let x1, . . . , xk be complex numbers. Denote

Sλ(x1, . . . , xk;N, 1) =
sλ(x1, . . . , xk, 1, . . . , 1)

sλ(1, . . . , 1)

with N − k 1s in the numerator and N 1s in the denominator.

Theorem 1.1 (Theorem 3.8). For any complex number x other than 0 and 1 we have

(1.5) Sλ(x;N, 1) =
(N − 1)!

(x− 1)N−1

1

2πi

∮
C

xz∏N
i=1(z − (λi +N − i))

dz,

where the contour C encloses all the singularities of the integrand.

We also prove various generalizations of formula (1.5): one can replace 1s by the geo-
metric series 1, q, q2, . . . (Theorem 3.6), Schur functions can be replaced with characters
of symplectic group (Theorems 3.15 and 3.18) or, more, generally, with multivariate
Jacobi polynomials (Theorem 3.22). In all these cases a normalized symmetric func-
tion is expressed as a contour integral with integrand being the product of elementary
factors. The only exception is the most general case of Jacobi polynomials, where we
have to use certain hypergeometric series.

Recently (and independently of the present work) a formula similar to (1.5) for the
characters of orthogonal groups O(n) was found in [HJ] in the study of the mixing
time of certain random walk on O(n). A close relative of our formula (1.5) can be also
found in Section 3 of [CPZ].

Using formula (1.5) we apply tools from complex analysis, mainly the method of
steepest descent, to compute the limit behavior of these normalized symmetric func-
tions. Our main asymptotic results along these lines are summarized in Propositions
4.1, 4.2, 4.3 for real x and in Propositions 4.7 and 4.8 for complex x.

The next important step is the formula expressing Sλ(x1, . . . , xk;N, 1) in terms of
Sλ(xi;N, 1) which is proved in Theorem 3.7:

Theorem 1.2 (Theorem 3.7). We have

(1.6) Sλ(x1, . . . , xk;N, 1) =
1∏

i<j(xi − xj)
k∏
i=1

(N − i)!
(xi − 1)N−k

× det
[
Dk−j
xi

]k
i,j=1

(
k∏
j=1

Sλ(xj;N, 1)
(xj − 1)N−1

(N − 1)!

)
,

where Dx is the differential operator x ∂
∂x

.

Formula (1.6) can again be generalized: 1s can be replaced with geometric series
1, q, q2, . . . (Theorem 3.5), Schur functions can be replaced with characters of the
symplectic group (Theorems 3.14, 3.17) or, more, generally, with multivariate Jacobi
polynomials (Theorem 3.21). Formulas similar to (1.6) can be found in the literature,
see e.g. [GP, Proposition 6.2], [KuSk].

The advantage of formula (1.6) is its relatively simple form, but it is not straight-
forward that this formula is suitable for the N → ∞ limit. However, we are able to
rewrite this formula in a different form (see Proposition 3.9), from which this limit
transition is immediate. Combining the limit formula with the asymptotic results for
Sλ(x;N, 1) we get the full asymptotics for Sλ(x1, . . . , xk;N, 1). As a side remark, since
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we deal with analytic functions and convergence in our formulas is always (at least
locally) uniform, the differentiation in formula (1.6) does not introduce any problems.

Theorems 1.1 and 1.2 allow us to study the asymptotic behavior of normalized Schur
functions in various settings, which are motivated by the current applications:

• As λi(N)/N → f(i/N) in a sufficiently regular fashion for a monotone piece-
wise continuous function f on [0, 1] (used in the statistical mechanics applica-
tions of Section 5) or as λ(N) grows in certain sub-linear regimes (used in the
representation theoretic applications of Section 6).

• As the variables x1, . . . , xk are fixed, or as they depend on N , e.g. xi = eyi/
√
N

for fixed yi (used in Sections 5.1 and 5.2).

We believe that the combination of Theorems 1.1, 1.2 with the well-developed steep-
est descent method for the analysis of complex integral, paves the way to study the
delicate asymptotics of Schur polynomials (and more general symmetric functions of
representation-theoretic origin) in numerous limit regimes which might go well beyond
the applications presented in this paper.

1.3. Application: asymptotic representation theory. Let U(N) denote the
group of all N × N unitary matrices. Embed U(N) into U(N + 1) as a subgroup
acting on the space spanned by first N coordinate vectors and fixing N + 1st vector,
and form the infinite–dimensional unitary group U(∞) as an inductive limit

U(∞) =
∞⋃
N=1

U(N).

Recall that a (normalized) character of a group G is a continuous function χ(g), g ∈ G
satisfying:

(1) χ is constant on conjugacy classes, i.e. χ(aba−1) = χ(b),

(2) χ is positive definite, i.e. the matrix
[
χ(gig

−1
j )
]k
i,j=1

is Hermitian non-negative

definite, for any {g1, . . . , gk},
(3) χ(e) = 1.

An extreme character is an extreme point of the convex set of all characters. If
G is a compact group, then its extreme characters are normalized matrix traces of
irreducible representations. It is a known fact (see e.g. the classical book of Weyl
[W]) that irreducible representations of the unitary group U(N) are parameterized
by signatures, and the value of the trace of the representation parameterized by λ
on a unitary matrix with eigenvalues u1, . . . , uN is sλ(u1, . . . , uN). Using these facts
and applying the result above to U(N) we conclude that the normalized characters of
U(N) are the functions

sλ(u1, . . . , uN)

sλ(1, . . . , 1)
.

For “big” groups such as U(∞) the situation is more delicate. The study of charac-
ters of this group was initiated by Voiculescu [Vo] in 1976 in connection with finite
factor representations of U(∞). Voiculescu gave a list of extreme characters, later
independently Boyer [Bo] and Vershik-Kerov [VK] discovered that the classification
theorem for the characters of U(∞) follows from the result of Edrei [Ed] on the char-
acterization of totally positive Toeplitz matrices. Nowadays, several other proofs of
Voiculescu–Edrei classification theorem is known, see [OO], [BO], [Pe2]. The theorem
itself reads:
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Theorem 1.3. The extreme characters of U(∞) are parameterized by the points ω of
the infinite-dimensional domain

Ω ⊂ R4∞+2 = R∞ × R∞ × R∞ × R∞ × R× R,
where Ω is the set of sextuples

ω = (α+, α−, β+, β−; δ+, δ−)

such that

α± = (α±1 ≥ α±2 ≥ · · · ≥ 0) ∈ R∞, β± = (β±1 ≥ β±2 ≥ · · · ≥ 0) ∈ R∞,
∞∑
i=1

(α±i + β±i ) ≤ δ±, β+
1 + β−1 ≤ 1.

The corresponding extreme character is given by the formula

(1.7) χ(ω)(U) =
∏

u∈Spectrum(U)

eγ
+(u−1)+γ−(u−1−1)

∞∏
i=1

1 + β+
i (u− 1)

1− α+
i (u− 1)

1 + β−i (u−1 − 1)

1− α−i (u−1 − 1)
,

where

γ± = δ± −
∞∑
i=1

(α±i + β±i ).

Our interest in characters is based on the following fact.

Proposition 1.4. Every extreme normalized character χ of U(∞) is a uniform limit
of extreme characters of U(N). In other words, for every χ there exists a sequence
λ(N) ∈ GTN such that for every k

χ(u1, . . . , uk, 1, . . . ) = lim
N→∞

Sλ(u1, . . . , uk;N, 1)

uniformly on the torus (S1)k, where S1 = {u ∈ C : |u| = 1}.
In the context of representation theory of U(∞) this statement was first observed

by Kerov and Vershik [VK]. However, this is just a particular case of a very general
convex analysis theorem which was reproved many times in various contexts (see e.g.
[V], [OO], [DF2]).

The above proposition raises the question which sequences of characters of U(N)
approximate characters of U(∞). Solution to this problem was given by Kerov and
Vershik [VK].

Let µ be a Young diagram with row lengths µi, column lengths µ′i and whose length
of main diagonal is d. Introduce modified Frobenius coordinates :

pi = µi − i+ 1/2, qi = µ′i − i+ 1/2, i = 1, . . . , d.

Note that
∑d

i=1 pi + qi = |µ|.
Given a signature λ ∈ GTN , we associate two Young diagrams λ+ and λ− to it:

The row lengths of λ+ are the positive λi’s, while the row lengths of λ− are minus the
negative ones. In this way we get two sets of modified Frobenius coordinates: p+

i , q
+
i ,

i = 1, . . . , d+ and p−i , q
−
i , i = 1, . . . , d−.

Theorem 1.5 ([VK], [OO], [BO], [Pe2]). Let ω = (α±, β±; δ±) and suppose that the
sequence λ(N) ∈ GTN is such that

p+
i (N)/N → α+

i , p−i (N)/N → α−i , q+
i (N)/N → β+

i , q−i (N)/N → β+
i ,

|λ+|/N → δ+, |λ−|/N → δ−.
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Then for every k

χω(u1, . . . , uk, 1, . . . ) = lim
N→∞

Sλ(N)(u1, . . . , uk;N, 1)

uniformly on the torus (S1)k.

Theorem 1.5 is an immediate corollary of our results on asymptotics of normalized
Schur polynomials, and a new short proof is given in Section 6.1.

Note the remarkable multiplicativity of Voiculescu–Edrei formula for the characters
of U(∞): the value of a character on a given matrix (element of U(∞)) is expressed
as a product of the values of a single function at each of its eigenvalues. There ex-
ists an independent representation–theoretic argument explaining this multiplicativity.
Clearly, no such multiplicativity exists for finite N , i.e. for the characters of U(N).
However, we claim that the formula (1.6) should be viewed as a manifestation of ap-
proximate multiplicativity for (normalized) characters of U(N). To explain this point
of view we start from k = 2, in this case (1.6) simplifies to

Sλ(x, y;N, 1) = Sλ(x;N, 1)Sλ(y;N, 1)

+
(x− 1)(y − 1)

N − 1

(x ∂
∂x
− y ∂

∂y
)[Sλ(x;N, 1)Sλ(y;N, 1)]

y − x .

More generally Proposition 3.9 claims that for any k formula (1.6) implies that, infor-
mally,

Sλ(x1, . . . , xk;N, 1) = Sλ(x1;N, 1) · · ·Sλ(xk;N, 1) +O(1/N),

therefore, (1.6) states that normalized characters of U(N) are approximately multi-
plicative and they become multiplicative as N → ∞. This is somehow similar to the
work of Diaconis and Freedman [DF] on finite exchangeable sequences. In particular,
in the same way as results of [DF] immediately imply de Finetti’s theorem (see e.g.
[A]), our results immediately imply the multiplicativity of characters of U(∞).

In [G1] a q–deformation of the notion of character of U(∞) was suggested. Analo-
gously to Proposition 1.4, a q–character is a limit of Schur functions, but with different
normalization. This time the sequence λ(N) should be such that for every k

(1.8)
sλ(N)(x1, . . . , xk, q

−k, q−k−1, . . . , q1−N)

sλ(N)(1, q−1, . . . , q1−N)

converges uniformly on the set {(x1, . . . , xk) ∈ Ck | |xi| = q1−i}. An analogue of
Theorem 1.5 is the following one:

Theorem 1.6 ([G1]). Let 0 < q < 1. Extreme q–characters of U(∞) are parameterized
by the points of set N of all non-decreasing sequences of integers:

N = {ν1 ≤ ν2 ≤ ν3 ≤ . . . } ⊂ Z∞,
Suppose that a sequence λ(N) ∈ GTN is such that for any j > 0

(1.9) lim
i→∞

λN+1−j(N) = νj,

then for every k

(1.10)
sλ(N)(x1, . . . , xk, q

−k, q−k−1, . . . , q1−N)

sλ(N)(1, q−1, . . . , q1−N)

converges uniformly on the set {(x1, . . . , xk) ∈ Ck | |xi| = q1−i} and these limits define
the q–character of U(∞).
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Using the q–analogues of formulas (1.5) and (1.6) we give in Section 6.2 a short
proof of the second part of Theorem 1.6, see Theorem 6.5. This should be compared
with [G1], where the proof of the same statement was quite involved. We go beyond
the results of [G1], give new formulas for the q–characters and explain what property
replaces the multiplicativity of Voiculescu–Edrei characters given in Theorem 1.3.

1.4. Application: random lozenge tilings. Consider a tiling of a domain drawn
on the regular triangular lattice of the kind shown at Figure 1 with rhombi of 3 types,
where each rhombus is a union of 2 elementary triangles. Such rhombi are usually
called lozenges and they are shown at Figure 2. The configuration of the domain is
encoded by the number N which is its width and N integers µ1 > µ2 > · · · > µN
which are the positions of horizontal lozenges sticking out of the right boundary. If we
write µi = λi+N− i, then λ is a signature of size N , see left panel of Figure 1. Due to
combinatorial constraints the tilings of such domain are in correspondence with tilings
of a certain polygonal domain, as shown on the right panel of Figure 1. Let Ωλ denote
the domain encoded by a signature λ.

3 +2

+1

5

1

2 +3

4

+4

Figure 1. Lozenge tiling of the domain encoded by signature λ (left
panel) and of corresponding polygonal domain (right panel).

It is well–known that each lozenge tiling can be identified with a stepped surface in
R3 (the three types of lozenges correspond to the three slopes of this surface) and with
a perfect matching of a subgraph of a hexagonal lattice, see e.g. [Ke]. Note that there
are finitely many tilings of Ωλ and let Υλ denote a uniformly random lozenge tiling of
Ωλ. The interest in lozenge tilings is caused by their remarkable asymptotic behavior.
When N is large the rescaled stepped surface corresponding to Υλ concentrates near
a deterministic limit shape. In fact, this is true also for more general domains, see
[CKP]. One feature of the limit shape is the formation of so–called frozen regions ;
in terms of tilings, these are the regions where asymptotically with high probability
only single type of lozenges is observed. This effect is visualized in Figure 3, where a
sample from the uniform measure on tilings of the simplest tilable domain — hexagon
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— is shown. It is known that in this case the boundary of the frozen region is the
inscribed ellipse, see [CLP], for more general polygonal domains the frozen boundary
is an inscribed algebraic curve, see [KO] and also [Pe1].

Figure 2. The 3 types of lozenges, the middle one is called “horizon-
tal”.

In this article we study the local behavior of lozenge tiling near a turning point of the
frozen boundary, which is the point where the boundary of the frozen region touches
(and is tangent to) the boundary of the domain. Okounkov and Reshetikhin gave in
[OR1] a non-rigorous argument explaining that the scaling limit of a tiling in such
situation should be governed by the GUE–corners process (introduced and studied by
Baryshnikov [Bar] and Johansson–Nordenstam [JN]), which is the joint distribution
of the eigenvalues of a Gaussian Unitary Ensemble (GUE–)random matrix (i.e. Her-
mitian matrix with independent Gaussian entries) and of its top–left corner square
submatrices. In one model of tilings of infinite polygonal domains, the proof of the
convergence can be based on the determinantal structure of the correlation functions
of the model and on the double–integral representation for the correlation kernel and
it was given in [OR1]. Another rigorous argument, related to the asymptotics of or-
thogonal polynomials exists for the lozenge tilings of hexagon (as in Figure 3), see [JN],
[N].

Figure 3. A sample from uniform distribution on tilings of 40×50×50
hexagon and corresponding theoretical frozen boundary. The three types
of lozenges are shown in three distinct colors.

Given Υλ let ν1 > ν2 > · · · > νk be the horizontal lozenges at the kth vertical line
from the left. (Horizontal lozenges are shown in blue in the left panel of Figure 1.) We
set νi = κi+k−i and denote the resulting random signature κ of size k as Υk

λ. Further,
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let GUEk denote the distribution of k (ordered) eigenvalues of a random Hermitian
matrix from a Gaussian Unitary Ensemble.

Theorem 1.7 (Theorem 5.1). Let λ(N) ∈ GTN , N = 1, 2, . . . be a sequence of signa-
tures. Suppose that there exist a non-constant piecewise-differentiable weakly decreasing
function f(t) such that

N∑
i=1

∣∣∣∣λi(N)

N
− f(i/N)

∣∣∣∣ = o(
√
N)

as N →∞ and also supi,N |λi(N)/N | <∞. Then for every k as N →∞ we have

Υk
λ(N) −NE(f)√

NS(f)
→ GUEk

in the sense of weak convergence, where

E(f) =

∫ 1

0

f(t)dt, S(f) =

∫ 1

0

f(t)2dt− E(f)2 +

∫ 1

0

f(t)(1− 2t)dt.

Corollary 1.8 (Corollary 5.2). Under the same assumptions as in Theorem 1.7 the
(rescaled) joint distribution of k(k+ 1)/2 horizontal lozenges on the left k lines weakly
converges to the joint distribution of the eigenvalues of the k top-left corners of a k×k
matrix from a GUE.

Note that, in principle, our domains may approximate a non–polygonal limit domain
as N → ∞, thus, the results of [KO] describing the limit shape in terms of algebraic
curves are not applicable here and not much is known about the exact shape of the
frozen boundary. In particular, even the explicit expression for the coordinate of the
point where the frozen boundary touches the left boundary (which we get as a side
result of Theorem 1.7) seems not to be present in the literature.

Our approach to the proof of Theorem 1.7 is the following: We express the expec-
tations of certain observables of uniformly random lozenge tilings through normalized
Schur polynomials Sλ and investigate the asymptotics of these polynomials. In this
case we prove and use the following asymptotic expansion (given in Proposition 4.3
and Proposition 5.8)

Sλ(e
h1√
N , . . . , e

hk√
N ;N, 1)

= exp

(√
NE(f)(h1 + · · ·+ hk) +

1

2
S(f)(h2

1 + · · ·+ h2
k) + o(1)

)
.

We believe that our approach can be extended to a natural q–deformation of uniform
measure, which assigns the weight qvol to lozenge tiling with volume vol below the
corresponding stepped surface; and also to lozenge tilings with axial symmetry, as in
[FN], [BK]. In the latter case the Schur polynomials are replaced with characters of
orthogonal or symplectic groups and the limit object also changes. We postpone the
thorough study of these cases to a future publication.

We note that there might be another approach to the proof of Theorem 1.7. Recently
there was progress in understanding random tilings of polygonal domains, Petrov found
double integral representations for the correlation kernel describing the local structure
of tilings of a wide class of polygonal domains, see [Pe1] (and also [Me] for a similar
result in context of random matrices). Starting from these formulas, one could try to
prove the GUE–corners asymptotics along the lines of [OR1].
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1.5. Application: six–vertex model and random ASMs. An Alternating Sign
Matrix of size N is a N ×N matrix whose entries are either 0, 1 or −1, such that the
sum along every row and column is 1 and, moreover, along each row and each column
the nonzero entries alternate in sign. Alternating Sign Matrices are in bijection with
configurations of the six-vertex model with domain wall boundary conditions as shown
at Figure 4, more details on this bijection are given in Section 5.2. A good review of
the six–vertex model can be found e.g. in the book [Bax] by Baxter.

0 0 0 1 0
0 1 0 −1 1
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0


O O O O OH H H HH H

O O O O OH H H HH H

O O O O OH H H HH H

O O O O OH H H HH H

O O O O OH H H HH H

H H H H H

H H H H H

H H H H H

H H H H H

Figure 4. An alternating sign matrix of size 5 and the corresponding
configuration of the six–vertex model (“square ice”) with domain wall
boundary condition. 1s in ASM correspond to horizontal molecules H-
O-H and −1s to the vertical ones.

Interest in ASMs from combinatorial perspective emerged since their discovery in
connection with Dodgson condensation algorithm for determinant evaluations. Ini-
tially, questions concerned enumeration problems, for instance, finding the total num-
ber of ASMs of given size n (this was the long-standing ASM conjecture proved by
Zeilberger [Ze] and Kuperberg [Ku], the full story can be found in the Bressoud’s book
[Br]). Physicists’ interest stems from the fact that ASMs are in one-to-one bijection
with configurations of the six–vertex model. Many questions on ASMs still remain
open. Examples of recent breakthroughs include the Razumov–Stroganov [RS] conjec-
ture relating ASMs to yet another model of statistical mechanics (so-called O(1) loop
model), which was finally proved very recently by Cantini and Sportiello [CS], and
the still open question on a bijective proof of the fact that Totally Symmetric Self-
Complementary Plane Partitions and ASMs are equinumerous. A brief up-to-date
introduction to the subject can be found e.g. in [BFZ].

