DYCK TILINGS, LINEAR EXTENSIONS, DESCENTS, AND INVERSIONS

Jang Soo Kim (University of Minnesotta), Karola Mészáros (University of Michigan Ann Arbor), Greta Panova (University of California Los Angeles), David B. Wilson (Microsoft Research)

COVER-INCLUSIVE DYCK TILINGS, DEFINITION A tiling of a skew [rotated] shape between 2 Dyck paths... with Dyck tiles.... (1-box thick Dyck path)

... such that: If one Dyck tile covers another (i.e. has a box whose center lies straight above the center of a box of the second tile), then the horizontal extent of this tile is a subset of the horizontal extent of second tile.

THE MANY FACES AND ASPECTS OF DYCK TILINGS

CHORD POSETS, STATISTICS

The **chords** of a Dyck path λ are the segments between matching Up and Down steps (matching parentheses in the corresponding balanced parentheses expression). **Partial order on chords:** $c_i \prec c_j$ if c_j is vertically above c_i (the () of c_j nest inside the () of c_i). **Chord length** |c| = number of Up steps on or above c.

Example – all cover-inclusive Dyck tilings of a given shape.

For a Dyck tiling T of shape $\operatorname{sh}(T) = \lambda/\mu$, we define $\operatorname{dis}(T) = \operatorname{dis}(\lambda, \mu)$ the **discrepancy** between λ and μ , i.e. number of places where λ has a Down step while μ has an Up step (half the Hamming <u>dis</u>tance between the Dyck words of λ and μ). Let **tiles**(T) be the number of tiles in T, and **area**(T) be the number of unit squares of the skew shape λ/μ . We define

 $\operatorname{art}(T) := (\underline{\operatorname{area}}(T) + \underline{\operatorname{tiles}}(T))/2.$

MAIN RESULTS

With the definitions from Sections Cover-inclusive Dyck tilings, definition and Chord posets, statistics: **Theorem 1** (Conjecture 1 in (Kenyon-Wilson 2011)). Given a Dyck path λ of order n, we have

$$\sum_{\text{Dyck tilings } T \in \mathcal{D}(\lambda, *)} q^{\operatorname{art}(T)} = \frac{[n]_q!}{\prod_{\text{chords } c \text{ of } \lambda} [|c|]_q},$$

where the sum is over all cover-inclusive Dyck tilings T with fixed lower path λ .

Theorem 2. Given a Dyck path λ of order n, we have

$$\sum_{\mathbf{Dyck tilings } T \in \mathcal{D}(\lambda, *)} z^{\operatorname{dis}(T)} = \sum_{\sigma \in \mathcal{L}(P_{\lambda})} z^{\operatorname{des}(\sigma)},$$

where \mathcal{L} is the Jordan-Hölder set (set of linear extensions) of the chord poset P_{λ} of λ .

Proof. The two bijections DTS and DTR, defined below, and the q-hook-length formula: $\sigma \in \mathcal{L}(P_{\lambda}) \longleftrightarrow$ Dyck tilings with lower shape λ : DTR (λ, σ) and DTS (λ, σ) , s.t.

 $\operatorname{art}(\operatorname{DTS}(\lambda,\sigma)) = \operatorname{inv}(\sigma)$ and $\operatorname{dis}(\operatorname{DTR}(\lambda,\sigma)) = \operatorname{des}(\sigma)$. \Box

Theorem 3. The maps DTR and DTS are bijections between integer sequences p_1, \ldots, p_n , such that $0 \le p_i \le 2(i-1)$ and cover-inclusive Dyck tilings of order n.

Bijections: Linear extensions \leftrightarrow Dyck tilings

Two bijections: Linear extensions L of $P_{\lambda} \leftrightarrow (p_1, \ldots, p_n) \leftrightarrow$ Dyck tilings $T \in \mathcal{D}(\lambda, *)$. **Algorithm:** Let P_k be the subposet of P_{λ} of the nodes labelled $0, 1, \ldots, k$ in L, corresponding to Dyck path λ_k , and let T_k be the corresponding tiling. $P_{k+1} = P_k + c_{k+1}$, where c_{k+1} is the node/chord labelled k + 1, then λ_{k+1} is obtained from λ_k by expansion at the position of c_{k+1} relative to λ_k , at horizontal distance p_{k+1} from the beginning of λ_k . Then T_{k+1} is obtained from T_k by: **Step** $T_k \to T_{k+1}$: **growing** at p_{k+1} , the insertion point of chord labeled k + 1: spreading columns and adding strips (DTS) or ribbons (DTR):

contract

spread

	Reference natural labeling	Sample natural label	ling L of	Left and right endpoints of chords ℓ_1, \dots, ℓ_n of λ listed in
	$ \begin{array}{c} \mathbf{L_0} \text{ of } \mathbf{P}_{\lambda} \text{ (left-to-right depth-first search)} \end{array} $	tree		the order given by L .
·	3, 7, 10, 12, 6, 1, 4, 9, 8, 5,	11,2	6, 12	2, 1, 7, 10, 5, 2, 9, 8, 3, 11, 4

Preorder word $L \circ L_0^{-1}$ (list of labels of *L* encountered in leftto-right depth first search)

(1)

(2)

Element of $\mathcal{L}(P_{\lambda})$: $L_0 \circ L^{-1}$, **inverse preorder word**, standardization of ℓ_1, \ldots, ℓ_n .