Our interest in ASMs and the six–vertex model is probabilistic. We would like to
know how a uniformly random ASM of size n looks like when n is large. Conjecturally,
the features of this model should be similar to those of lozenge tilings: we expect
the formation of a limit shape and various connections with random matrices. The
properties of the limit shape for ASMs were addressed by Colomo and Pronko [CP3],
however their arguments are mostly not mathematical, but physical.

In the present article we prove a partial result toward the following conjecture.

Conjecture 1.9. Fix any k. As n→∞ the probability that the number of −1s in the
first k rows of a uniformly random ASM of size n is maximal (i.e. there is one −1
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in second row, two −1s in third row, etc) tends to 1, and, thus, 1s in first k rows are
interlacing. After proper centering and rescaling, the distribution of the positions of
1s tends to the GUE–corners process as n→∞.

Let Ψk(n) denote the sum of coordinates of 1s minus the sum of coordinates of −1s
in the kth row of the uniformly random ASM of size n. We prove that the centered and
rescaled random variables Ψk(n) converge to the collection of i.i.d. Gaussian random
variables as n→∞.

Theorem 1.10 (Theorem 5.9). For any fixed k the random variable Ψk(n)−n/2√
n

weakly

converges to the normal random variable N(0,
√

3/8). Moreover, the joint distribution
of any collection of such variables converges to the distribution of independent normal
random variables N(0,

√
3/8).

Remark. We also prove a bit stronger statement, see Theorem 5.9 for the details.

Note that Theorem 1.10 agrees with Conjecture 1.9. Indeed, if the latter holds, then
Ψk(n) converges to the difference of the sums of the eigenvalues of a k×k GUE–random
matrix and of its (k− 1)× (k− 1) top left submatrix. But these sums are the same as
the traces of the corresponding matrices, therefore, the difference of sums equals the
bottom right matrix element of the k×k matrix, which is a Gaussian random variable
by the definition of GUE.

Our proof of Theorem 1.10 has two components. First, a result of Okada [Ok], based
on earlier work of Izergin and Korepin [I], [Kor], shows that sums of certain quantities
over all ASMs can be expressed through Schur polynomials (in an equivalent form this
was also shown by Stroganov [St]). Second, our method gives the asymptotic analysis
of these polynomials.

In fact, we claim that Theorem 1.10 together with an additional probabilistic argu-
ment implies Conjecture 1.9. However, this argument is unrelated to the asymptotics
of symmetric polynomials and, thus, is left out of the scope of the (already long)
present paper; the proof of Conjecture 1.9 based on Theorem 1.10 is presented by one
of the authors in the later article [G2].

In the literature one can find another probability measure on ASMs assigning the
weight 2n1 to the matrix with n1 1s. For this measure there are many rigorous math-
ematical results, due to the connection to the uniform measure on domino tilings of
the Aztec diamond, see [EKLP], [FS]. The latter measure can be viewed as a determi-
nantal point process, which gives tools for its analysis. An analogue of Conjecture 1.9
for the tilings of Aztec diamond was proved by Johansson and Nordenstam [JN].

In regard to the combinatorial questions on ASMs, we note that there has been
interest in refined enumerations of Alternating Sign Matrices, i.e. counting the number
of ASMs with fixed positions of 1s along the boundary. In particular, Colomo–Pronko
[CP1], [CP2], Behrend [Be] and Ayyer–Romik [AR] found formulas relating k–refined
enumerations to 1–refined enumerations for ASMs. Some of these formulas are closely
related to particular cases of our multivariate formulas (Theorem 3.7) for staircase
Young diagrams.

1.6. Application: O(n = 1)–loop model. Recently found parafermionic observ-
ables in the so-called completely packed O(n = 1) dense loop model in a strip are
also simply related to symmetric polynomials, see [GNP]. The O(n = 1) dense loop
model is one of the representations of the percolation model on the square lattice. For
the critical percolation models similar observables and their asymptotic behavior were
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studied (see e.g. [Sm]), however, the methods involved are usually completely different
from ours.

A configuration of the O(n = 1) loop model in a vertical strip consists of two parts:
a tiling of the strip on a square grid of width L and infinite height with squares of two
types shown in Figure 5 (left panel), and a choice of one of the two types of boundary
conditions for each 1 × 2 segment along each of the vertical boundaries of the strip;
the types appearing at the left boundary are shown in Figure 5 (right panel). Let kL
denote the set of all configurations of the model in the strip of width L. An element of
k6 is shown in Figure 5. Note that the arcs drawn on squares and boundary segments
form closed loops and paths joining the boundaries. Therefore, the elements of kL
have an interpretation as collections of non-intersecting paths and closed loops.

Figure 5. Left panel: the two types of squares. Right panel: the two
types of boundary conditions.

x

yζ1 ζ2

L

Figure 6. A particular configuration of the dense loop model showing
a path passing between two vertically adjacent points x and y.

In the simplest homogeneous case a probability distribution on kL is defined by
declaring the choice of one of the two types of squares to be an independent Bernoulli
random variable for each square of the strip and for each segment of the boundary.
I.e. for each square of the strip we flip an unbiased coin to choose one of the two
types of squares (shown in Figure 5) and similarly for the boundary conditions. More
generally, the type of a square is chosen using a (possibly signed or even complex)
weight defined as a certain function of its horizontal coordinate and depending on
L parameters z1, . . . , zL; two other parameters ζ1, ζ2 control the probabilities of the
boundary conditions and, using a parameter q, the whole configuration is further
weighted by its number of closed loops. We refer the reader to [GNP] and references
therein for the exact dependence of weights on the parameters of the model and for
the explanation of the choices of parameters.
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Fix two points x and y and consider a configuration ω ∈ kL. There are finitely
many paths passing between x and y. For each such path τ we define the current c(τ)
as 0 if τ is a closed loop or joins points of the same boundary; 1 if τ joins the two
boundaries and x lies above τ ; −1 if τ joins the two boundaries and x lies below τ .
The total current Cx,y(ω) is the sum of c(τ) over all paths passing between x and y.
The mean total current F x,y is defined as the expectation of Cx,y.

Two important properties of F x,y are skew-symmetry

F x,y = −F y,x

and additivity
F x1,x3 = F x1,x2 + F x2,x3 .

These properties allow to express F (x,y) as a sum of several instances of the mean total
current between two horizontally adjacent points

F (i,j),(i,j+1)

and the mean total current between two vertically adjacent points

F (j,i),(j+1,i).

The authors of [GNP] present a formula for F (i,j),(i,j+1) and F (j,i),(j+1,i) which,
based on certain assumptions, expresses them through the symplectic characters
χλL(z2

1 , . . . , z
2
L, ζ

2
1 , ζ

2
2 ) where λL = (bL−1

2
c, bL−2

2
c, . . . , 1, 0, 0). The precise relationship

is given in Section 5.3. Our approach allows us to compute the asymptotic behavior of
the formulas of [GNP] as the lattice width L → ∞, see Theorem 5.12. In particular,
we prove that the leading term in the asymptotic expansion is independent of the
boundary parameters ζ1, ζ2.

This problem was presented to the authors by de Gier [Gi], [GP] during the program
“Random Spatial Processes” at MSRI, Berkeley.

1.7. Application: matrix integrals. Let A and B be two N×N Hermitian matrices
with eigenvalues a1, . . . , aN and b1, . . . , bN , respectively. The Harish–Chandra formula
[H1], [H2] (sometimes known also as Itzykson–Zuber [IZ] formula in physics literature)
is the following evaluation of the integral over the unitary group:

(1.11)

∫
U(N)

exp(Trace(AUBU−1))dU =
deti,j=1,...,N

(
exp(aibj)

)
∏

i<j(ai − aj)
∏

i<j(bi − bj)
∏
i<j

(j − i),

where the integration is with respect to the normalized Haar measure on the unitary
group U(N). Comparing (1.11) with the definition of Schur polynomials and using
Weyl’s dimension formula

sλ(1, . . . , 1) =
∏
i<j

(λi − i)− (λj − j)
j − i ,

we observe that when bj = λj + N − j the above matrix integral is the normalized
Schur polynomial times explicit product, i.e.

sλ(e
a1 , . . . , ean)

sλ(1, . . . , 1)
·
∏
i<j

eai − eaj
ai − aj

.

Guionnet and Mäıda studied (after some previous results in the physics literature,
see [GM] and references therein) the asymptotics of the above integral as N →∞ when
the rank of A is finite and does not depend on N . This is precisely the asymptotics
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of (1.1). Therefore, our methods (in particular, Propositions 4.1, 4.2, 4.7) give a new
proof of some of the results of [GM]. In the context of random matrices the asymptotics
of this integral in the case when rank of A grows as the size of A grows was also studied,
see e.g. [GZ], [CS]. However, currently we are unable to use our methods for this case.

1.8. Comparison with other approaches. Since asymptotics of symmetric polyno-
mials as the number of variables tends to infinity already appeared in various contexts
in the literature, it makes sense to compare our approach to the ones used before.

In the context of asymptotic representation theory the known approach (see [VK],
[OO], [OO2], [G1]) is to use the so-called binomial formulas. In the simplest case of
Schur polynomials such formula reads as

(1.12) Sλ(1 + x1, . . . , 1 + xk;N, 1) =
∑
µ

sµ(x1, . . . , xk)c(µ, λ,N),

where the sum is taken over all Young diagrams µ with at most k rows, and c(µ, λ,N)
are certain (explicit) coefficients. In the asymptotic regime of Theorem 1.5 the conver-
gence of the left side of (1.12) implies the convergence of numbers c(µ, λ,N) to finite
limits as N → ∞. Studying the possible asymptotic behavior of these numbers one
proves the limit theorems for normalized Schur polynomials.

Another approach uses the decomposition

(1.13) Sλ(x1, . . . , xk;N, 1) =
∑
µ

Sµ(x1, . . . , xk; k, 1)d(µ, λ,N),

where the sum is taken over all signatures of length k. Recently in [BO] and [Pe2]
k × k determinantal formulas were found for the coefficients d(µ, λ,N). Again, these
formulas allow the asymptotic analysis which leads to the limit theorems for normalized
Schur polynomials.

The asymptotic regime of Theorem 1.5 is distinguished by the fact that∑
i |λi(N)|/N is bounded as N →∞. This no longer holds when one studies asymp-

totics of lozenge tilings, ASMs, or O(n = 1) loop model. As far as authors know, in
the latter limit regime neither formulas (1.12) nor (1.13) give simple ways to compute
the asymptotics. The reason for that is the fact that for any fixed µ both c(µ, λ,N)
and d(µ, λ,N) would converge to zero as N →∞ and more delicate analysis would be
required to reconstruct the asymptotics of normalized Schur polynomials.

Yet another, but similar approach to the proof of Theorem 1.5 was used in [Bo2]
but, as far as authors know, it also does not extend to the regime we need for other
applications.

On the other hand the random–matrix asymptotic regime of [GM] is similar to
the one we need for studying lozenge tilings, ASMs, or O(n = 1) loop model. The
approach of [GM] is based on the matrix model and the proofs rely on large deviations
for Gaussian random variables. However, it seems that the results of [GM] do not
suffice to obtain our applications: for k > 1 only the first order asymptotics (which is
the limit of ln(Sλ(x1, . . . , xk;N, 1))/N) was obtained in [GM], while our applications
require more delicate analysis. It also seems that the results of [GM] (even for k = 1)
cannot be applied in the framework of the representation theoretic regime of Theorem
1.5.
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2. Definitions and problem setup

In this section we set up notations and introduce the symmetric functions of our
interest.

A partition (or a Young diagram) λ is a collection of non-negative numbers λ1 ≥
λ2 ≥ . . . , such that

∑
i λi <∞. The numbers λi are row lengths of λ, and the numbers

λ′i = |{j : λj ≥ i}| are column lengths of λ.
More generally a signature λ of size N is an N–tuple of integers λ1 ≥ λ2 ≥ · · · ≥ λN .

The set of all signatures of size N is denoted GTN . It is also convenient to introduce
strict signatures, which are N–tuples satisfying strict inequalities λ1 > λ2 > · · · > λN ;

they from the set ĜTN . We are going to use the following identification between

elements of GTN and ĜTN :

GTN 3 λ←→ λ+ δN = µ ∈ ĜTN , µi = λi +N − i,

where we set δN = (N−1, N−2, . . . , 1, 0). The subset of GTN (ĜTN) of all signatures

(strict signatures) with non-negative coordinates is denoted GT+
N (ĜT

+

N).
One of the main objects of study in this paper are the rational Schur functions,

which originate as the characters of the irreducible representations of the unitary
group U(N) (equivalently, of irreducible rational representations of the general linear
group GL(N)). Irreducible representations are parameterized by elements of GTN ,
which are identified with the dominant weights, see e.g. [W] or [Zh]. The value of
the character of the irreducible representation Vλ indexed by λ ∈ GTN , on a unitary
matrix with eigenvalues u1, . . . , uN is given by the Schur function,

(2.1) sλ(u1, . . . , uN) =
det
[
u
λj+N−j
i

]N
i,j=1∏

i<j(ui − uj)
,

which is a symmetric Laurent polynomial in u1, . . . , uN . The denominator in (2.1) is
the Vandermonde determinant and we denote it through ∆:

∆(u1, . . . , uN) = det
[
uN−ji

]N
i,j=1

=
∏
i<j

(ui − uj).

When the numbers ui form a geometric progression, the determinant in (2.1) can be
evaluated explicitly as

(2.2) sλ(1, q . . . , q
N−1) =

∏
i<j

qλi+N−i − qλj+N−j
qN−i − qN−j .
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In particular, sending q → 1 we get

(2.3) sλ(1
N) =

∏
1≤i<j≤N

(λi − i)− (λj − j)
j − i ,

where we used the notation

1N = (1, . . . , 1︸ ︷︷ ︸
N

).

The identity (2.3) gives the dimension of Vλ and is known as the Weyl’s dimension
formula.

In what follows we intensively use the normalized versions of Schur functions:

Sλ(x1, . . . , xk;N, q) =
sλ(x1, . . . , xk, 1, q, q

2, . . . , qN−1−k)

sλ(1, . . . , qN−1)
,

in particular,

Sλ(x1, . . . , xk;N, 1) =
sλ(x1, . . . , xk, 1

N−k)

sλ(1N)
.

The Schur functions are characters of type A (according to the classification of
root systems), their analogues for other types are related to the multivariate Jacobi
polynomials.

For a, b > −1 and m = 0, 1, 2 . . . let pm(x; a, b) denote the classical Jacobi polyno-
mials orthogonal with respect to the weight (1 − x)a(1 + x)b on the interval [−1, 1],
see e.g. [Er1], [KoSw]. We use the normalization of [Er1], thus, the polynomials can
be related to the Gauss hypergeometric function 2F1:

pm(x; a, b) =
Γ(m+ a+ 1)

Γ(m+ 1)Γ(a+ 1)
2F1

(
−m,m+ a+ b+ 1, a+ 1;

1− x
2

)
.

For any strict signature λ ∈ ĜT
+

N set

Pλ(x1, . . . , xN ; a, b) =
det[pλi(xj; a, b)]

N
i,j=1

∆(x1, . . . , xN)
.

and for any (non-strict) λ ∈ GT+
N define

(2.4) Jλ(z1, . . . , zN ; a, b) = cλPλ+δ

(
z1 + z−1

1

2
, . . . ,

zN + z−1
N

2
; a, b

)
,

where cλ is a constant chosen so that the leading coefficient of Jλ is 1. The polynomials
Jλ are (a particular case of) BCN multivariate Jacobi polynomials, see e.g. [OO2] and
also [HS], [M2], [Koo]. We also use their normalized versions

(2.5) Jλ(z1, . . . , zk;N, a, b) =
Jλ(z1, . . . , zk, 1

N−k; a, b)

Jλ(1N ; a, b)
.

Again, there is an explicit formula for the denominator in (2.5) and also for its q–
version. For special values of parameters a and b the functions Jλ can be identified
with spherical functions of classical Riemannian symmetric spaces of compact type, in
particular, with normalized characters of orthogonal and symplectic groups, see e.g.
[OO2, Section 6].

Let us give more details on the latter case of the symplectic group Sp(2N), as we
need it for one of our applications. This case corresponds to a = b = 1/2 and here the
formulas can be simplified.
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The value of character of irreducible representation of Sp(2N) parameterized by
λ ∈ GT+

N on symplectic matrix with eigenvalues x1, x
−1
1 , . . . , xN , x

−1
N is given by (see

e.g. [W], [Zh])

χλ(x1, . . . , xN) =
det
[
x
λj+N+1−j
i − x−(λj+N+1−j)

i

]N
i,j=1

det
[
xN+1−j
i − x−N−1+j

i

]N
i,j=1

.

The denominator in the last formula can be evaluated explicitly and we denote it ∆s

(2.6) ∆s(x1, . . . , xN) = det
[
xN−j+1
i − x−N+j−1

i

]N
i,j=1

=
∏
i

(xi − x−1
i )
∏
i<j

(xi + x−1
i − (xj + x−1

j )) =

∏
i<j(xi − xj)(xixj − 1)

∏
i(x

2
i − 1)

(x1 · · ·xn)n
.

The normalized symplectic character is then defined as

Xλ(x1, . . . , xk;N, q) =
χλ(x1, . . . , xk, q, . . . , q

N−k)

χλ(q, q2, . . . , qN)
,

in particular

Xλ(x1, . . . , xk;N, 1) =
χλ(x1, . . . , xk, 1

N−k)

χλ(1N)
,

and both denominators again admit explicit formulas.

In most general terms, in the present article we study the symmetric functions Sλ,
Jλ, Xλ, their asymptotics as N →∞ and its applications.

Some further notations.
We intensively use the q–algebra notations

[m]q =
qm − 1

q − 1
, [a]q! =

a∏
m=1

[m]q,

and q-Pochhammer symbol

(a; q)k =
k−1∏
i=0

(1− aqi).

Since there are lots of summations and products in the text where i plays the role
of the index, we write i for the imaginary unit to avoid the confusion.

3. Integral and multivariate formulas

In this section we derive integral formulas for normalized characters of one variable
and also express the multivariate normalized characters as determinants of differential
(or, sometimes, difference) operators applied to the product of the single variable
normalized characters.

We first exhibit some general formulas, which we later specialize to the cases of
Schur functions, symplectic characters and multivariate Jacobi polynomials.
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3.1. General approach.

Definition 3.1. For a given sequence of numbers θ = (θ1, θ2, . . . ), a collection of

functions {Aµ(x1, . . . , xN)}, N = 1, 2, . . . , µ ∈ ĜTN (or ĜT
+

N) is called a class of
determinantal symmetric functions with parameter θ, if there exist functions α(u),
β(u), g(u, v), numbers cN , and linear operator T such that for all N and µ we have

(1)

Aµ(x1, . . . , xN) =
det[g(xj;µi)]

N
i,j=1

∆(x1, . . . , xN)

(2)

Aµ(θ1, . . . , θN) = cN

N∏
i=1

β(µi)
∏
i<j

(α(µi)− α(µj)),

(3) g(x;m) (m ∈ Z for the case of ĜT and m ∈ Z≥0 for the case ĜT
+

) are
eigenfunctions of T acting on x with eigenvalues α(m), i.e.

T (g(x,m)) = α(m)g(x,m).

(4) α′(m) 6= 0 for all m as above.

Proposition 3.2. For Aµ(x1, . . . , xN), as in Definition 3.1 we have the following
formula

(3.1)
Aµ(x1, . . . , xk, θ1, . . . , θN−k)

Aµ(θ1, . . . , θN)
=
cN−k
cN

k∏
i=1

N−k∏
j=1

1

xi − θj
×

det
[
T j−1
i

]k
i,j=1

∆(x1, . . . , xk)

k∏
i=1

(
Aµ(xi, θ1, . . . , θN−1)

Aµ(θ1, . . . , θN)

N−1∏
j=1

(xi − θj)
cN
cN−1

)
,

where Ti is operator T acting on variable xi.

Remark. Since operators Ti commute, we have

det
[
T j−1
i

]k
i,j=1

=
∏
i<j

(Ti − Tj).

We also note that some of the denominators in (3.1) can be grouped in the compact
form

k∏
i=1

N−k∏
j=1

(xi − θj)∆(x1, . . . , xk) =
∆(x1, . . . , xk, θ1, . . . , θN−k)

∆(θ1, . . . , θN−k)
.

Moreover, in our applications, the coefficients cm will be inversely proportional to
∆(θ1, . . . , θm), so we will be able to write alternative formulas where the prefactors are
simple ratios of Vandermondes.

Proof of Proposition 3.2. We will compute the determinant from property (1) of A by
summing over all k × k minors in the first k columns, where we set the convention
that i is a row index and j is a column index. The rows in the corresponding minors
will be indexed by I = {i1 < i2 < · · · < ik} and µI = (µi1 , . . . , µik). I

c denotes the
complement of I in {1, 2, . . . , n}. We have

(3.2)
Aµ(x1, . . . , xk, θ1, . . . , θN−k)

Aµ(θ1, . . . , θN)
=

1∏k
i=1

∏N−k
j=1 (xi − θj)
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×
∑

I={i1<i2<···<ik}

(−1)
∑
`∈I(`−1)AµI (x1, . . . , xk)

AµIc (θ1, . . . , θN−k)

Aµ(θ1, . . . , θN)

For each set I we have

(3.3)
AµIc (θ1, . . . , θN−k)

Aµ(θ1, . . . , θN)

cN
cN−k

=

∏
i∈Ic β(µi)

∏
i<j;i,j∈Ic(α(µi)− α(µj))∏N

i=1 β(µi)
∏

1≤i<j≤N(α(µi)− α(µj))

=

[∏
i∈I

(
1

β(µi)

N∏
j=i+1

1

α(µi)− α(µj)

)] ∏
i 6∈I, j∈I, i<j

1

α(µi)− α(µj)

=

[∏
i∈I

(
1

β(µi)

N∏
j=i+1

1

α(µi)− α(µj)

)] ∏
i<j, i,j∈I(α(µi)− α(µj))∏

r<s, r∈I, s∈[1..N ]−(α(µs)− α(µr))

=
∏

i<j;i,j∈I

(α(µi)− α(µj)) ·
∏
r∈I

(−1)r−1

β(µr)
∏

s 6=r(α(µr)− α(µs))
.

We also have that

(3.4)
∏

i<j;i,j∈I

(α(µi)− α(µj))AµI (x1, . . . , xk)∆(x1, . . . , xk)

= det

[
α(µi`)

j−1

]k
`,j=1

∑
σ∈Sk

(−1)σ
k∏
`=1

g(xσi ;µi`)

=
∑
σ∈Sk

(−1)σ det

[
α(µi`)

j−1g(xσj ;µi`)

]k
`,j=1

=
∑
σ∈Sk

(−1)σ det

[
T j−1
σj

g(xσj ;µi`)

]k
`,j=1

= det

[
T j−1
i

]k
i,j=1

∑
σ∈Sk

k∏
`=1

g(xσi ;µi`).

Combining (3.2), (3.3) and (3.4) we get

(3.5)
Aµ(x1, . . . , xk, θ1, . . . , θN−k)

Aµ(θ1, . . . , θN)

k∏
i=1

N−k∏
j=1

(xi − θj)
cN
cN−k

=
det
[
T j−1
i

]k
i,j=1

∆(x1, . . . , xk)

∑
I={i1<i2<···<ik}

∑
σ∈S(k)

∏
`

g(x`;µiσ` )

β(µiσ` )
∏

j 6=iσ`
(α(µiσ` )− α(µj))

.

Note that double summation in the last formula is a summation over all (ordered)
collections of distinct numbers. We can also include into the sum the terms where
some indices i` coincide, since application of the Vandermonde of linear operators
annihilates such terms. Therefore, (3.5) equals

det
[
T j−1
i

]k
i,j=1

∆(x1, . . . , xk)

k∏
`=1

N∑
i`=1

g(x`;µi`)

β(µi`)
∏

j 6=i`(α(µi`)− α(µj))
.

When k = 1 the operators and the product over ` disappear, so we see that the

remaining sum is exactly the univariate ratio
Aµ(x`, θ1, . . . , θN−1)

Aµ(θ1, . . . , θN)

N−1∏
j=1

(x` − θj)
cN
cN−1

and we obtain the desired formula. �
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Proposition 3.3. Under the assumptions of Definition 3.1 we have the following
integral formula for the normalized univariate Aµ

(3.6)
Aµ(x, θ1, . . . , θN−1)

Aµ(θ1, . . . , θN)
=

(
cN−1

cN

N−1∏
i=1

1

x− θi

)
1

2πi

∮
C

g(x; z)α′(z)

β(z)
∏N

i=1(α(z)− α(µi))
dz.

Here the contour C includes only the poles of the integrand at z = µi, i = 1, . . . , N .

Proof. As a byproduct in the proof of Proposition 3.2 we obtained the following for-
mula:

(3.7)
Aµ(x, θ1, . . . , θN−1)

Aµ(θ1, . . . , θN)

N−1∏
j=1

(x− θj)
cN
cN−1

=
N∑
i=1

g(x;µi)

β(µi)
∏

j 6=i(α(µi)− α(µj))
.

Evaluating the integral in (3.6) as the sum of residues we arrive at the right side of
(3.7). �

3.2. Schur functions. Here we specialize the formulas of Section 3.1 to the Schur
functions.

Proposition 3.4. Rational Schur functions sλ(x1, . . . , xN) (as above we identify λ ∈
GTN with µ = λ+ δ ∈ ĜTN) are class of determinantal functions with

θi = qi−1, g(x;m) = xm, α(x) =
qx − 1

q − 1
, β(x) = 1,

cN =
∏

1≤i<j≤N

q − 1

qj−1 − qi−1
=

1

q(
N
3 )

N−1∏
j=1

1

[j]q!
, [Tf ](x) =

f(qx)− f(x)

q − 1
.

Proof. This immediately follows from the definition of Schur functions (2.1) and eval-
uation formula (2.2). �

Propositions 3.2 and 3.3 specialize to the following theorems.

Theorem 3.5. For any signature λ ∈ GTN and any k ≤ N we have

Sλ(x1, . . . , xk;N, q) =
q(

k+1
3 )−(N−1)(k2)

∏k
i=1[N − i]q!∏k

i=1

∏N−k
j=1 (xi − qj−1)

×

det
[
Dj−1
i,q

]k
i,j=1

∆(x1, . . . , xk)

k∏
i=1

Sλ(xi;N, q)
∏N−1

j=1 (xi − qj−1)

[N − 1]q!
,

where Di,q is the difference operator acting on the function f(xi) by the formula

[Di,qf ](xi) =
f(qxi)− f(xi)

q − 1
.

Theorem 3.6. For any signature λ ∈ GTN and any x ∈ C other than 0 or qi,
i ∈ {0, . . . , N − 2} we have

Sλ(x;N, q) =
[N − 1]q!q

(N−1
2 )(q − 1)N−1∏N−1

i=1 (x− qi−1)
· ln(q)

2πi

∮
C

xzqz∏N
i=1(qz − qλi+N−i)

dz,

where the contour C includes the poles at λ1 +N − 1, . . . , λN and no other poles of the
integrand.
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Remark. There is an alternative derivation of Theorem 3.6 suggested by A. Ok-
ounkov. Let x = qk with k > N . The definition of Schur polynomials implies the
following symmetry for any µ, λ ∈ GTN

(3.8)
sλ(q

µ1+N−1, . . . , qµN )

sλ(1, . . . , qN−1)
=
sµ(qλ1+N−1, . . . , qλN )

sµ(1, . . . , qN−1)
.

Using this symmetry,

Sλ(q
k;N, q) =

hk+1−N(qλ1+N−1, . . . , qλN )

hk+1−N(1, . . . , qN−1)
,

where hk = s(k,0,... ) is the complete homogeneous symmetric function. Integral repre-
sentation for hk can be obtained using their generating function (see e.g. [M, Chapter
I, Section 2])

H(z) =
∞∑
`=0

h`(y1, . . . , yN)z` =
N∏
i=1

1

1− zyi
.

Extracting h` as

h` =
1

2πi

∮
H(z)

z`+1
dz,

we arrive at the integral representation equivalent to Theorem 3.6. In fact the sym-
metry (3.8) holds in a greater generality, namely, one can replace Schur functions with
Macdonald polynomials, which are their (q, t)–deformation, see [M, Chapter VI]. This
means that, perhaps, Theorem 3.6 can be extended to the Macdonald polynomials.
On the other hand, we do not know whether a simple analogue of Theorem 3.5 for
Macdonald polynomials exists.

Sending q → 1 in Theorems 3.5, 3.6 we get

Theorem 3.7. For any signature λ ∈ GTN and any k ≤ N we have

Sλ(x1, . . . , xk;N, 1) =
k∏
i=1

(N − i)!
(N − 1)!(xi − 1)N−k

×

det
[
Dj−1
i,1

]k
i,j=1

∆(x1, . . . , xk)

k∏
j=1

Sλ(xj;N, 1)(xj − 1)N−1,

where Di,1 is the differential operator xi
∂
∂xi

.

Theorem 3.8. For any signature λ ∈ GTN and any x ∈ C other than 0 or 1 we have

(3.9) Sλ(x;N, 1) =
(N − 1)!

(x− 1)N−1

1

2πi

∮
C

xz∏N
i=1(z − (λi +N − i))

dz,

where the contour C includes all the poles of the integrand.

Note that this formula holds when x → 1. Clearly, limx→1 Sλ(x;N, 1) = 1. The
convergence of the integral in (3.9) to 1 can be independently seen e.g. by application
of L’Hospital’s rule and evaluation of the resulting integral.

Let us state and prove several corollaries of Theorem 3.7.
For any integers j, `, N , such that 0 ≤ ` < j < N , define the polynomial Pj,`,N(x) as

(3.10) Pj,`,N(x) =

(
j − 1

`

)
N `(N − j)!

(N − 1)!
(x− 1)j−`−N

[(
x
∂

∂x

)j−1−`

(x− 1)N−1

]
,
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it is easy to see (e.g. by induction on j − `) that Pj,`,N is a polynomial in x of degree
j− `−1 and its coefficients are bounded as N →∞. Also, Pj,0,N(x) = xj−1 +O(1/N).

Proposition 3.9. For any signature λ ∈ GTN and any k ≤ N we have

(3.11) Sλ(x1, . . . , xk;N, 1) =
1

∆(x1, . . . , xk)

× det

[
j−1∑
`=0

D`
i,1[Sλ(xi;N, 1)]

N `
Pj,`,N(xi)(xi − 1)`+k−j

]k
i,j=1

.

Proof. We apply Theorem 3.7 and, noting that(
x
∂

∂x

)j
[f(x)g(x)] =

j∑
`=0

(
j

`

)(
x
∂

∂x

)`
[f(x)]

(
x
∂

∂x

)j−`
[g(x)]

for any f and g, we obtain

(3.12) Sλ(x1, . . . , xk;N, 1)

=
1

∆(x1, . . . , xk)
det

[
(N − j)!
(N − 1)!

Dj−1
i (Sλ(xi;N, 1)(xi − 1)N−1)

(xi − 1)N−k

]k
i,j=1

=

det

[∑j−1
`=0 D

`
i,1[Sλ(xi;N, 1)]

(
j−1
`

) (N−j)!
(N−1)!

Dj−`−1
i,1 (xi−1)N−1

(xi−1)N−k

]k
i,j=1

∆(x1, . . . , xk)
. �

Corollary 3.10. Suppose that the sequence λ(N) ∈ GTN is such that

lim
N→∞

Sλ(N)(x;N, 1) = Φ(x)

uniformly on compact subsets of some region M ⊂ C, then for any k

lim
N→∞

Sλ(N)(x1, . . . , xk;N, 1) = Φ(x1) · · ·Φ(xk)

uniformly on compact subsets of Mk.

Proof. Since Sλ(N)(x;N, 1) is a polynomial, it is an analytic function. Therefore,
the uniform convergence implies that the limit Φ(x) is analytic and all derivatives
of Sλ(N)(x) converge to the derivatives of Φ(x).

Now suppose that all xi are distinct. Then we can use Proposition 3.9 and get as
N →∞

Sλ(N)(x1, . . . , xk;N, 1) =

det

[
(xi − 1)k−jSλ(N)(xi;N, 1)Pj,0,N(xi) +O(1/N)

]k
i,j=1

∆(x1, . . . , xk)

=

det

[
(xi − 1)k−jSλ(N)(xi;N, 1)xj−1

i +O(1/N)

]k
i,j=1

∆(x1, . . . , xk)

=
k∏
i=1

Sλ(N)(xi;N, 1)

det

[
(xi − 1)k−jxj−1

i

]k
i,j=1

+O(1/N)

∆(x1, . . . , xk)
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=
k∏
i=1

Sλ(N)(xi;N, 1)

(
1 +

O(1/N)

∆(x1, . . . , xk)

)
,

where O(1/N) is uniform over compact subsets of Mk. We conclude that

(3.13) lim
N→∞

Sλ(N)(x1, . . . , xk;N, 1) = Φ(x1) · · ·Φ(xk)

uniformly on compact subsets of

Mk \
⋃
i<j

{xi = xj}.

Since the left-hand side of (3.13) is analytic with only possible singularities at 0 for
all N , the uniform convergence in (3.13) also holds when some of xi coincide. �

Corollary 3.11. Suppose that the sequence λ(N) ∈ GTN is such that

lim
N→∞

ln
(
Sλ(N)(x;N, 1)

)
N

= Ψ(x)

uniformly on compact subsets of some region M ⊂ C, in particular, there is a well
defined branch of logarithm in M for large enough N . Then for any k

lim
N→∞

ln
(
Sλ(N)(x1, . . . , xk;N, 1)

)
N

= Ψ(x1) + · · ·+ Ψ(xk)

uniformly on compact subsets of Mk.

Proof. As in the proof of Corollary 3.10 we can first work with compact subsets of
Mk \ ⋃i<j{xi = xj} and then remove the restriction xi 6= xj using the analyticity.
Notice that(

∂
∂x

)j
Sλ(x;N, 1)

Sλ(x;N, 1)
∈ Z

[
∂

∂x
ln(Sλ(x;N, 1)), . . . ,

∂j

∂xj
ln(Sλ(x;N, 1))

]
,

i.e. it is a polynomial in the derivatives of ln(Sλ(x;N, 1)) of degree j and so(
x ∂
∂x

)j
Sλ(x;N, 1)

Sλ(x;N, 1)
∈ Z

[
x,

∂

∂x
ln(Sλ(x;N, 1)), . . . ,

∂j

∂xj
ln(Sλ(x;N, 1))

]
.

Thus, when

lim
N→∞

ln
(
Sλ(N)(x;N, 1)

)
N

exists, then (
x ∂
∂x

)j
Sλ(N)(x;N, 1)

N jSλ(N)(x;N, 1)

converges and so does

det
[∑j−1

`=0

D`i,1[Sλ(N)(xi;N,1)]

N` Pj,`,N(xi)(xi − 1)`+k−j
]k
i,j=1∏k

i=1 Sλ(N)(xi;N, 1)∆(x1, . . . , xk)
.

Applying equation (3.11) to the last expression, we get that

Sλ(N)(x1, . . . , xk;N, 1)∏k
i=1 Sλ(N)(xi;N, 1)
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converges to a bounded function and so does its logarithm

lnSλ(N)(x1, . . . , xk;N, 1)−
k∑
i=1

lnSλ(N)(xi;N, 1).

Dividing the last expression by N and letting N →∞ we get the statement. �

Corollary 3.12. Suppose that for some number A

Sλ(N)

(
e

y√
N ;N, 1

)
eA
√
Ny → G(y)

uniformly on compact subsets of domain D ⊂ C as N →∞. Then

(3.14) lim
N→∞

Sλ(N)

(
e
y1√
N , . . . , e

yk√
N ;N, 1

)
exp

(
A
√
N(y1 + · · ·+ yk)

)
=

k∏
i=1

G(yi)

uniformly on compact subsets of Dk.

Proof. Let Sλ(N)(e
y/
√
N ;N, 1)eA

√
Ny = GN(y). Since GN(y) are entire functions, G(y)

is analytic on D. Notice that

x
∂

∂x
f
(√

N ln(x)
)

=
√
Nf ′

(√
N ln(x)

)
,

therefore(
x
∂

∂x

)`
Sλ(N)(x;N, 1) = N `/2

[
∂`

∂y`

(
GN(y)e−A

√
Ny
)]

y=
√
N lnx

= N `/2

[∑̀
r=0

(
l

r

)
G

(`−r)
N (y)(−A)rN r/2e−A

√
Ny

]
y=
√
N lnx

= N `(−A)`
[
e−A

√
NyGN(y)

(
1 +O(1/

√
N)
)]

y=
√
N lnx

,

since the derivatives of GN(y) are uniformly bounded on compact subsets of D as
N →∞. Further,

(x− 1)` = N−`/2y`(1 +O(1/
√
N)), x = ey/

√
N ,

and Pj,`,N

(
ey/
√
N
)

= 1 + O(1/
√
N) with O(1/

√
N) uniformly bounded on compact

sets. Thus, setting xi = eyi/
√
N in Proposition 3.9, we get (for distinct yi)

Sλ(N)

(
ey1/

√
N , . . . , eyk/

√
N ;N, 1

)
eA
√
N(y1+···+yk)

=
1

∆(x1, . . . , xk)
det
[
(xi − 1)k−jGN(yi)

(
1 +O(1/

√
N)
)]k

i,j=1

= GN(y1) · · ·GN(yk)
det
[
(xi − 1)k−j

(
1 +O(1/

√
N)
)]k

i,j=1

∆(x1, . . . , xk)

= GN(y1) · · ·GN(yk)
(

1 +O(1/
√
N)
)
.

Since the convergence is uniform, it also holds without the assumption that yi are
distinct. �
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3.3. Symplectic characters. In this section we specialize the formulas of Section 3.1
to the characters χλ of the symplectic group.

For µ ∈ ĜT
+

N let

Asµ(x1, . . . , xN) =
det
[
x
µj+1
i − x−µj−1

i

]N
i,j=1

∆(x1, . . . , xN)
.

Clearly, for λ ∈ GT+
N we have

Asλ+δ = χλ(x1, . . . , xN)

∏
i<j(xixj − 1)

∏
i(x

2
i − 1)

(x1 · · ·xN)N
,

where χλ is a character of the symplectic group Sp(2N).

Proposition 3.13. Family Asµ(x1, . . . , xN) forms a class of determinantal functions
with

θi = qi, g(x;m) = xm+1 − x−m−1, β(x) =
qx+1 − q−x−1

q − 1
,

α(x) =
qx+1 + q−x−1

(q − 1)2
, [Tf ](x) =

f(qx) + f(q−1x)

(q − 1)2
,

cN = (q − 1)N
∏

1≤i<j≤N

(q − 1)2

qj − qi =
(q − 1)N

2

(−1)(
N
2 )∆(q, . . . , qN)

.

Proof. Immediately follows from the definitions and identity

Asµ(q, . . . , qn) =

∏
i(q

µi+1 − q−µi−1)
∏

i<j(q
µi+1 + q−µi−1 − (qµj+1 + q−µj−1))

(−1)(
N
2 )∆(q, . . . , qn)

.

�

Let us now specialize Proposition 3.2.
We have that

Xλ(x1, . . . , xk;N, q) =
χλ(x1, . . . , xk, q, . . . , q

N−k)

χλ(q, . . . , qN)

=
∆s(q, . . . , q

N)∆(x1, . . . , xk, q, . . . , q
N−k)

∆s(x1, . . . , xk, q . . . , qN−k)∆(q, . . . , qN)

Asµ(x1, . . . , xk, q, . . . , q
N−k)

Asµ(q, . . . , qN)
,

Theorem 3.14. For any signature λ ∈ GT+
N and any k ≤ N we have

(3.15) Xλ(x1, . . . , xk;N, q) =
∆s(q, . . . , q

N)(q − 1)k
2−k(−1)(

k
2)

∆s(x1, . . . , xk, q . . . , qN−k)
×

det[(Ds
q,i)

j−1]ki,j=1

k∏
i=1

Xλ(xi;N, q)
∆s(xi, q, . . . , q

N−1)

∆s(q, . . . , qN)

where Ds
q,i is the difference operator

f(x)→ f(qx) + f(q−1x)− 2f(x)

(q − 1)2

acting on variable xi.
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Remark. Note that in Proposition 3.13 the difference operator differed by the shift
2/(q − 1)2. This is still valid, since in either case the operator is equal to

∏
i<j(D

s
q,i −

Ds
q,j) and the additional shifts cancel. However, the operator Ds

q,i is well defined when
q → 1, which is used later.

Using Proposition 3.3 and computing the coefficient in front of the integral by
straightforward algebraic manipulations we get the following.

Theorem 3.15. For any signature λ ∈ GT+
N and any q 6= 1 we have

(3.16) Xλ(x;N, q) =
(−1)N−1 ln(q)(q − 1)2N−1[2N ]q!

(xq; q)N−1(x−1q; q)N−1(x− x−1)[N ]q

× 1

2πi

∮
(xz+1 − x−z−1)∏N

i=1 (qz+1 + q−z−1 − q−λi+N−i−1 − qλi+N−i+1)
dz

with contour C enclosing the singularities of the integrand at z = λ1 +N − 1, . . . , λN .

Theorem 3.15 looks very similar to the integral representation for Schur polynomials,
this is summarized in the following statement.

Proposition 3.16. Let λ ∈ GT+
N , we have

Xλ(x;N, q) =
(1 + qN)

x+ 1
Sν(xq

N−1; 2N, q),

where ν ∈ GT2N is a signature of size 2N given by νi = λi + 1 for i = 1, . . . , N and
νi = −λ2N−i+1 for i = N + 1, . . . , 2N .

Proof. First notice that for any µ ∈ ĜT
+

N , we have∮
C

(xz − x−z)∏
i(q

z + q−z − q−µi−1 − qµi+1)
dz =

∮
C′

xz∏
i(q

z + q−z − q−µi−1 − qµi+1)
dz,

where C encloses the singularities of the integrand at z = λ1 + N − 1, . . . , λN and
C ′ encloses all the singularities. Indeed, to prove this just write both integrals as the
sums or residues. Further,

qz + q−z − q−µi−1 − qµi+1 = (qz − qµi+1)(qz − q−µi−1)q−z.

Therefore, the integrand in (3.16)transforms into
(3.17)

xzqNz∏
i(q

z − qλi+N−i+1)(qz − q−(λi+N−i)−1)
=

(
xqN−1

)z′
qz
′
x−NqN

2∏
i(q

z′ − qλi+1+2N−i)(qz′ − q−(λi+1−i))

where z′ = z + N . The contour integral of (3.17) is readily identified with that of
Theorem 3.6 for Sν(xq

N−1; 2N, q). It remains only to match the prefactors. �

Next, sending q → 1 we arrive at the following 3 statements.
Define

(3.18) ∆1
s(x1, . . . , xk, 1

N−k) = lim
q→1

∆s(x1, . . . , xk, q, . . . , q
N−k)

(q − 1)(
N−k+1

2 )

= ∆s(x1, . . . , xk)
∏
i

(xi − 1)2(N−k)

xN−ki

∏
1≤i<j≤N−k

(i2 − j2)2N−k(N − k)!
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Theorem 3.17. For any signature λ ∈ GT+
N and any k ≤ N we have

(3.19) Xλ(x1, . . . , xk;N, 1) =
∆1
s(1

N)

∆1
s(x1, . . . , xk, 1N−k)

×

(−1)(
k
2) det

[(
xi

∂

∂xi

)2(j−1)
]k
i,j=1

k∏
i=1

Xλ(xi;N, 1)
(xi − x−1

i )(2− xi − x−1
i )N−1

2(2N − 1)!
.

Remark. The statement of Theorem 3.17 was also proved by De Gier and Ponsaing,
see [GP].

Theorem 3.18. For any signature λ ∈ GT+
N we have

Xλ(x;N, 1) =
2(2N − 1)!

(x− x−1)(x+ x−1 − 2)N−1

× 1

2πi

∮
C

(xz − x−z)∏N
i=1(z − (λi +N − i+ 1))(z + λi +N − i+ 1)

dz,

where the contour includes only the poles at λi +N − i+ 1 for i = 1, . . . , N .

Proposition 3.19. For any signature λ ∈ GT+
N we have

(3.20) Xλ(x;N, 1) =
2

x+ 1
Sν(x; 2N, 1),

where ν ∈ GT2N is a signature of size 2N given by νi = λi + 1 for i = 1, . . . , N and
νi = −λ2N−i+1 for i = N + 1, . . . , 2N .

Remark. We believe that the statement of Proposition 3.19 should be known,
but we are unable to locate it in the literature.

Analogously to the treatment of the multivariate Schur case we can also derive
the same statements as in Proposition 3.9 and Corollaries 3.10, 3.11, 3.12 for the
multivariate normalized symplectic characters.

3.4. Jacobi polynomials. Here we specialize the formulas of Section 3.1 to the mul-
tivariate Jacobi polynomials. We do not present the formula for the q–version of (2.5),
although it can be obtained in a similar way.

Recall that for λ ∈ GT+
N

Jλ(z1, . . . , zk;N, a, b) =
Jλ(z1, . . . , zk, 1

N−k; a, b)

Jλ(1N ; a, b)

We produce the formulas in terms of polynomials Pµ, µ ∈ ĜT
+

N and, thus, introduce
their normalizations as

Pµ(x1, . . . , xk;N, a, b) =
Pµ

(
x1, . . . , xk, 1

N−k; a, b
)

Pµ(1N ; a, b)
.

These normalized polynomials are related to the normalized Jacobi via

Jλ(z1, . . . , zk;N, a, b) = Pµ

(
z1 + z−1

1

2
, . . . ,

zk + z−1
k

2
;N, a, b

)
,

where as usual λi +N − i = µi for i = 1, . . . , N .
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Proposition 3.20. The polynomials Pµ(x1, . . . , xN), µ ∈ ĜT
+

N are a class of determi-
nantal functions with

θi = 1, g(x;m) = pm(x; a, b), α(x) = x(x+ a+ b+ 1), β(x) =
Γ(x+ a+ 1)

Γ(x+ 1)Γ(a)
,

cN =
N∏
r=1

Γ(r)Γ(a)

Γ(r + a)

∏
1≤i<j≤N

1

(j − i)(2N − i− j + a+ b+ 1)

T = (x2 − 1)
∂2

∂x2
+ ((a+ b+ 2)x+ a− b)) ∂

∂x

Proof. We have (see e.g. [OO2, Section 2C] and references therein)

(3.21) Pµ(1n; a, b) =
∏
i

Γ(µi + a+ 1)

Γ(µi + 1)
×
∏
i<j

(µi − µj)(µi + µj + a+ b+ 1)

×
n∏
r=1

Γ(r)

Γ(r + a)

∏
0≤i<j<n

1

(j − i)(i+ j + a+ b+ 1)
,

and also (see e.g. [Ed], [KoSw])

m(m+ 2σ)pm(x; a, b) =

[
(x2 − 1)

∂2

∂x2
+ ((a+ b+ 2)x+ a− b) ∂

∂x

]
pm(x; a, b),

Now the statement follows from the definition of polynomials Pµ. �

Specializing Proposition 3.2, using the fact that for x = z+z−1

2
we have ∂

∂x
= 2

1−z−2
∂
∂z

and Pµ(x) = Jλ(z), we obtain the following.

Theorem 3.21. For any λ ∈ GT+
N and any k ≤ N we have

(3.22) Jλ(z1, . . . , zk;N, a, b)

=
N∏

m=N−k+1

Γ(m+ a)Γ(2m− 1 + a+ b)

Γ(m+ a+ b)
· 1∏k

i=1(zi + z−1
i − 2)N−k

×

det[Dj−1
i,a,b]

k
i,j=1

2(k2)∆(z1 + z−1
1 , . . . , zk + z−1

k )

k∏
i=1

Jλ(zi;N, a, b)
(zi + z−1

i − 2)N−1Γ(N + a+ b)

Γ(N + a)Γ(2N − 1 + a+ b)

where Di,a,b is the differential operator

z2
i

∂2

∂z2
i

+
((a+ b+ 2)(zi + z−1

i ) + 2a− 2b− 2z−1
i )

1− z−2
i

∂

∂zi
.

Next, we specialize Proposition 3.3 to the case of multivariate Jacobi polynomials.
Note that thanks to the symmetry under ζ + (a+ b+ 1)/2↔ −(ζ + (a+ b+ 1)/2) of
the integrand we can extend the contour C to include all the poles.

Theorem 3.22. For any λ ∈ GT+
N we have

(3.23) Jλ(z;N, a, b) =
Jλ(x, 1

N−1; a, b)

Jλ(1N ; a, b)
=

Γ(2N + a+ b− 1)

Γ(n+ a+ b)Γ(a+ 1)

1(
z+z−1

2
− 1
)N−1
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1

2πi

∮
C

2F1

(
− ζ, ζ + a+ b+ 1; a+ 1;−(1− z)2

4z

)
(ζ + (a+ b+ 1)/2)∏

i(ζ − µi)(ζ + µi + a+ b+ 1)
dζ,

where the contour includes the poles of the integrand at ζ = −(a + b + 1)/2 ± (µi +
(a+ b+ 1)/2) and µi = λi +N − i for i = 1, . . . , N .

4. General asymptotic analysis

Here we derive the asymptotics for the single-variable normalized Schur functions
Sλ(x;N, 1). In what follows O and o mean uniform estimates, not depending on any
parameters and const stands for a positive constant which might be different from line
to line.

4.1. Steepest descent. Suppose that we are given a sequence of signatures λ(N) ∈
GTN (or, even, more generally, λ(Nk) ∈ GTNk with N1 < N2 < N3 < . . . ). We
are going to study the asymptotic behavior of Sλ(N)(x;N, 1) as N → ∞ under
the assumption that there exists a function f(t) for which as N → ∞ the vector
(λ1(N)/N, . . . , λN(N)/N) converges to (f(1/N), . . . , f(N/N)) in a certain sense which
is explained below.

Let R1, R∞ denote the corresponding norms of the difference of the vectors
(λj(N)/N) and f(j/N)):

R1(λ, f) =
N∑
j=1

∣∣∣∣λj(N)

N
− f(j/N)

∣∣∣∣ , R∞(λ, f) = sup
j=1...,N

∣∣∣∣λj(N)

N
− f(j/N)

∣∣∣∣ .
In order to keep the computations compact we also introduce a modified form f̂(t) of
the function f(t) via:

f̂(t) = f(t) + 1− t.
As in the previous sections, let µ(N) = λ(N) + δN , so f̂ is the limit of µ(N)/N . In
order to state our results we introduce w, defined for any y ∈ C by the equation

(4.1)

∫ 1

0

dt

w − f̂(t)
= y.

We remark that a solution to (4.1) can be interpreted as an inverse Hilbert transform.
We also introduce the function F(w; f)

(4.2) F(w; f) =

∫ 1

0

ln(w − f̂(t))dt, w ∈ C \
{
f̂(t) | t ∈ [0, 1]

}
.

Note that we need to specify which branch of the logarithm we choose in (4.2). This
choice is not very important at the moment, but it should be consistent in all the
formulas which follow.

Observe that (4.1) can be rewritten as F ′(w; f) = y.

Proposition 4.1. For y ∈ R \ {0}, suppose that f(t) is piecewise-continuous,
R∞(λ(N), f) is bounded, R1(λ(N), f)/N tends to zero as N →∞, and w0 = w0(y) is
the (unique) real root of (4.1). Further, let y ∈ R \ {0} be such that w0 is outside the

interval [λN (N)
N

, λ1(N)
N

+ 1] for all N large enough. Then

(4.3) lim
N→∞

lnSλ(N)(e
y;N, 1)

N
= yw0 −F(w0)− 1− ln(ey − 1).
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Remark 1. When y is positive, we can choose the branch of the logarithm which
has real values at positive real points both in (4.2) and in ln(ey − 1) inside (4.3). For
negative ys we can choose the branch which has the values with imaginary part π.

Remark 2. Note that piecewise-continuity of f(t) is a reasonable assumption since
f is monotonic.

Remark 3. A somehow similar statement was proven by Guionnet and Mäıda, see
[GM, Theorem 1.2].

When an accurate asymptotics of λ(N) is known, Proposition 4.1 can be further
refined. For w ∈ C denote (as before µj(N) = λj(N) +N − j)

(4.4) Q(w;λ(N), f) =
exp
(
NF(w; f)

)
N∏
j=1

(
w − µj(N)

N

) .
Proposition 4.2. Let y ∈ R \ {0} be such that w0 = w0(y) (which is the (unique) real

root of (4.1)) is outside the interval [λN (N)
N

, λ1(N)
N

+ 1] for all large enough N . Suppose
that for a function f(t)

(4.5) lim
N→∞

Q(w;λ(N), f) = g(w)

uniformly on an open M set in C, containing w0. Assume also that g(w0) 6= 0 and
F ′′(w0; f) 6= 0. Then as N →∞

Sλ(N)(e
y;N, 1) =

g(w0)√
−F ′′(w0; f)

· exp
(
N(yw0 −F(w0; f))

)
eN
(
ey − 1

)N−1
·
(

1 + o(1)

)
.

The remainder o(1) is uniform over y belonging to compact subsets of R\{0} and such
that w0 = w0(y) ∈M.

Remark. If the complete asymptotic expansion of Q(w;λ(N), f) as N → ∞ is
known, then, with some further work, we can obtain the expansion of Sλ(N)(e

y;N, 1)
up to arbitrary precision. In such expansion, o(1) in Proposition 4.2 is replaced by a
power series in N−1/2 with coefficients being the analytic functions of y. The general
procedure is as follows: we use the expansion of Q(w;λ(N), f) (instead of only the
first term) everywhere in the below proof and further obtain the asymptotic expansion
for each term independently through the steepest descent method. This level of details
is enough for our applications and we will not discuss it any further; all the technical
details can be found in any of the classical treatments of the steepest descent method,
see e.g. [Co], [Er2].

Proposition 4.3. Suppose that f(t) is piecewise-differentiable, R∞(λ(N), f) = O(1)

(i.e. it is bounded), and R1(λ(N), f)/
√
N goes to 0 as N → ∞. Then for any fixed

h ∈ R

Sλ(N)(e
h/
√
N ;N, 1) = exp

(√
NE(f)h+

1

2
S(f)h2 + o(1)

)
as N →∞, where

E(f) =

∫ 1

0

f(t)dt, S(f) =

∫ 1

0

f(t)2dt− E(f)2 +

∫ 1

0

f(t)(1− 2t)dt.

Moreover, the remainder o(1) is uniform over h belonging to compact subsets of R \ 0.
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We prove the above three propositions simultaneously.
We start investigating the asymptotic behavior of the integral in the right side of

the integral representation of Theorem 3.8

(4.6) Sλ(e
y;N, 1) =

(N − 1)!

(ey − 1)N−1

1

2πi

∮
C

eyz∏N
j=1(z − µj(N))

dz

Changing the the variables z = Nw transforms (4.6) into

(4.7)
(N − 1)!

(ey − 1)N−1
N1−N 1

2πi

∮
C

exp(Nyw)∏N
j=1(w − µj(N)

N
)
dw

From now on we study the integral

(4.8)

∮
C

exp(Nyw)∏N
j=1

(
w − µj(N)

N

)dw =

∮
C

exp
(
N(yw −F(w; f))

)
· Q(w;λ(N), f)dw,

where the contour C encloses all the poles of the integrand.
Note that Re (F(w; f)) is a continuous function in w, while Im (F(w; f)) has dis-

continuities along the real axis (if we choose the principal branch of logarithm with a
cut along the negative real axis), both these functions are harmonic outside the real
axis.

In fact, the factor Q(w;λ(N), f) in (4.8) has subexponential growth. Indeed, under
the assumptions of Proposition 4.2 this is automatically true, while for other cases we
use the following two lemmas whose proofs are presented at the end of this section.

Lemma 4.4. Let A be the smallest interval in R containing all the points {f̂(t) |
0 ≤ t ≤ 1} and {µj(N)

N
| j = 1, . . . , N}. Under the assumptions of Proposition 4.1 as

N →∞

ln |Q(w;λ(N), f)| ≤ o(N)

(
1 + sup

a∈A
| ln(w − a)|+ sup

a∈A

∣∣∣∣ 1

w − a

∣∣∣∣) ,
where o(N) is uniform in w outside A.

Lemma 4.5. Let A be the smallest interval in R containing all the points {f̂(t) |
0 ≤ t ≤ 1} and {µj(N)

N
| j = 1, . . . , N}. Under the assumptions of Proposition 4.3 as

N →∞

ln |Q(w;λ(N), f)| ≤ o(
√
N) sup

a∈A

∣∣∣∣ 1

w − a

∣∣∣∣
+O(1) sup

|t−s|≤1/N

∣∣∣∣∣ln
(
w − f̂(t)

w − f̂(s)

)∣∣∣∣∣+ sup
0≤t≤1

∣∣∣∣∣ f̂ ′(t)

w − f̂(t)

∣∣∣∣∣
where o(

√
N) and O(1) are uniform in w outside A, and the last sup is taken only

over such t in which f̂ is differentiable.

The asymptotic analysis of the integrals of the kind (4.8) is usually performed using
the so-called steepest descent method (see e.g. [Co], [Er2].). We will deform the contour
to pass through the critical point of yw −F(w; f). This point satisfies the equation

(4.9) 0 = (yw −F(w; f))′ = y −
∫ 1

0

dt

w − f̂(t)
.

In general, equation (4.9) (which is the same as (4.1)) may have several roots and one
has to be careful to choose the needed one.
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Lemma 4.6. Suppose that y ∈ R \ {0}. If y > 0 then (4.9) has a unique real root

w0(y) > f̂(0). If y < 0 then (4.9) has a unique real root w0(y) < f̂(1). Further,
w0(y)→∞ as y → 0.

Proof. For y > 0 the statement follows from the fact that the integral in (4.9) is a

monotonic function of w > f̂(0) changing from +∞ down to zero (when w → +∞).
Similarly, for y < 0 we use the that the integral in (4.9) is a monotonic function of

w < f̂(1) changing from zero (when w → −∞) down to −∞. �

In what follows, without loss of generality, we assume that y > 0 and use w0 = w0(y)
of Lemma 4.6.

Next, we want to prove that one can deform the contour C into C ′ which passes
through w0 in such a way that Re(yw −F(w; f)) has maximum at w0. The fact that
y is real, simplifies the choice of the contour.

Let C ′ be the vertical line passing through w0. We claim that the contour C in (4.8)
can be deformed into C ′ without changing the value of integral. Indeed, observe that
the integrand in (4.8) decays like |w|−N as |w| → ∞ in such way that Re(w) stays
bounded from above. Therefore, for N ≥ 2 we can deform the contour as desired.

We will now study the integral over w ∈ C ′. The definitions immediately imply that

Re(yw −F(w; f)) < Re(yw0 −F(w0; f)), w ∈ C ′, w 6= w0.

Now the integrand is exponentially small in N (compared to its value at w0) ev-
erywhere on the contour C ′ outside arbitrary neighborhood of w0. Inside a small
ε–neighborhood of w0 we can do the Taylor expansion for yw −F(w; f):

yw −F(w; f) = yw0 −F(w0; f)− (w − w0)2

2
· F ′′(w0; f) + (w − w0)3 · δ,

where the absolute value of the remainder δ is bounded by the maximum of |F ′′′(w; f)|
in the ε–neighborhood.

Note that F ′′(w0; f) < 0 and denote u = −i
√
−F ′′(w0; f). Setting w = w0 +

s/(u
√
N), and choosing a small ε > 0, whose exact value will be specified later, (4.8)

is approximated by

(4.10) exp

(
N(yw0 −F(w0; f))

)
×
∫ w0+iε

w0−iε
exp

(
−NF ′′(w0; f)(w − w0)2/2 +Nδ(w − w0)3

)
Q(w;λ(N), f)dw

=

exp

(
N(yw0 −F(w0; f))

)
u
√
N

×
∫ +

√
Nε|u|

−
√
Nε|u|

exp
(
−s2/2 + s3δ̃/

√
N
)
Q
(
w0 + s/(u

√
N);λ(N), f

)
ds

≈
√

2π
1

u
√
N
Q(w0;λ(N), f) exp

(
N(yw0 −F(w0; f))

)
,

where

|δ̃| ≤ |u|−3 sup
w∈[w0−iε,w0+iε]

F ′′′(w; f)
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When we approximate the integral over vertical line by the integral over the ε-
neighborhood (reduction of (4.8) to the first line in (4.10)) the relative error can be
bounded as

(4.11) const×exp(NRe(F(w0 +iε; f)−F(w0; f)) ≈ const×exp(−Nε2|F ′′(w0; f)|/2)

Next, we estimate the relative error in the approximation in (4.10) (i.e. the sign ≈ in
(4.10)). Suppose that ε < |u/δ|/2 and divide the integration segment into a smaller

subsegment |s| < N−1/10 3

√√
N/|δ̃| and its complement. When we omit the s3 term

in the exponent we get the relative error at most const × N−3/10 when integrating

over the smaller subsegment (which comes from the factor exp
(
s3δ̃/
√
N
)

itself) and

const × exp
(
−N−2/15|δ̃|−2/3/4

)
when integrating over its complement (which comes

from the estimate of the integral on this complement).

When we replace the integral over [−
√
Nε|u|,+

√
Nε|u|] by the integral over

(−∞,+∞) in (4.10) we get the error

const exp(−Nε2|u2|/2),

Finally, there is an error of

const sup
w∈[w0−iε,w0+iε]

|Q (w;λ(N), f)−Q (w0;λ(N), f) |

coming from the factor Q
(
w0 + s/(u

√
N);λ(N), f

)
. Summing up, the total relative

error in the approximation in (4.10) is at most constant times

(4.12) N−3/10 + exp
(
−N−2/15|δ̃|−2/3/4

)
+ exp(−Nε2|u2|/2)

+ sup
w∈[w0−iε,w0+iε]

|Q (w;λ(N), f)−Q (w0;λ(N), f) |.

Combining (4.7) and (4.10) we get

sλ(e
y, 1N−1)

sλ(1N)

≈ 1√
2π

(N − 1)!

(ey − 1)N−1
N1−N 1√

−F ′′(w0; f)
√
N
Q (w0;λ(N), f) exp(N(yw0−F(w0; f))).

Using Stirling’s formula we arrive at

(4.13)
sλ(e

y, 1N−1)

sλ(1N)
≈ 1

eN(ey − 1)N−1

Q (w0;λ(N), f)√
−F ′′(w0; f)

exp(N(yw0 −F(w0; f))).

With the relative error in (4.13) being the sum of (4.11), (4.12) and O(1/N) coming
from Stirling’s approximation, and ε satisfying ε < |u/δ|/2.

Now we are ready to prove the three statements describing the asymptotic behavior
of normalized Schur polynomials.

Proof of Proposition 4.1. Use (4.13), Lemma 4.4 and note that after taking logarithms
and dividing by N the relative error in (4.13) vanishes. �
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Proof of Proposition 4.2. Again this follows from (4.13). It remains to check that the
error term in (4.13) is negligible. Indeed, all the derivatives of F , as well as |u|, |δ|,
|δ̃| are bounded in this limit regime. Thus, choosing ε = N−1/10 we conclude that all
the error terms vanish. �

Proof of Proposition 4.3. The equation (4.9) for w0 reads

h/
√
N −

∫ 1

0

dt

w0 − f̂(t)
= 0.

Clearly, as N →∞ we have w0 ≈
√
N/h→∞. Thus, we can write∫ 1

0

dt

w0 − f̂(t)
=

1

w0

∫ 1

0

1 +
f̂(t)

w0

+

(
f̂(t)

w0

)2

+O

(
1

w3
0

) dt.

Denote

A =

∫ 1

0

f̂(t)dt, B =

∫ 1

0

(
f̂(t)

)2

dt

and rewrite (4.9) as

w2
0 − w0

√
N

h
− A
√
N

h
= O(1),

If follows that as N →∞ we have

(4.14)
w0 =

√
N

2h
+

1

2

√
N

h2
+ 4

A
√
N

h
+O(1/

√
N) =

√
N

h
+ A+O

(
1/
√
N
)

and alternatively
1

w0

=
h√
N
− Ah2

N
+O

(
N−3/2

)
.

Next, let us show that the error in (4.13) is negligible. For that, choose ε in (4.10)
to be N1/10. Note that |F ′′(w0; f)| is of order N−1, and |F ′′′(w; f)| (and, thus, also |δ|)
is of order N−3/2 on the integration contour and |u| is of order N−1/2. The inequality
ε < |u/δ|/2 is satisfied. The term coming from (4.11) is bounded by exp(−const ×
N1/5) and is negligible. As for (4.12) the first term in it is negligible, the second
one is bounded by exp(−const × N2/15) and negligible, the third one is bounded by
exp(−const×N1/5) which is again negligible. Turning to the fourth term, Lemma 4.5
and asymptotic expansion (4.14) imply that both Q(w;λ(N), f) and Q(w0;λ(N), f)
can be approximated as 1 + o(1) as N →∞ and we are done.

Note that
eh/
√
N − 1√

−F ′′(w0; f)
= 1 + o(1)

as N →∞. Now (4.13) yields that
(4.15)

sλ(e
h/
√
N , 1N−1)

sλ(1N)
= exp

(
N
(
−1− ln(eh/

√
N − 1) + hw0/

√
N −F(w0; f)

))
(1 + o(1))

As N →∞ using the Taylor expansion of the logarithm, we have

F(w0; f) =

∫ 1

0

ln(w0 − f̂(t))dt = ln(w0) +

∫ 1

0

(
− f̂(t)

w0

− (f̂(t))2

2w2
0

+O

(
1

w3
0

))
dt
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= ln(w0)− A

w0

− B

2w2
0

+O

(
1

w3
0

)
and using (4.9) together with (4.14)

hw0√
N

= 1 +
A

w0

+
B

w2
0

+O

(
1

w3
0

)
= 1 +

Ah√
N
− A2h2

N
+
Bh2

N
+O(N−3/2).

Thus,

− 1− ln(eh/
√
N − 1) + hw0/

√
N −F(w0; f)

= − ln(w0(eh/
√
N − 1)) +

A

w0

+
B

w2
0

+
A

w0

+
B

2w2
0

+O(N−3/2)

= − ln

(
w0h√
N

(
1 +

h

2
√
N

+
h2

6N
+O(N−3/2)

))
+

2A

w0

+
3B

2w2
0

+O(N−3/2)

= − ln

(
1 +

Ah√
N

+
(B − A2)h2

N

)
−ln

(
1 +

h

2
√
N

+
h2

6N

)
+

2Ah√
N

+
(3

2
B − 2A2)h2

N
+O(N−3/2)

=
Ah√
N

+
B − A2

2
· h

2

N
− h

2
√
N
− h2

24N
+O(N−3/2)

To finish the proof observe that

A = E(f) + 1/2, B =

∫ 1

0

f 2(t)dt+ 2

∫ 1

0

f(t)(1− t)dt+ 1/3,

thus, (4.15) transforms into

exp(E(f)h
√
N + S(f)/2)(1 + o(1)). �

Now we prove Lemmas 4.4 and 4.5.

Proof of Lemma 4.4. We take the logarithm of Q(w;λ(N), f) and aim to prove that
the result is small. For that observe the following estimate

(4.16)

∣∣∣∣∣
N∑
j=1

ln

(
w − µj(N)

N

)
−

N∑
j=1

ln(w − f̂(j/N))

∣∣∣∣∣ ≤
N∑
j=1

∣∣∣∣∣∣∣∣
f̂(j/N)∫
µj(N)

N

dx

w − x

∣∣∣∣∣∣∣∣ ≤
1

N
· sup
a∈A

∣∣∣∣ 1

w − a

∣∣∣∣ · N∑
j=1

|λj(N)− f(j/N)|.

Further, using a usual second-order approximation of the integral (trapezoid formula)
we can write

(4.17)
N∑
j=1

ln(w − f̂(j/N)) = N

(
N∑
j=1

ln(w − f̂(j/N)

N

)

= N

∫ 1

0

ln(w − f̂(t))dt+
ln(w − f̂(1))− ln(w − f̂(0))

2

+ T (w, f,N) = NF(w; f) +
ln(w − f̂(1))− ln(w − f̂(0))

2
+ T (w, f,N).
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Under the conditions of Proposition 4.1 the function f̂(t) is piecewise–continuous and
the remainder T (w, f,N) can be bounded via

(4.18) |T (w, f,N)| ≤ N

N∑
j=1

sup
j−1
N
≤t,s≤j/N

∣∣∣ln(w − f̂(t))− ln(w − f̂(s))
∣∣∣

N

≤ o(N)(1 + sup
a∈A
| ln(w − a)|).

On the other hand, the right-hand side of (4.16) is bounded from above by
o(N) supa∈A

∣∣ 1
w−a

∣∣. Combining these two bounds we arrive at the desired estimate
for Q(w;λ(N), f). �

Proof of Lemma 4.5. We proceed in the same way as in the proof of Lemma 4.4. This
time, the right-hand side of (4.16) is bounded from above by o(

√
N) supa∈A

∣∣ 1
w−a

∣∣. We
also have

(4.19) |T (w, f,N)| ≤ N
N∑
j=1

sup
j−1
N
≤t,s≤j/N

∣∣∣ln(w − f̂(t))− ln(w − f̂(s))
∣∣∣

N

≤ O(1) sup
|t−s|≤1/N

∣∣∣∣∣ln
(
w − f̂(t)

w − f̂(s)

)∣∣∣∣∣+ sup
0≤t≤1

∣∣∣∣∣ f̂ ′(t)

w − f̂(t)

∣∣∣∣∣ ,
where the last sup is taken only over those points where f̂ is differentiable and the

term with prefactor O(1) arises because of the possible discontinuities of f̂ . �

Remark. Note that the restriction of Propositions 4.1 and 4.3 that f(t) should
have finitely many points of discontinuity is used only in the proofs of the above two
lemmas. It is very plausible that this restriction can be removed if one uses more
delicate estimates in these proofs.

4.2. Values at complex points. The propositions of the previous section deal with
Sλ(e

y;N, 1) when y is real. In this section we show that under mild assumptions the
results extend to complex ys.

In the notations of the previous section, suppose that we are given a weakly-
decreasing non-negative function f(t), the complex function F(w; f) is defined through
(4.2), y is an arbitrary complex number and w0 is a critical point of yw−F(w; f), i.e.
a solution of equation (4.9).

We call a simple piecewise-smooth contour γ(s) in C a steepest descent contour for
the above data if the following conditions are satisfied.

(1) γ(0) = w0,

(2) The vector (F ′′(w0; f))−1/2 is tangent to γ at point 0,
(3) Re(yγ(s)−F(γ(s); f)) has a global maximum at s = 0,
(4) The following integral is finite∫ ∞

−∞
exp

(
Re(yγ(s)−F(γ(s); f)

)
|γ′(t)|dt <∞.

Remark. Often the steepest descent contour can be found as a level line Im(yw−
F(w; f)) = Im(yw0 −F(w0; f)).
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Example 1. Suppose that f(t) = 0. Then

F(w; f) =

∫ 1

0

ln(w − 1 + t)dt = w ln(w)− (w − 1) ln(w − 1)− 1

and

(4.20) F ′(w; 0) = ln(w)− ln(w − 1) = − ln(1− 1/w).

And for any y such that ey 6= 1, the critical point is

w0 = w0(y) =
1

1− e−y .

Let us assume that e−y is not a negative real number. This implies that w0 does
not belong to the segment [0, 1].

Figure 7 sketches the level lines Re(yw − F(w; 0)) = Re(yw0 − F(w0; 0)) for one
particular value of y. Let es explain the qualitative features of these level lines.

Taylor expanding yw−F(w; 0) near w0 we observe that there are 4 level lines going
out of w0. Note that the level lines can not cross. Indeed, any intersection of the level
lines is a critical point of yw − F(w; 0), but the only critical point is at w0. When
|w| � 1, we have Re(yw − F(w; 0) ≈ Re(yw) − ln |w|, therefore level lines intersect
a circle of big radius R � 1 in 2 points and the level lines picture should have two
infinite branches which are close to the rays of the line Re(yw) = const and one loop.
We claim that this loop should enclose some points of the segment [0, 1]. Indeed, due
to the maximum principle a non-constant harmonic function can not have closed level
line; on the other hand, the only points where Re(yw−F(w; 0) is not harmonic lie in
the segment [0, 1].

Figure 7. Sketch of the level lines Re(yw − F(w; 0)) = Re(yw0 −
F(w0; 0)) for y = 1− i.

Now the plane is divided into three regions A,B and C as shown in Figure 7.
Re(yw − F(w; 0) > Re(yw0 − F(w0; 0) in A, C, and Re(yw − F(w; 0) < Re(yw0 −
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F(w0; 0) in B. One way to see this fact is by analyzing Re(yw−F(w; 0) for very large
|w|.

There are two smooth curves Im(yw−F(w; 0) = Im(yw0−F(w0; 0) passing through
w0. Taylor expanding yw − F(w; 0) near w0 we observe that one of them has a

tangent vector parallel to
√
F ′′(w0; 0) and another one has a tangent vector parallel

to i
√
F ′′(w0; 0). We conclude that the former one lies inside the region B. In the

neighborhood of w0 this curve is our steepest descent contour. The only property
which still might not hold is the property number 4. But in this case, we can modify
the contour outside a small neighborhood of w0, so that Re(yw−F(w; 0) rapidly decays
along it. This is always possible because for |w| � 1, we have Re(yw − F(w; 0)) ≈
Re(yw)− ln |w|.

Example 2. More generally let f(t) = α(1− t), then

F(w;α(1− t)) =

∫ 1

0

ln(w + (α + 1)(t− 1))dt

=
w ln(w)− (w − (α + 1)) ln(w − (α + 1))

α + 1
− 1

and

F ′(w;α(1− t)) =
ln(1− (α + 1)/w)

α + 1
.

For any y such that ey 6= 1, the critical point is

w0 = w0(y) = (α + 1)/(1− e−y(α+1)).

Note that if we set w = u(α + 1), then

F(w;α(1− t)) = u ln(u)− (u− 1) ln(u− 1) + ln(α + 1)− 1,

which is a constant plus F(u; 0) from Example 1. Therefore, the linear transformation
of the steepest descent contour of Example 1 gives a steepest descent contour for
Example 2.

Proposition 4.7. Suppose that f(t), y and w0 are such that there exists a steepest
descent contour γ and, moreover, the contour of integration in (4.6) can be deformed
to γ without changing the value of the integral. Then Propositions 4.1 and 4.2 hold
for this f(t), y and w0.

Proof. The proof of Propositions 4.1 and 4.2 remains almost the same. The only
changes are in formula (4.10) and subsequent estimates of errors. Note that condition
4 in the definition of steepest descent contour guarantees that the integral over γ
outside arbitrary neighborhood of w0 is still negligible as N →∞.

Observe that the integration in (4.10) now goes not over the segment [w0−iε, w0+iε]
but over the neighborhood of w0 on the curve γ0. This means that in the relative error
calculation a new term appears, which is a difference of the integral∫

e−s
2/2ds

over the interval [−
√
Nε|u|,

√
Nε|u|] of real line and over the part of rescaled curve

γ(t)−γ(0)√
Nu

inside circle of radius
√
Nε|u| around the origin. The difference of the two

integrals equals to the integral of exp(−s2/2) over the lines connecting their endpoints.
But since 1/u = −(F ′′(w0; f))−1/2 is tangent to γ at 0, it follows that for small ε the

error is the integral of exp(−s2/2) over segment joining
√
Nε|u| and

√
Nε|u| + Q1
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plus the integral of exp(−s2/2) joining −
√
Nε|u| and −

√
Nε|u| + Q2 with |Q1| <

(
√
Nε|u|)/100 and similarly for Q2. Clearly, these integrals exponentially decay as

N →∞ and we are done. �

It turns out that in the context of Proposition 4.3 the required contour always exists.

Proposition 4.8. Proposition 4.3 is valid for any h ∈ C.

Proof. Recall that in the context of Proposition 4.3 y = h/
√
N and goes to 0 as

N → ∞, while w0 ≈ 1/y goes to infinity. In what follows without loss of generality
we assume that h is not an element of R≤0 and choose in all arguments the principal
branch of logarithms with cut along negative real axis. (In order to work with h ∈ R<0

we should choose other branches.)
Let us construct the right steepest descent contour passing through the point w0.

Choose positive number r such that r > |f̂(t)| for all 0 ≤ t ≤ 1. Set Ψ to be the
minimal strip (which is a region between two parallel lines) in complex plane parallel
to the vector i/h and containing the disk of radius r around the origin .

Since w0 is a saddle point of yw−F(w; f), in the neighborhood of w0 there are two
smooth curves Im(yw−F(w; f)) = Im(yw0−F(w0; f)) intersecting at w0. Along one
of them Re(yw−F(w; f)) has maximum at w0, along another one it has minimum; we
need the former one. Define the contour γ to be the smooth curve Im(yw−F(w; f)) =
Im(yw0F(w0; f)) until it leaves Ψ and the curve (straight line) Re(yw) = const outside
Ψ.

Let us prove that Re(yw − F(w; f)) has no local extremum on γ except for w0,
which would imply that w0 is its global maximum on γ. First note, that outside Ψ we
have

Re(yw −F(w; f)) = Re(yw)−
∫ 1

0

ln |w − f̂(t)|dt,

with the first term here being a constant, while the second being monotone along the
contour. Therefore, outside Ψ we can not have local extremum. Next, straightforward
computation shows that if N is large enough, then one can always choose two inde-
pendent of N constants 1/2 > G1 > 0 and G2 > 0 such that Re(yw − F(w; f)) >
Re(yw0 − F(w0; f)) for w in Ψ satisfying |w| = G1|w0| or |w| = G2|w0|. It follows,
that is Re(yw − F(w; f)) had a local extremum, then such extremum would exist at
some point w1 ∈ Ψ satisfying G1|w0| < |w1| < G2|w0|. But since Im(yw − F(w; f))
is constant on the contour inside Ψ, we conclude that w1 is also a critical point of
yw −F(w; f). However, there are no critical points other than w0 in this region.

Now we use the contour γ and repeat the argument of Proposition 4.3 using it. Note
that the deformation of the original contour of (4.6) into γ does not change the value
of the integral. The only part of proof of Proposition 4.3 which we should modify is
the estimate for the relative error in (4.13). Here we closely follow the argument of
Proposition 4.7. The only change is that the bound on Q1 and Q2 is now based on the
following observation: The straight line defined by Re(yw) = Re(yw0) (which is the
main part of the contour γ) is parallel to the vector i/y. On the other hand,√

F ′′(w0) = i/y(1 +O(1/
√
N) ≈ i/y. �

Remark. In the proof of Proposition 4.8 we have shown, in particular, that the
steepest descent contour exists and, thus, asymptotic theorem is valid for all complex
y, which are close enough to 1. This is somehow similar to the results of Guionnet and
Mäıda, cf. [GM, Theorem 1.4].
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5. Statistical mechanics applications

5.1. GUE in random tilings models. Consider a tiling of a domain drawn on the
regular triangular lattice of the kind shown at Figure 1 with rhombi of 3 types which
are usually called lozenges. The configuration of the domain is encoded by the number
N which is its width and N integers µ1 > µ2 > · · · > µN which are the positions of
horizontal lozenges sticking out of the right boundary. If we write µi = λi+N−i, then
λ is a signature of size N , see left panel of Figure 1. Due to combinatorial constraints
the tilings of such domain are in correspondence with tilings of a certain polygonal
domain, as shown on the right panel of Figure 1.

Let Ωλ denote the domain encoded by λ ∈ GTN and define Υλ to be a uniformly
random lozenge tiling of Ωλ. We are interested in the asymptotic properties of Υλ as
N →∞ and λ changes in a certain regular way.

Given Υλ let ν1 > ν2 > · · · > νk be positions of the horizontal lozenges at the kth
vertical line from the left. (Horizontal lozenges are shown in blue in the left panel of
Figure 1.) We again set νi = κi + k − i and denote the resulting random signature κ
of size k by Υk

λ.
Recall that the Gaussian Unitary Ensemble is a probability measure on the set of

k × k Hermitian random matrices with density proportional to exp(−Trace(X2)/2).
Let GUEk denote the distribution of k (ordered) eigenvalues of such random matrices.

In this section we prove the following theorem.

Theorem 5.1. Let λ(N) ∈ GTN , N = 1, 2, . . . be a sequence of signatures. Suppose
that there exists a non-constant piecewise-differentiable weakly decreasing function f(t)
such that

N∑
i=1

∣∣∣∣λi(N)

N
− f(i/N)

∣∣∣∣ = o(
√
N)

as N →∞ and also supi,N |λi(N)/N | <∞. Then for every k as N →∞ we have

Υk
λ(N) −NE(f)√

NS(f)
→ GUEk

in the sense of weak convergence, where

E(f) =

∫ 1

0

f(t)dt, S(f) =

∫ 1

0

f(t)2dt− E(f)2 +

∫ 1

0

f(t)(1− 2t)dt.

Remark. For any non-constant weakly decreasing f(t) we have S(f) > 0.

Corollary 5.2. Under the same assumptions as in Theorem 5.1 the (rescaled) joint
distribution of k(k + 1)/2 horizontal lozenges on the left k lines weakly converges to
the joint distribution of the eigenvalues of the k top-left corners of a k×k matrix from
GUE.

Proof. Indeed, conditionally on Υk
λ the distribution of the remaining k(k−1)/2 lozenges

is uniform subject to interlacing conditions and the same property holds for the eigen-
values of the corners of GUE random matrix, see [Bar] for more details. �

Let us start the proof of Theorem 5.1.

Proposition 5.3. The distribution of Υk
λ is given by:

Prob{Υk
λ = η} =

sη(1
k)sλ/η(1

N−k)

sλ(1N)
,
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where sλ/η is the skew Schur polynomial.

Proof. Let κ ∈ GTM and µ ∈ GTM−1. We say that κ and µ interlace and write µ ≺ κ,
if

κ1 ≥ µ2 ≥ κ2 ≥ · · · ≥ µM−1 ≥ κM .

We also agree that GT0 consists of a single point point, empty signature ∅ and ∅ ≺ κ
for all κ ∈ GT1.

For κ ∈ GTK and µ ∈ GTL with K > L let Dim(µ, κ) denote the number of
sequences ζL ≺ ζL+1 ≺ · · · ≺ ζK such that ζ i ∈ GTi, ζL = κ and ζK = µ. Note
that through the identification of each ζ i with configuration of horizontal lozenges on
a vertical line, each such sequence corresponds to a lozenge tiling of a certain domain
encoded by κ and µ, so that, in particular the tiling on the left panel of Figure 1
corresponds to the sequence

∅ ≺ (2) ≺ (3, 0) ≺ (3, 1, 0) ≺ (3, 3, 0, 0) ≺ (4, 3, 3, 0, 0).

It follows that

Prob{Υk
λ = η} =

Dim(∅, η)Dim(η, λ)

Dim(∅, λ)
.

On the other hand the combinatorial formula for (skew) Schur polynomials (see e.g.
[M, Chapter I, Section 5]) yields that for κ ∈ GTK and µ ∈ GTL with K > L we have

Dim(µ, κ) = sκ/µ(1K−L), Dim(∅, µ) = sµ(1L).

�

Introduce multivariate normalized Bessel function Bk(x; y), x = (x1, . . . , xk), y =
(y1, . . . , yk) through

Bk(x; y) =
deti,j=1,...,k

(
exp(xiyj)

)
∏

i<j(xi − xj)
∏

i<j(yi − yj)
∏
i<j

(j − i).

The functions Bk(x; y) appear naturally as a result of computation of Harish-
Chandra-Itzykson-Zuber matrix integral (1.11). Their relation to Schur polynomials
is explained in the following statement.

Proposition 5.4. For λ = (λ1, λ2, . . . , λk) ∈ GTk we have

sλ(e
x1 , . . . , exk)

sλ(1k)

∏
i<j

exi − exj
xi − xj

= Bk(x1, . . . , xk;λ1 + k − 1, λ2 + k − 2 . . . , λk)

Proof. Immediately follows from the definition of Schur polynomials and the evaluation
of sλ(1

k) given in (2.3). �

We study Υk
λ for λ ∈ GTN through its moment generating functions EBk(x; Υk

λ +
δk), where x = (x1, . . . , xk), δk = (k − 1, k − 2, . . . , 0) as above and E stays for the
expectation. Note that for k = 1 the function EBk(x; Υk

λ + δk) is nothing else but
usual one-dimensional moment generating function E exp(xΥ1

λ).

Proposition 5.5. We have

EBk(x; Υk
λ + δk) =

sλ(e
x1 , . . . , exk , 1N−k)

sλ(1N)

∏
1≤i<j≤k

exi − exj
xi − xj

.
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Proof. Let Z = (z1, . . . , zm) and Y = (y1, . . . , yn) and let µ ∈ GTm+n, then (see e.g.
[M, Chapter I, Section 5]) ∑

κ∈GTM

sκ(Z)sµ/κ(Y ) = sµ(Z, Y ).

Therefore, Propositions 5.3 and 5.4 yield(
EBk(x; Υk

λ + δk)
)∏
i<j

xi − xj
exi − exj =

∑
η∈GTk

sη(e
x1 , . . . , exk)

sη(1k)
· sη(1

k)sλ/η(1
N−k)

sλ(1N)

=

∑
η∈GTk sη(e

x1 , . . . , exk)sλ/η(1
N−k)

sλ(1N)
=
sλ(e

x1 , . . . , exk , 1N−k)

sλ(1N)
.

�

The counterpart of Proposition 5.5 for GUEk distribution is the following.

Proposition 5.6. We have

(5.1) EBk(x;GUEk) = exp

(
1

2
(x2

1 + · · ·+ x2
k)

)
.

Proof. Let X be a (fixed) diagonal k× k matrix with eigenvalues x1, . . . , xk and let A
be random k × k Hermitian matrix from GUE. Let us compute

(5.2) E exp (Trace(XA)) .

From one hand, standard integral evaluation shows that (5.2) is equal to the right side
of (5.1). On the other hand, we can rewrite (5.2) as

(5.3)

∫
y1≥y2≥···≥yk

PGUEk(dy)

∫
u∈U(k)

PHaar(du) exp
(
Trace(Y uXu−1)

)
,

where PGUEk is probability distribution of GUEk, PHaar is normalized Haar measure
on the unitary group U(k) and Y is Hermitian matrix (e.g. diagonal) with eigenvalues
y1, . . . , yk. The evaluation of the integral over unitary group in (5.3) is well-known,
see [H1], [H2], [IZ], [OV] and the answer is precisely Bk(y1, . . . , yk;x1, . . . , xk). Thus,
(5.3) transforms into the left side of (5.1). �

In what follows we need the following technical proposition.

Proposition 5.7. Let φN = (φN1 ≥ φN2 ≥ · · · ≥ φNk ), N = 1, 2, . . . be a sequence of
k-dimensional random variables. Suppose that there exists a random variable φ∞ such
that for every x = (x1, . . . , xk) in a neighborhood of (0, . . . , 0) we have

lim
N→∞

EBk(x;φN) = EBk(x;φ∞).

Then φN → φ in the sense of weak convergence of random variables.

Proof. For k = 1 this is a classical statement, see e.g. [Bi, Section 30]. For general
k this statement is, perhaps, less known, but it can be proven by the same standard
techniques as for k = 1. �

Next, note that the definition implies the following property for the moment gener-
ating function of k-dimensional random variable φ:

EBk(x1, . . . , xk; aφ+ b) = exp(b(x1 + · · ·+ xk))EBk(ax1, . . . , axk;φ).
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Also observe that for any non-constant weakly decreasing f(t) we have S(f) > 0.
The following statement, together with Propositions 5.5, gives the moment generating
function for the shifted and normalized Υk

λ(N) as N →∞.

Proposition 5.8. In the assumptions of Theorem 5.1 for any k reals h1, . . . , hk we
have:

lim
N→∞

sλ(N)

(
e

h1√
NS(f) , . . . , e

hk√
NS(f) , 1N−k

)
sλ(N)(1N)

exp

(
−
√
N

E(f)√
S(f)

(h1 + · · ·+ hk)

)

= exp

(
1

2
(h2

1 + · · ·+ h2
k)

)
.

Proof. For k = 1 this is precisely the statement of Proposition 4.3. For general k we
combine Proposition 4.8 and Corollary 3.12. �

Proof of Theorem 5.1. Propositions 5.8 and 5.5, and the observation that (exi −
exj)/(xi−xj) tends to 1 when xi, xj → 0 show that as N →∞ the moment generating
function for the shifted and normalized Υk

λ(N) converges to the corresponding moment
generating function for the GUEk as given in Proposition 5.6. Now Proposition 5.7
implies the weak convergence

(Υk
λ(N) −NE(f))/

√
NS(f)→ GUEk

and Theorem 5.1 then follows. �

5.2. Asymptotics of the six vertex model. Recall that an Alternating Sign Matrix
of size N is a N × N matrix filled with 0s 1s and −1s in such a way that the sum
along every row and column is 1 and, moreover, along each row and each column 1s
and −1s are alternating, possibly separated by an arbitrary number of 0s. Alternating
Sign Matrices are in bijection with configurations of the six-vertex (“square ice”) model
with domain wall boundary conditions. The configurations of the 6–vertex model are
assignments of one of 6 types of H2O molecules shown in Figure 8 to the vertices of
N × N square grid in such a way that the O atoms are at the vertices of the grid.
To each O atom there are two H atoms attached, so that they are at angles 90◦ or
180◦ to each other, along the grid lines, and between any two adjacent O atoms there
is exactly one H. We also impose the so-called domain wall boundary conditions as
shown in Figure 4 in the introduction. In order to get an ASM we replace the vertex
of each type with 0, 1 or −1, as shown in Figure 8, see e.g. [Ku] and references therein
for more details. Figure 4 gives one example of ASM and corresponding configuration
of the 6–vertex model.

Let Nג denote the set of all Alternating Sign Matrices of size N or, equivalently,
all configurations of six-vertex model with domain wall boundary condition. Equip
Nג with uniform probability measure and let ωN be a random element of Nג . We are
going study the asymptotic properties of ωN as N →∞.

For ϑ ∈ Nג let ai(ϑ), bi(ϑ), ci(ϑ) denote the number of vertices in horizontal line
i of types a, b and c, respectively (the types are shown in Figure 8). Likewise, let

âj(ϑ), b̂j(ϑ) and ĉj(ϑ) be the same quantities in vertical line j. Also let aij(ϑ), bij(ϑ)
and cij(ϑ) be 0 − 1 functions equal to the number of vertices of types a, b and c,
respectively, at the intersection of vertical line j and horizontal line i. To simplify the
notations we view ai, bi and ci as random variables and omit their dependence on ϑ.
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O OO H HH H OO H OH

H

H H

H H

a a

H

b b c c

0 0 0 0 1 −1
Figure 8. Types of vertices in the six vertex model divided by groups
and their correspondence to numbers in ASM

Theorem 5.9. For any fixed j the random variable
aj−N/2√

N
weakly converges to the nor-

mal random variable N(0,
√

3/8). The same is true for aN−j, âj and âN−j. Moreover,
the joint distribution of any collection of such variables converges to the distribution
of independent normal random variables N(0,

√
3/8).

Inspecting the bijection between ASMs and the configurations of the six–vertex
model one readily sees that Theorem 5.9 implies Theorem 1.10. The rest of this
section is devoted to the proof of Theorem 5.9.

The 6 types of vertices in six vertex model are divided into 3 groups, as shown in
Figure 8. Define a weight depending on the position (i, j) (i is the vertical coordinate)
of the vertex and its type as follows:

a : q−1u2
i − qv2

j , b : q−1v2
j − qu2

i , c : (q−1 − q)uivj
where v1, . . . , vN , u1, . . . , uN are parameters and from now and till the end of the
section we set q = exp(πi/3) (notice that this implies q−1 + q = 1; q − q−1 = i

√
3.)

Let the weight W of a configuration be equal to the product of weights of vertices.
The partition function of the model can be explicitly evaluated in terms of Schur
polynomials.

Proposition 5.10. We have∑
ϑ∈גN

W (ϑ) = (−1)N(N−1)/2(q−1 − q)N
N∏
i=1

(viui)
−1sλ(N)(u

2
1, . . . , u

2
N , v

2
1, . . . , v

2
N),

where λ(N) = (N − 1, N − 1, N − 2, N − 2, . . . , 1, 1, 0, 0) ∈ GT2N .

Proof. See [Ok], [St], [FZ]. �

The following proposition is a straightforward corollary of Proposition 5.10.

Proposition 5.11. Fix any n distinct vertical lines i1, . . . , in and m distinct horizontal
lines j1, . . . , jm and any set of complex numbers u1, . . . , un, v1, . . . , vm. We have

(5.4) EN
n∏
k=1

[(
q−1u2

k − q
q−1 − q

)aik (q−1 − qu2
k

q−1 − q

)bik
(uk)

cik

]

=

(
n∏
k=1

u−1
k

)
sλ(N)(u1, . . . , un, 1

2N−n)

sλ(N)(12N)
,
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(5.5) EN
m∏
`=1

[(
q−1 − qv2

`

q−1 − q

)âj` (q−1v2
` − q

q−1 − q

)b̂j`
(v`)

ĉj`

]

=

(
n∏
`=1

v−1
`

)
sλ(N)(v1, . . . , vm, 1

2N−m)

sλ(N)(12N)

and, more generally

(5.6) EN

(
n∏
k=1

[(
q−1u2

k − q
q−1 − q

)aik (q−1 − qu2
k

q−1 − q

)bik
(uk)

cik

]

×
m∏
`=1

[(
q−1 − qv2

`

q−1 − q

)âj` (q−1v2
` − q

q−1 − q

)b̂j`
(v`)

ĉj`

]

×
n∏
k=1

m∏
`=1

[(
(q−1u2

k − qv2
` )(q

−1 − q)
(q−1u2

k − q)(q−1 − qv2
` )

)aik,j` (
(q−1v2

` − qu2
k)(q

−1 − q)
(q−1 − qu2

k)(q
−1v2

` − q)

)bik,j`])

=

(
m∏
`=1

v−1
`

n∏
k=1

u−1
k

)
sλ(N)(u1, . . . , un, v1, . . . , vm, 1

2N−n−m)

sλ(N)(12N)
,

where all the above expectations EN are taken with respect to the uniform measure on
Nג .

We want to study N → ∞ limits of observables of Proposition 5.11. Suppose that
n = 1, m = 0. Then we have two parameters u1 = u and i1 = i. Suppose that as
N →∞ we have

(5.7) u = u(N) = exp(y/
√
N)

and i remains fixed. Then we can use Proposition 4.3 to understand the asymptotics
of the right-hand side of (5.4).

As for the left-hand side of (5.4), note that ci is uniformly bounded, in fact ci < 2i
because of the combinatorics of the model. Therefore, the factors involving ci in the
observable become negligible as N → ∞. Also note that ai + bi + ci = N , therefore
the observable can be rewritten as(

q−1 − qe2y/
√
N

q−1 − q

)N (
q−1e2y/

√
N − q

q−1 − qe2y/
√
N

)ai

G(y),

with G satisfying the estimate | lnG(y)| < Cy/
√
N with some constant C (independent

of all other parameters).
Now let z be an auxiliary variable and choose y = y(z,N) such that

(5.8) exp(z/
√
N) =

q−1e2y/
√
N − q

q−1 − qe2y/
√
N

Now the observable (as a function of z) turns into
(
q−1−qe2y/

√
N

q−1−q

)N
times exp(zai/

√
N).

Therefore, the expectation in (5.4) is identified with the exponential moment generat-

ing function for ai/
√
N .
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In order to obtain the asymptotics we should better understand the function y(z,N).
Rewrite (5.8) as

e2y/
√
N =

exp(z/
√
N)q−1 + q

q−1 + q exp(z/
√
N)

=
1 + (exp(z/

√
N)− 1) q−1

q−1+q

1 + (exp(z/
√
N)− 1) q

q−1+q

Recall that q−1 + q = 1, therefore

2y =
√
N
(

ln(1 + q−1(exp(z/
√
N)− 1))− ln(1 + q(exp(z/

√
N)− 1))

)
= −(q − q−1)z − q − q−1

2
z2/
√
N +

q2 − q−2

2
z2/
√
N +O(z3/N)

Note that the last two terms cancel out and we get

(5.9) y = −zi
√

3

2
+O(z3/N).

Now we compute(
q−1 − qe2y/

√
N

q−1 − q

)N

= exp

[
N ln

(
1− q

q−1 − q (e−i
√

3z/
√
N+O(z3N−3/2) − 1)

)]
= exp

[
−
√
Nqz + qi

√
3z2/2− q2z2/2 + o(1)

]
= exp

[
−
√
Nqz − z2/2 + o(1)

]
Summing up, the observable of (5.4) is now rewritten as

(5.10) exp

[
−
√
Nzi

√
3

2
− z2/2 + o(1)

]
exp

[
ai −N/2√

N
z

]
Now combining (5.4) with Propositions 4.3, 4.8 (note that parameter N in these

two propositions differs by the factor 2 from that of (5.4)) we conclude that (for any
complex z) the expectation of (5.10) is asymptotically

exp
[
4
√
NyE(f) + 4S(f)y2 + o(1)

]
,

where f is the function 1−x
2

. Using (5.9) and computing

E(f) = 1/4, S(f) = 5/48

we get

(5.11) exp

[
−
√
Nzi

√
3

2
− 5

16
z2 + o(1)

]
.

Now we are ready to prove Theorem 5.9.

Proof of Theorem 5.9. Choose zk and z′` to be related to uik and vj` , respectively, in
the same way as z was related to u (through (5.7) and (5.8)). Then, combining the
asymptotics (5.11) with Corollary 3.12 we conclude that the righthand side of (5.6) as
N →∞ is
(5.12)

n∏
k=1

exp

[
−
√
Nzki

√
3

2
− 5

16
z2
k + o(1)

]
m∏
`=1

exp

[
−
√
Nz′ki

√
3

2
− 5

16
(z′k)

2 + o(1)

]
.

Now it is convenient to choose zi (z′i) to be purely imaginary zi = sii (z′i = s′ii).
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Summing up the above discussion, observing that the case n = 0, m = 1 is almost
the same as n = 1, m = 0, (only the sign of ai changes), and that the observable (5.6)
has a multiplicative structure, and the third (double) product in (5.6) is negligible as
N →∞, we conclude that as N →∞ for all real si, s

′
i

(5.13) lim
N→∞

EN exp

[
n∑
k=1

aik −N/2√
N

ski +
m∑
`=1

âj` −N/2√
N

s′`i + o(1)

]

= exp

[
− 3

16

(
n∑
k=1

s2
k +

n∑
`=1

(s′`)
2

)]
.

The remainder o(1) in the left side of (5.13) is uniform in aik , âi` and, therefore, it
can be omitted. Indeed, this follows from∣∣∣∣EN exp

[
ai −N/2√

N
si + o(1)

]
− EN exp

[
ai −N/2√

N
si

]∣∣∣∣
≤ EN

∣∣∣∣exp

[
ai −N/2√

N
si

]∣∣∣∣ o(1) = o(1).

Hence, (5.13) yields that the characteristic function of the random vector(
ai1 −N/2√

N
, . . . ,

ain −N/2√
N

,
âj1 −N/2√

N
, . . . ,

âjm −N/2√
N

)
converges as N →∞ to

exp

[
− 3

16

(
n∑
k=1

s2
k +

n∑
`=1

(s′`)
2

)]
Since convergence of characteristic functions implies weak convergence of distributions
(see e.g. [Bi, Section 26]) the proof of Theorem 5.9 is finished. �

5.3. Towards dense loop model. In [GNP] de Gier, Nienhuis and Ponsaing study
the completely packed O(n = 1) dense loop model and introduce the following quan-
tities related to the symplectic characters.

Following the notation from [GNP] we set

τL(z1, . . . , zL) = χλL(z2
1 , . . . , z

2
L)

where λL ∈ GT+
L is given by λLi = bL−i

2
c for i = 1, . . . , L. Further, set

(5.14) uL(ζ1, ζ2; z1, . . . , zL) = (−1)Li

√
3

2
ln

[
τL+1(ζ1, z1, . . . , zL)τL+1(ζ2, z1, . . . , zL)

τL(z1, . . . , zL)τL+2(ζ1, ζ2, z1, . . . , zL)

]
Define

X
(j)
L = zj

∂

∂zj
uL(ζ1, ζ2; z1, . . . , zL)

and

YL = w
∂

∂w
uL+2(ζ1, ζ2; z1, . . . , zL, vq

−1, w)|w=v,

in particular, X
(j)
L is a function of z1, . . . , zL and ζ1, ζ2, while YL also depends on

additional parameters v and q.

De Gier, Nienhuis and Ponsaing showed that X
(j)
L and YL are related to the mean

total current in the O(n = 1) dense loop model, which was presented in Section 1.6.
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More precisely, they prove that under certain factorization assumption and with an

appropriate choice of weights of configurations of the model, X
(j)
L is the mean total

current between two horizontally adjacent points in the strip of width L:

X
(j)
L = F (i,j),(i,j+1),

and Y is the mean total current between two vertically adjacent points in the strip of
width L:

YL = F (j,i),(j−1,i),

see [GNP] for the details.

This connection motivated the question of the limit behavior of X
(j)
L and Y

(j)
L as

the width L tends to infinity, this was asked in [Gi], [GP]. In the present paper we
compute the asymptotic behavior of these two quantities in the homogeneous case, i.e.
when zi = 1, i = 1, . . . , L.

Theorem 5.12. As L→∞ we have

X
(j)
L

∣∣∣
zj=z; zi=1, i 6=j

=
i
√

3

4L
(z3 − z−3) + o

(
1

L

)
and

YL

∣∣∣
zi=1, i=1,...,L

=
i
√

3

4L
(w3 − w−3) + o

(
1

L

)
Remark 1. When z = 1, X

(j)
L is identical zero and so is our asymptotics.

Remark 2. The fully homogeneous case corresponds to w = e−πi/6, q = e2πi/3. In
this case

YL =

√
3

2L
+ o

(
1

L

)
.

Remark 3. The leading asymptotics terms do not depend on the boundary param-
eters ζ1 and ζ2.

The rest of this section is devoted to the proof of Theorem 5.12.

Proposition 5.13. The normalized symplectic character for λL =
(bL−1

2
c, bL−2

2
c, . . . , 1, 0, 0) is asymptotically given for even L by

XλL(ey;L) =
3e−

9
4
y(ey − 1)

(e3/2y − 1)(ey + 1)

(
4

9

(e3/2y − 1)2

ey/2(ey − 1)2

)L(
1 +

t1(y)

L1/2
+
t2(y)

L2/2
+ . . .

)
,

and for odd L by

XλL(ey;L) =
3e−

9
4
y(ey − 1)

(e3/2y − 1)(ey + 1)

(
4

9

(e3/2y − 1)2

ey/2(ey − 1)2

)L(
1 +

t′1(y)

L1/2
+
t′2(y)

L2/2
+ . . .

)
,

for some analytic functions t1, t2, . . . and t′1, t
′
2, . . . such that t1 = t′1 and

t′2 = t2 +
1

12
(e3/2y − 1)2e−3/2y

Proof. We will apply the formula from Proposition 3.19 to express the normalized
symplectic character as a normalized Schur function. The corresponding ν is given
by νi = bL−i

2
c + 1 for i = 1, . . . , L and νi = −b i−L−1

2
c for i = L + 1, . . . , 2L, which

is equivalent to νi = bL−i
2
c + 1 for all i = 1, . . . , 2L. We will apply Proposition 4.2

to directly derive the asymptotics for Sν(e
y; 2L, 1). For the specific signature we find

that f(t) = 1
4
− 1

2
t and
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F(w; f) =

∫ 1

0

ln(w − f(t)− 1 + t)dt

=
1

6

(
−6 + (5− 4w) ln

[
−5

4
+ w

]
+ (1 + 4w) ln

[
1

4
+ w

])
In particular, we have

F ′(w; f) = −2

3

(
ln

[
−5

4
+ w

]
− ln

[
1

4
+ w

])
,

F ′′(w; f) = − 1

(w + 1
4
)(w − 5

4
)
.

The root of F ′(w; f) = y, referred to as the critical point, is given by

w0 = w0(y) =
1 + 5e3/2y

4(−1 + e3/2y)
.

Example 2 of Section 4.2 shows that a steepest descent contour exists for any complex
values of y for which w0 6∈ [−1/4, 5/4], i.e. if e3/2y is not a negative real number. The
values at w0 are

yw0 −F(w0; f) = −1

4
y + ln(e3/2y − 1) + 1− ln

3

2
and

F ′′(w0; f) = −4

9

(e3/2y − 1)2

e3/2y

In order to apply Proposition 4.2 we need to ensure the convergence of Q(w; ν, f),
defined as in Section 4.1 via

(5.15) lnQ(w; ν, f) = (2L)F(w; f)−
2L∑
j=1

ln

(
w − νj + 2L− j

2L

)

=

(
2LF(w; f)−

2L∑
j=1

ln

(
w − f̂

(
j

2L

)))
︸ ︷︷ ︸

P1(w;ν,f)

−
2L∑
j=1

ln

(
1 +

f
(
j

2L

)
− νj

2L

w − f
(
j

2L

)
− 1 + j

2L

)
︸ ︷︷ ︸

P2(w;ν,f)

.

As in (4.17), we can write

P1(w; ν, f) =
ln(w − f̂(0))− ln(w − f̂(1))

2
+
b(w)

L
+ o(1/L),

where the exact value of b(w) does not depend on the parity of L and, thus, will not
affect the differences t1 − t′1 and t2 − t′2 in the statement.

We now estimate P2(w; ν, f). We substitute the values for ν and expand the loga-
rithms as ln(1 + x) ≈ x− x2/2. Let

(5.16) A(w;L) := −L
2L∑
i=1

( − νi
2L

+ f( i
2L

)

w − f( i
2L

)− 1 + i
2L

)2

be the second order term in this expansion, so that

P2(w; ν, f) =
2L∑
i=1

− νi
2L

+ f( i
2L

)

w − f( i
2L

)− 1 + i
2L

+
A(w;L)

2L
+O(1/L2)

Approximating the last sum by integrals we have
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(5.17)
2L∑

i=1, i≡L(mod 2)

− (L−i)/2+1
2L

+ 1
4
− 1

2
· i

2L

w − 1
4

+ i
4L
− 1 + i

2L

+
2L∑

i=1, i≡L+1(mod 2)

− (L−i)/2+1/2
2L

+ 1
4
− 1

2
· i

2L

w − 1
4

+ i
4L
− 1 + i

2L

=
2L∑

i=1, i≡L(mod 2)

− 1
2L

w − 5
4

+ 3i
4L

+
2L∑

i=1, i≡L+1(mod 2)

− 1
4L

w − 5
4

+ 3i
4L

=

∫ 1

0

−1
2

w − 5
4

+ 3
2
η
dη +

∫ 1

0

−1
4

w − 5
4

+ 3
2
η
dη +

B(w;L)

L

=
1

2
ln

(
w − 5

4

w + 1
4

)
+
B(w;L)

L
,

where B(w;L) is the error term in the approximation of the Riemann sums by integrals.
While both functions A(w;L) and B(w;L) are bounded in w and L, they could depend
on the parity of L. The sum in (5.16) can be again approximated by an integral
similarly to (5.17); therefore for both odd and even L we have

A(w;L) = Â(w) +O(1/L).

Next, B(w;L) appears when we approximate the integrals by their Riemann sums.
Using that the trapezoid formula for the integral gives O(1/L2) approximation, and
denoting v(x) = − 1

4(w− 5
4

+ 3
2
x)

, we have for even L

B(w;L) = −v(0) + v

(
2L

2L

)
+O(1/L) = v(1)− v(0) +O(1/L)

and for odd L

B(w;L) = −v(0)/2 + v

(
2L

2L

)
/2 +O(1/L) = v(1)/2− v(0)/2 +O(1/L)

Therefore, we have

A(w,L) +B(w,L) = Ĉ(w) + (−1)L+1 1

16

(
1

w − 5
4

− 1

w + 1
4

)
+O(1/L)

and hence we obtain as L→∞

exp(Q(w; ν, f)) =

(
w − 5

4

w + 1
4

) 1
2
(

1 + (−1)L+1 1

16L

(
1

w − 5
4

− 1

w + 1
4

)
+O(1/L2)

)
,

and

exp (Q(w0; ν, f)) = exp

(
−3

4
y

)(
1 + (−1)L+1 1

24L

(
(e3/2y − 1)2e−3/2y

)
+O(1/L2)

)
,

Now combining Proposition 4.2 and remark after it with the expansion of Q and
explicit values found above we obtain

(5.18) Sν(e
y; 2L, 1) =

√
− w0 − f(0)− 1

F ′′(w0)(w0 − f(1))

(
w0 − 5

4

w0 + 1
4

) 1
2 exp 2L(yw0 −F(w0))

e2L(ey − 1)2L−1

×
(

1 + (−1)L+1 1

16L

(
1

w0 − 5
4

− 1

w0 + 1
4

)
+ . . .

)
(1 + . . . )
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=
3e−

9
4
y(ey − 1)

2(e3/2y − 1)

(
4

9

(e3/2y − 1)2

ey/2(ey − 1)2

)L
×
(

1 + t̂1L
−1/2 +

(
t̂2 + (−1)L+1 (e3/2y − 1)2e−3/2y

12

)
L−1 + . . .

)
Proposition 3.19 then immediately gives XλL(ey;L, 1) as 2

ey+1
Sν(e

y; 2L, 1). �

We will now proceed to derive the multivariate formulas needed to compute uL.
First of all, set h(x) = 4

9
x−3/2(x3/2 − 1)2 and define αL(x) through

XλL(x;L) = αL(x)
x− 1

x+ 1
h(x)L

(
2− x− x−1

)−L
,

with λL as in Proposition 5.13.
Define

τ̃L(z1, . . . , zk) =
χλL(z2

1 , . . . , z
2
k, 1

L−k)

χλL(1L)
= XλL(z2

1 , . . . , z
2
k;L, 1)

ũL(ζ1, ζ2; z1, . . . , zk) = (−1)Li

√
3

2
ln

[
τ̃L+1(ζ1, z1, . . . , zk)τ̃L+1(ζ2, z1, . . . , zk)

τ̃L(z1, . . . , zk)τ̃L+2(ζ1, ζ2, z1, . . . , zk)

]
.

Then ũL(ζ1, ζ2; z1, . . . , zk)− uL(ζ1, ζ2, z1, . . . , zk) is a constant and thus we have

zj
∂

∂zj
ũ(ζ1, ζ2; z1) = X

(j)
L ,

w
∂

∂w
ũL+2(ζ1, ζ2; vq−1, w)

∣∣∣
v=w

= YL.

Therefore, we can work with XλL instead of χλL and with ũ instead of u.
For any function ξ and variables v1, . . . , vm we define

B(v1, . . . , vm; ξ) :=

∑m
i=1 ξ(vi)vi

∂
∂vi

∆(ξ(v1)2, . . . , ξ(vm)2)

∆(ξ(v1)2, . . . , ξ(vm)2)
.

Proposition 5.14. Suppose that signature λ depends on a large parameter L in such
a way that

Xλ(x;L, 1) = αL(x)h(x)L
x− 1

x+ 1
(x+ x−1 − 2)−L,

where
αL(x) = a(x)(1 + b1(x)L−1/2 + b2(x)L−1 + . . . ) for even L,

αL(x) = a(x)(1 + b1(x)L−1/2 + b̂2(x)L−1 + . . . ) for odd L

and a(x), b1(x), b2(x), b̂2(x), h(x) are some analytic functions of x. Let ξ(x) =
x ∂
∂x

ln(h(x)). Then for any k we have

ln

[
Xλ(x0, . . . , xk;L+ 1)Xλ(x1, . . . , xk+1;L+ 1)

Xλ(x1, . . . , xk;L)Xλ(x0, . . . , xk+1;L+ 2)

]
= c1(x0, xk+1;L) +

k∑
i=1

2
(̂
b2(xi)− b2(xi)

)(−1)L

L
+

ln

[
(ξ(xk+1)2 − ξ(x0)2) +

2

L

(
B(x0, .., xk; ξ)−B(x1, .., xk+1; ξ) + c2(x0, xk+1)

)]
+ o(L−1),

where c0 and c1 are analytic functions not depending on x1, . . . , xk.
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Proof. We use Theorem 3.17 to express the multivariate normalized character in terms
of αL(xi) and h(xi) as follows

(5.19)
Xλ(x1, . . . , xm;N)∏

Xλ(xi;N)

=
m−1∏
j=0

(2N − 2j − 1)!N2j

(2N − 1)!

∏m
i=1(xi − 1)2m−1(xi + 1)x−mi

∆s(x1, . . . , xm)
MN(x1, . . . , xm),

which is applied with N = L,L + 1, L + 2, m = k, k + 1, k + 2 and define for any N
and m

(5.20) MN(x1, . . . , xm) := det

[
D2j−2
i

[
αN(xi)h(xi)

N
]

N2j−2αN(xi)h(xi)N

]m
i,j=1

=
∆
(
D2

1

N2 , . . . ,
D2
m

N2

)∏m
i=1 αN(xi)h(xi)

N∏m
i=1 αN(xi)h(xi)N

,

where, as above, Di = xi
∂
∂xi

. The second form in (5.20) will be useful later.
We can then rewrite the expression of interest as

(5.21) ln

[
Xλ(x0, . . . , xk;L+ 1)Xλ(x1, . . . , xk+1;L+ 1)

Xλ(x1, . . . , xk;L)Xλ(x0, . . . , xk+1;L+ 2)

]
= const1(L) + ln

[
Xλ(x0;L+ 1)Xλ(xk+1;L+ 1)

Xλ(x0;L+ 2)Xλ(xk+1;L+ 2)

]
+ ln

[
k∏
i=1

Xλ(xi;L+ 1)2

Xλ(xi;L)Xλ(xi;L+ 2)

]
− ln

[
(x0 − 1)2x−1

0 (xk+1 − 1)2x−1
k+1

x0 + x−1
0 − (xk+1 + x−1

k+1)

]
+ ln

ML+1(x0, x1, . . . , xk)ML+1(x1, . . . , xk+1)

ML(x1, . . . , xk)ML+2(x0, . . . , xk+1)
,

where const1(L) will be part of c1(x0, xk+1;L). We investigate each of the other terms
separately. First, we have that

ln

[
Xλ(x0;L+ 1)Xλ(xk+1;L+ 1)

Xλ(x0;L+ 2)Xλ(xk+1;L+ 2)

]
+ ln

[
k∏
i=1

Xλ(xi;L+ 1)2

Xλ(xi;L)Xλ(xi;L+ 2)

]

=
k∑
i=1

ln

(
αL+1(xi)

2

αL(xi)αL+2(xi)

)
+ ln

(
αL+1(x0)αL+1(xk+1)

αL+2(x0)αL+2(xk+1)

)
+ ln

[
(x0 + x−1

0 − 2)(xk+1 + x−1
k+1 − 2)

h(x0)h(xk+1)

]
where the terms involving x0 and xk+1 are absorbed in c1 and we notice that

ln

(
αL+1(x)2

αL(x)αl+2(x)

)
= 2

(
b̂2(x)− b2(x)

)
(−1)L

L
+O

(
1

L2

)
.

Next we observe that for any ` and N

(5.22)(
x ∂
∂x

)`
[αN(x)h(x)N ]

N `αN(x)h(x)N
= ξ(x)`+

((
`

2

)
q1 −

(
`

2

)
ξ(x)` + `r1ξ(x)`−1

)
1

N
+O

(
N−3/2

)
,
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where q1 = ξ(x)(x ∂
∂x
ξ(x) + ξ(x)2) and r1(x) = x ∂

∂x
log(a(x)). In particular, since MN

is a polynomial in the left-hand side of (5.22), it is of the form

(5.23) MN(x1, . . . , xm) = ∆(ξ2(x1), . . . , ξ2(xm)) + p1(x1, . . . , xm)
1

N
+O

(
N−3/2

)
for some function p1 which depends only on ξ and a. That is, the second order
asymptotics of MN does not depend on the second order asymptotics of αL. Further,
we have

MN

MN+1

= 1 +O
(
N−3/2

)
for any N , so in formula (5.21) we can replace ML+1 and ML+2 by ML without affect-
ing the second order asymptotics. Evaluation of M directly will not lead to an easily
analyzable formula, therefore we will do some simplifications and approximations be-
forehand.

We will use Lewis Carroll’s identity (Dodgson condensation), which states that for
any square matrix A we have

(detA)(detA1,2;1,2) = (detA1;1)(detA2;2)− (detA1;2)(detA2;1),

where AI;J denotes the submatrix of A obtained by removing the rows whose indices
are in I and columns whose indices are in J . Applying this identity to the matrix

A =

[
D2j−2
i

[
αL(xi)h(xi)

L
]

L2jαL(xi)h(xi)L

]k+1

i,j=0

we obtain

(5.24) ML(x1, . . . , xk)ML(x0, x1, . . . , xk, xk+1)

= det

[
D2j
i (αL(xi)h

L(xi))

L2jαL(xi)h(xi)L

]j=[0:k−1,k+1]

i=[1:k+1]

det

[
D2j
i (αL(xi)h

L(xi))

L2jαL(xi)h(xi)L

]k
i,j=0

− det

[
D2j
i (αL(xi)h

L(xi))

L2jαL(xi)h(xi)N

]j=[0:k−1,k+1]

i=[0:k]

det

[
D2j
i (αL(xi)h

L(xi))

L2jαL(xi)h(xi)L

]k+1

i,j+1=1

,

where [0 : k − 1, k + 1] = {0, 1, . . . , k − 1, k + 1}. The second factors in the two
products on the right-hand side above are just ML evaluated at the corresponding sets
of variables. For the first factors, applying the alternate formula for ML from (5.20)
and using the fact that

∆(v1, . . . , vm)
m∑
i=1

vi = det
[
vji
]j=[0:m−2,m]

i=[1:m]
,

we obtain

det

[
D2j
i (αL(xi)h(xi)

L)

L2jαL(xi)h(xi)L

]j=[0:k−1,k+1]

i=[1:k+1]

=
1∏k+1

i=1 αL(xi)h(xi)L
det
[
(D2

i /L
2)j
]j=[0:k−1,k+1]

i=[1:k+1]

k+1∏
i=1

αL(xi)h(xi)
L
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=
1∏k+1

i=1 αL(xi)h(xi)L

(
k+1∑
i=1

D2
i /L

2

)
∆(D2

1/L
2, . . . , D2

k+1/L
2)

k+1∏
i=1

αL(xi)h(xi)
L

=
1∏k+1

i=1 αL(xi)h(xi)L

(
k+1∑
i=1

D2
i /L

2

)[(
k+1∏
i=1

αL(xi)h(xi)
L

)
ML(x1, . . . , xk+1)

]
,

Substituting these computations into (5.24) we get

(5.25)
ML(x0, x1, . . . , xk)ML(x1, . . . , xk, xk+1)

ML(x1, . . . , xk)ML(x0, x1, . . . , xk, xk+1)

=
(
∑k+1

i=1
D2
i

L2 )
[
(
∏k+1

i=1 αL(xi)h(xi)
L)ML(x1, . . . , xk+1)

]
∏k+1

i=1 αL(xi)h(xi)LML(x1, . . . , xk+1)

−
(
∑k

i=0
D2
i

L2 )
[
(
∏k

i=0 αL(xi)h(xi)
L)ML(x0, . . . , xk)

]
∏k

i=0 αL(xi)h(xi)LML(x0, . . . , xk)

=
D2
k+1αL(xk+1)h(xk+1)L

L2αL(xk+1)h(xk+1)L
− D2

0αL(x0)h(x0)L

L2αL(x0)h(x0)L

+
(
∑k+1

i=1 D
2
i )[ML(x1, . . . , xk+1)]

L2ML(x1, . . . , xk+1)
− (
∑k

i=0D
2
i )[ML(x0, . . . , xk)]

L2ML(x0, . . . , xk)

+2

(
k+1∑
i=1

Di[αL(xi)h(xi)
L]

LαL(xi)h(xi)L
DiML(x1, . . . , xk+1)

LML(x1, . . . , xk+1)
−

k∑
i=0

Di[αL(xi)h(xi)
L]

LαL(xi)h(xi)L
DiML(x0, . . . , xk)

LML(x0, . . . , xk)

)
Using the expansion for ML from equation (5.23) and the expansion from (5.22) we
see that the only terms contributing to the first two orders of approximation in (5.25)
above are

(5.26) ξ(xk+1)2 − ξ(x0)2 +
1

L
(c3(xk+1)− c3(x0))+

2

L

(
k+1∑
i=1

ξ(xi)
Di∆(ξ(x1)2, . . . , ξ(xk+1)2)

∆(ξ(x1)2, . . . , ξ(xk+1)2)
−

k∑
i=0

ξ(xi)
Di∆(ξ(x0)2, . . . , ξ(xk)

2)

∆(ξ(x0)2, . . . , ξ(xk)2)

)
+ o

(
L−1

)
for some function c3 not depending on L, so c2(x0, xk+1) = c3(xk+1)− c3(x0). Substi-
tuting this result into (5.21) we arrive at the desired formula.

�

Proof of Theorem 5.12. Proposition 5.14 with x0 = ζ2
2 , xk+1 = ζ2

1 and xi = z2
i shows

that

(5.27) L

(
ũL(ζ1, ζ2, z1, . . . , zk)− c1(ζ2

1 , ζ
2
2 ;L)−

k∑
i=1

2
(̂
b2(xi)− b2(xi)

)(−1)L

L

− ln

[
(ξ(ζ2

1 )2 − ξ(ζ2
2 )2) + 2(B(x0, .., xk; ξ)−B(x1, .., xk+1; ξ) + c2(ζ2

1 , ζ
2
2 ))

1

L

])
converges uniformly to 0 and so its derivatives also converge to 0. Proposition 5.13
shows that in our case

h(x) =
4

9
x−3/2(x3/2 − 1)2
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and thus ξ(x) = 3
2
· x3/2+1
x3/2−1

. Moreover, the function ξ satisfies the following equation

x
∂

∂x
ξ(x) = −9

2

x3/2

(x3/2 − 1)2
= −9

8
(ξ(x)2 − 1)

and so we can simplify the function B as a sum as follows

(5.28) B(v1, . . . , vm; ξ) =

∑
i ξ(vi)vi

∂
∂vi

∆(ξ(v1)2, . . . , ξ(vm)2)

∆(ξ(v1)2, . . . , ξ(vm)2)

=
∑
i

∑
j 6=i

ξ(vi)vi

∂
∂vi

(ξ(vi)
2 − ξ(vj)2)

ξ(vi)2 − ξ(vj)2
=
∑
i

∑
j 6=i

2ξ(vi)
2vi

∂
∂vi
ξ(vi)

ξ(vi)2 − ξ(vj)2

=
∑
i

∑
j 6=i

−9
4
(ξ(vi)

4 − ξ(vi)2)

ξ(vi)2 − ξ(vj)2
=
∑
i<j

−9
4
(ξ(vi)

4 − ξ(vi)2 − ξ(vj)4 + ξ(vj)
2)

ξ(vi)2 − ξ(vj)2

=
∑
i<j

−9

4
(ξ(vi)

2 + ξ(vj)
2 − 1) = −9

4
(m− 1)

(∑
ξ(vi)

2
)

+
9

4

(
m

2

)
We thus have that

B(x0, . . . , xk; ξ)−B(x1, . . . , xk+1; ξ) = −9

4
k(ξ(xk+1)2 − ξ(x0)2),

which does not depend on x1, . . . , xk.

Differentiating (5.27) we obtain the asymptotics of X
(j)
L as

X
(j)
L = i

√
3

2
(−1)Lz

∂

∂z
2
(̂
b2(z2)− b2(z2)

)(−1)L

L
= i

√
3

2
z
∂

∂z

[
1

6
(z3 − 1)2z−3

]
= i

√
3

4
(z3 − z−3).

For Y
(j)
L the computations is the same. �

6. Representation-theoretic applications

6.1. Approximation of characters of U(∞). In this section we give a new proof
of Theorem 1.5 presented in the Introduction.

Recall that a character of U(∞) is given by the function χ(u1, u2, . . . ), which is
defined on sequences ui such that ui = 1 for all large enough i. Also χ(1, 1, . . . ) = 1.
By Theorem 1.3 extreme characters of U(∞) are parameterized by the points ω of the
infinite-dimensional domain

Ω ⊂ R4∞+2 = R∞ × R∞ × R∞ × R∞ × R× R,

where Ω is the set of sextuples

ω = (α+, α−, β+, β−; δ+, δ−)

such that

α± = (α±1 ≥ α±2 ≥ · · · ≥ 0) ∈ R∞, β± = (β±1 ≥ β±2 ≥ · · · ≥ 0) ∈ R∞,
∞∑
i=1

(α±i + β±i ) ≤ δ±, β+
1 + β−1 ≤ 1.
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Let µ be a Young diagram with the length of main diagonal d. Recall that modified
Frobenius coordinates are defined via

pi = µi − i+ 1/2, qi = µ′i − i+ 1/2, i = 1, . . . , d.

Note that
∑d

i=1 pi + qi = |µ|.
Now let λ ∈ GTN be a signature, we associate two Young diagrams λ+ and λ− to it,

corresponding to the positive and negative entries of λ, respectively: let r = max(i :
λi ≥ 0), then

λ+ = (λ1, . . . , λr) and λ− = (−λN ,−λN−1, . . . ,−λr+1).

In this way we get two sets of modified Frobenius coordinates: p+
i , q

+
i , i = 1, . . . , d+

and p−i , q
−
i , i = 1, . . . , d−.

Proposition 6.1. Suppose that λ(N) ∈ GTN is such a way that

p+
i

N
→ α+

i ,
q+
i

N
→ β+

i ,
p−i
N
→ α−i ,

q−i
N
→ β−i ,∑d+

i=1 p
+
i + q+

i

N
→

∞∑
i=1

(α+
i + β+

i ) + γ+,

∑d−

i=1 p
−
i + q−i
N

→
∞∑
i=1

(α−i + β−i ) + γ−

then

lim
N→∞

Sλ(N)(x;N, 1) = Φ∞

(
α, β, γ;

x

x− 1

)
,

where

Φ∞

(
α, β, γ;

x

x− 1

)
= exp(γ+(x− 1) + γ−(x−1 − 1))

×
∞∏
i=1

1 + β+
i (x− 1)

1− α+
i (x− 1)

· 1 + (1− β−i )(x− 1)

1 + (1 + α−i )(x− 1)
.

The convergence is uniform over 1− ε < |x| < 1 + ε for certain ε > 0.

Remark 1. Note that

1 + (1− β−i )(x− 1)

1 + (1 + α−i )(x− 1)
=

1 + β−i (x−1 − 1)

1− α−i (x−1 − 1)
,

which brings the function Φ∞ into a more traditional form of Theorems 1.3, 1.5
Remark 2. Our methods, in principle, allow us to give a full description of the set

on which the convergence holds.

Proof. The following combinatorial identity is known (see e.g. [BO, (5.15)] and refer-
ences therein)

(6.1)
N∏
i=1

s+ i− λi
s+ i

=
d+∏
i=1

s+ 1/2− p+
i

s+ 1/2 + q+
i

d−∏
i=1

s+ 1/2 +N + p+
i

s+ 1/2 +N − q−i
.

Introduce the following notation:

ΦN(λ(N);w) =
d+∏
i=1

w − 1 +
1/2+q+i
N

w − 1 +
1/2−p+i
N

d−∏
i=1

w − 1 +
1/2+N−q−i

N

w − 1 +
1/2+N+p+i

N

,



58 VADIM GORIN AND GRETA PANOVA

and observe that (6.1) implies that in the notation of Section 4.1 we have

(6.2)
∏
j

1

(w − µj(N)/N)
= ΦN(λ(N);w)

∏
i

1

w − N−i
N

.

Then the integral formula for the Schur function (Theorem 3.8) gives

Sλ(N);N,1(x) =
(N − 1)!

(x− 1)N−1

1

2πi

∮
xz∏N

i=1(z − (N − i))
ΦN(λ(N); z/N) dz.

We recognize in the integrand the setting of Proposition 4.2 with f(t) = 0 for t ∈ [0, 1].
Thus, following the notations of Proposition 4.2 we denote

Q(w;λ(N), f) =
exp(F(w; f))∏N
i=1(w − N−i

N
)
ΦN(λ(N);w).

As N →∞ we have

(6.3) ΦN(λ(N);w)→ Φ∞(α, β, γ;w).

Further, we have that for f ≡ 0, F(w; 0) = w ln(w) − (w − 1) ln(w − 1) − 1 and as
N →∞

(6.4)
exp(F(w; f))∏N
i=1(w − N−i

N
)
→ 1.

Combining (6.3) and (6.4) we conclude that Q(w;λ(N), f)→ Φ∞(α, β, γ;w) as N →
∞. Now we can use Propositions 4.2 and 4.7 with the steepest descent contours of
Example 1 of Section 4.2. Recall that here f(t) = 0, x = ey, F(w; 0) = w ln(w)− (w−
1) ln(w − 1)− 1 and w0 = 1/(1− e−y).

We conclude that as N →∞

Sλ(N)(e
y;N, 1) =

g(w0)√
−F ′′(w0; f)

· exp
(
N(yw0 −F(w0; f))

)
eN
(
ey − 1

)N−1
·
(

1 + o(1)

)
.

Substituting F , w0, g(w0) = Φ∞(α, β, γ;w0) and simplifying we arrive at

(6.5) Sλ(N);N,1(x)→ Φ∞

(
α, β, γ;

x

x− 1

)
.

Note that the convergence in (6.3) is uniform (on compact subsets) outside the poles
of Φ∞ (α, β, γ;w), while the convergence in (6.4) is uniform over outside the interval
[0, 1]. Therefore, the convergence in (6.5) is uniform over compact subsets of

D = {x = ey ∈ C | −π < Im(y) < π, −ε2 < Re(y) < ε2, y 6= 0}.
(Here the small parameter ε2 shrinks to zero as α±1 goes to infinity.)

It remains to prove that this implies uniform convergence over 1− ε < |x| < 1 + ε.
Decompose

Sλ(N)(x;N, 1) =
∞∑

k=−∞

ck(N)xk.

Since Sλ(N) is a polynomial, only finitely many coefficients ck(N) are non-zero. The
coefficients ck(N) are non-negative, see e.g. [M, Chapter I, Section 5], also

∑
k ck(N) =

Sλ(N)(1;N, 1) = 1.
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Since Φ∞(α, β, γ; x
x−1

) is analytic in the neighborhood of the unit circle we can
similarly decompose

Φ∞

(
α, β, γ;

x

x− 1

)
=

∞∑
k=−∞

ck(∞)xk.

We claim that limN→∞ ck(N) = ck(∞). Indeed this follows from the integral repre-
sentations

(6.6) ck(N) =
1

2πi

∮
|z|=1

Sλ(N)(z;N, 1)z−k−1dz,

and similarly for Φ∞. Pointwise convergence for all but finitely many points of the
unit circle and the fact that |Sλ(N)(z;N, 1)| ≤ 1 for |z| = 1 implies that we can send
N →∞ in (6.6).

Now take two positive real numbers a and b, with exp(−ε2) < a < 1 < b < exp(ε2)
such that

(6.7) lim
N→∞

Sλ(N)(a;N, 1) = Φ∞

(
α, β, γ;

a

a− 1

)
,

(6.8) lim
N→∞

Sλ(N)(b;N, 1) = Φ∞

(
α, β, γ;

b

b− 1

)
.

For x satisfying a ≤ |x| ≤ b and some positive integer M write

(6.9)

∣∣∣∣Sλ(N)(x)− Φ∞

(
α, β, γ;

x

x− 1

)∣∣∣∣
=

∣∣∣∣∣∑
k

(ck(N)− ck(∞))xk

∣∣∣∣∣ ≤∑
k

|ck(N)− ck(∞)|(ak + bk)

≤
M∑

k=−M

|ck(N)− ck(∞)|(ak + bk) +
∑
|k|>M

ck(N)(ak + bk) +
∑
|k|>M

ck(∞)(ak + bk).

The third term goes zero as M → ∞ because the series
∑

k ck(∞)zk converges for
z = a and z = b. The second term goes to zero as M → ∞ because of (6.7),(6.8)
and ck(N) → ck(∞). Now for any δ we can choose M such that each of the last two
terms in (6.9) are less than δ/3. Since ck(N) → ck(∞), the first term is a less than
δ/3 for large enough N . Therefore, all the expression (6.9) is less than δ and the proof
is finished. �

Now applying Corollary 3.10 we arrive at the following theorem.

Theorem 6.2 (cf. Theorem 1.5). In the settings of Proposition 6.1 for any k we have

lim
N→∞

Sλ(N)(x1, . . . , xk;N, 1) =
k∏
`=1

Φ∞

(
α, β, γ;

x`
x` − 1

)
,

The convergence is uniform over the set 1− ε < |x`| < 1 + ε, ` = 1, . . . , k for certain
ε > 0.

Note that we can prove analogues of Theorem 1.5 for infinite-dimensional symplectic
group Sp(∞) and orthogonal group O(∞) in exactly the same way as for U(∞). Even
the computations remain almost the same. This should be compared to the analogy
between the argument based on binomial formulas of [OO] for characters of U(∞)
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(and their Jack–deformation) and that of [OO2] for characters corresponding to other
root series.

6.2. Approximation of q–deformed characters of U(∞). In [G1] a q–deformation
for the characters of U(∞) related to the notion of quantum trace for quantum groups
was proposed. One point of view on this deformation is that we define characters
of U(∞) through Theorem 1.5, i.e. as all possible limits of functions Sλ, and then
deform the function Sλ(N) keeping the rest of the formulation the same. A “good”
q–deformation of turns out to be (see [G1] for the details)

sλ(x1, . . . , xk, q
−k, . . . , q1−N)

sλ(1, q−1, . . . , q1−N)
.

Throughout this section we assume that q is a real number satisfying 0 < q < 1.
The next proposition should be viewed as q–analogue of Proposition 6.1.

Proposition 6.3. Suppose that λ(N) is such that λN−j+1 → νj for every j. Then

sλ(x, q
−1, q−2, . . . , q1−N)

sλ(1, q−1, . . . , q1−N)
→ Fν(x),

(6.10) Fν(x) =
∞∏
j=0

(1− qj+1)

(1− qjx)

ln(q)

2πi

∫
C′

xz∏∞
j=1(1− q−zqνj+j−1)

dz,

where the contour of integration C ′ consists of two infinite segments of Im(z) = ± πi
ln(q)

going to the right and vertical segment [−M(C ′)− πi
ln(q)

,−M(C ′) + πi
ln(q)

] with arbitrary

M(C ′) < ν1. Convergence is uniform over x belonging to compact subsets of C \ {0}.
Remark. Note that we can evaluate the integral in the definition of Fν(x) as the

sum of the residues:

(6.11) Fν(x) =
∞∏
j=0

(1− qj+1)

(1− qjx)

∞∑
k=1

xνk+k−1∏
j 6=k(1− q−νk−k+1qνj+j−1)

dz,

The sum in (6.11) is convergent for any x. Indeed, the product over j > k can be
bounded from above by 1/(q; q)∞. The product over over j < k is (up to the factor
bounded by (q; q)∞)

k−1∏
j=1

qνk+k−νj−j.

Note that for any fixed m, if k > k0(m), then the last product is less than qm(νk+k−1).
We conclude that the absolute value of kth term in (6.11) is bounded by

|x|νk+k−1qm(νk+k−1) 1

((q; q)∞)2 .

Choosing large enough m and k > k0(m) we conclude that (6.11) converges.

Proof of Proposition 6.3. We start from the formula of Theorem 3.6
(6.12)

sλ(x, 1, q
−1, . . . , q2−N)

sλ(1, q−1, . . . , q1−N)
=
− ln(q)

2πi

N−2∏
i=0

(q1−N − q−i)
(x− q−i)

∫
C

(x/q)z∏N
j=1(q−z − q−λj−N+j)

dz,

where the contour contains only the real poles z = λj +N − j, e.g. C is the rectangle
through M + πi

ln(q)
,M − πi

ln(q)
,−M − πi

ln(q)
,−M + πi

ln(q)
for a sufficiently large M .
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Since
sλ(x, 1, q

−1, . . . , q2−n) = q|λ|sλ(q
−1x, q−1, q−2, . . . , q1−N),

we may also write

(6.13)

sλ(x, q
−1, q−2, . . . , q1−N)

sλ(1, q−1, . . . , q1−N)
= −

N−2∏
i=0

(q1−N − q−i)
(x− q−i)

ln(q)

2πi
q−|λ|

∫
C

xz∏N
j=1(q−z − q−λj−N+j)

dz

=
N−2∏
i=0

(1− qi+1)

(1− qix)

ln(q)

2πi

∫
C

xz∏N
j=1(1− q−zqλj+N−j)

dz.

Note that for large enough (compared to x) N the integrand rapidly decays as Re(z)→
+∞. Therefore, we can deform the contour of integration to be C ′ which consists
of two infinite segments of Im(z) = ± πi

ln(q)
going to the right and vertical segment

[−M(C ′)− πi
ln(q)

,−M(C ′) + πi
ln(q)

] with some M(C ′).
Note that prefactor in (6.13) converges as N → ∞. Let us study the convergence

of the integral. Clearly, the integrand converges to the same integrand in Fν(x), thus,
it remains only to check the contribution of infinite parts of contours. But note that
for z = s± πi

ln(q)
, s ∈ R, we have

xz∏N
j=1(1− q−zqλj+N−j)

=
xz∏N

j=1(1 + q−sqλj+N−j)
.

Now the absolute value of each factor in denominator is greater than 1 and each factor
rapidly grows to infinity as s→∞. We conclude that the integrand in (6.13) rapidly
and uniformly in N decays as s→ +∞.

It remains to deal with the singularities of the prefactors in (6.13) and (6.10) at
x = q−i. But note that pre-limit function is analytic in x (indeed it is a polynomial) and
for the analytic functions uniform convergence on a contour implies the convergence
everywhere inside. �

As a side-effect we have proved the following analytic statement

Corollary 6.4. The integral in (6.10) and the sum in (6.11) vanish at x = q−i.

Theorem 6.5. Suppose that λ(N) is such that λN−j+1 → νj for every j. Then

sλ(N)(x1, . . . , xk, q
−k, q−k−1, . . . , q1−N)

sλ(N)(1, q−1, . . . , q1−N)
→ F (k)

ν (x1, . . . , xk),

(6.14) F (k)
ν (x1, . . . , xk) =

(−1)(
k
2)q−2(k3)

∆(x1, . . . , xk)
∏

i(xiq
k−1; q)∞

×

det
[
Dj−1
i,q−1

]k
i,j=1

k∏
i=1

Fν(xiq
k−1)(xqk−1; q)∞.

Convergence is uniform over each xi belonging to compact subsets of C \ {0}.
Remark. The formula (6.10) should be viewed as a q–analogue of the multiplicativ-

ity in the Voiculescu–Edrei theorem on characters of U(∞) (Theorem 1.3). There exist
a natural linear transformation, which restores the multiplicitivity for q–characters, see
[G1] for the details.
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Proof of Theorem 6.5. Using Proposition 6.3 and Theorem 3.5 we get

F (k)
ν (x1, . . . , xk) = lim

N→∞
q−k|λ(N)|Sλ(q

kx1, . . . , q
kxk;N, q

−1)

=
q−(k+1

3 )+(N−1)(k2)
∏k

i=1[N − i]q−1 !∏k
i=1

∏N−k
j=1 (xiqk − q−j+1)

×

(−1)(
k
2) det

[
Dj−1
i,q

]k
i,j=1

qk(
k
2)∆(x1, . . . , xk)

k∏
i=1

Sλ(xiq
k;N, q−1)

∏N−1
j=1 (xiq

k − q−j+1)

[N − 1]q−1 !
.

In order to simplify this expression we observe that

[N − i]q−1 !

[N − 1]q−1 !
≈ qN(i−1)−(i−1

2 ), N →∞.

Also,
m∏
j=1

(xqk − q−j+1) = (−1)mq−(m2 )(xqk−1; q)m.

Last, we have

lim
N→∞

q−|λ|Sλ(xq
k;N, q−1) = Fν(q

k−1x).

Substituting all of these into the formula above, we obtain

F (k)
ν (x1, . . . , xk) = lim

N→∞

q−(k+1
3 )+(N−1)(k2)

∏k
i=1 q

N(i−1)−(i−1
2 )∏k

i=1(−1)N−kq−(N−k2 )(xqk−1; q)N−k
×

(−1)(
k
2) det

[
Dj−1
i,q−1

]k
i,j=1

qk(
k
2)∆(x1, . . . , xk)

k∏
i=1

Sλ(xiq
k;N, q−1)(−1)N−1q−(N−1

2 )(xqk−1; q)N−1

=
1

q2(k3)
∏

i(xiq
k−1; q)∞

(−1)(
k
2) det

[
Dj−1
i,q−1

]k
i,j=1

∆(x1, . . . , xk)

k∏
i=1

Fν(xiq
k−1)(xqk−1; q)∞. �
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