Linear extensions of naturally labeled poset P_{λ} :

 $\mathcal{L}(P) = \{ L_0 \circ L^{-1} : L \text{ is a natural labeling of } P \}.$

Inversions statistic of a permutation σ on [n] (element of $\mathcal{L}(P)$): $inv(\sigma) = \#\{(i, j) : 1 \le i < j \le n, \sigma(i) > \sigma(j)\}$, **descent** statistic: $des(\sigma) = \#\{i < n : \sigma_i > \sigma_{i+1}\}$.

Labeled tree/chord poset (P_{λ}, L) \leftrightarrow sequence of insertion locations of chords (p_1, \ldots, p_n) , s.t. $0 \le p_i < 2i - 1$: $p_i = \#\{j < i : \ell_j < \ell_i\} + \#\{j < i : r_j < \ell_i\}$ \leftrightarrow Perfect matchings on $1, \ldots, 2n$:

 $\operatorname{match}(p_1, .., p_n) = I_{p_n} \circ \operatorname{match}(p_1, .., p_{n-1}) \cup \{(p_n+1, 2n)\}, I_m(a) = \begin{cases} a, & m \ge a \\ a+1, & \text{o.w.} \end{cases}$

HOOK-LENGTH FORMULA

Knuth: the number of linear extensions of a tree poset
$$P$$
 is $\frac{n!}{\prod_{v \in P} h_v}$, where h_v is the number of descendants of v plus 1. q -analog [Björner and Wachs] :

$$\sum_{\sigma \in \mathcal{L}(P_{\lambda})} q^{\mathrm{inv}(\sigma)} = \frac{[n]_q!}{\prod_{\mathrm{vertices } v \in P_{\lambda}} [|\mathrm{subtree rooted at } v|]_q}$$

where
$$[n]_q = 1 + q + \dots + q^{n-1}$$
 and $[n]_q! = [1]_q \dots [n]_q$

DYCK TABLEAUX AND DYCK TILINGS

Proposition 7. There is a bijection between the cover-inclusive Dyck tilings T of a skew shape λ/μ and the weakly increasing assignments of nonnegative integers to the poset of chords P_{λ} , such that the number g_c assigned to chord c satisfies $0 \leq g_c \leq h_c$, where h_c is the maximum number of Dyck tiles that can cover the chord c and fit within the shape λ/μ . This bijection satisfies $\sum_c g_c = (\operatorname{area}(T) - \operatorname{tiles}(T))/2$.

Proposition 8. There is a bijection between the cover-inclusive Dyck tilings whose lower path is the zig-zag path $zigzag_n = (UD)^n$ of n updown steps and Dyck tableaux [introduced by Aval, Boussicault, and Dasse-Hartaut in ARXIV:1109.0370V2] of order n.

HERMITE HISTORIES

Transforming a cover-inclusive Dyck tiling into an *histoire d'Hermite* [Kim, Konvalinka]. Left: each number on the up step counts the number of tiles of the tiling which are encountered by the exploration process of gray paths and each tile is encountered exactly once. Right: the beginning of each arc labeled with the number of arcs containing it (nesting number).

$\begin{cases} 1, 2, 3, 4, 5, 6 \\ (1, 2, 3, 4, 5, 6 \\ (1, 2, 3, 6 \\$

Theorem 6 (Kenyon-Wilson). The inverse matrix of M is given by

 $M_{\lambda/\mu}^{-1} = (-1)^{|\lambda/\mu|} \times$ cover-inclusive Dyck tilings of shape λ/μ

231-AVOIDING PERMUTATIONS

Theorem 9. The maps $DTS(zigzag_n, \cdot)$ and $DTR(zigzag_n, \cdot)$ restrict to bijections between 231-avoiding permutations in S_n and Dyck tilings whose lower path is $zigzag_n$ and which contain only one-box tiles (so, in particular these correspond to Dyck paths, being determined just by the upper path μ).

Preprint at arXiv:1205.6578v1

Theorem 10. The *histoire* d'Hermite arising from exploring $DTS(p_1, \ldots, p_n)$ from the left is the same as the histoire d'Hermite of $match(p_1, \ldots, p_n)$ recording the nesting numbers on the up steps.

THE MAD STATISTIC

 $\operatorname{mad}(L) := \operatorname{art}(\operatorname{DTR}(\lambda, L)).$

Clarke, Steingrímsson, and Zeng define **mad** of a permutation σ as:

$$\operatorname{desdif}(\sigma) = \sum_{i \in \operatorname{DES}(\sigma)} (\sigma_i - \sigma_{i+1}),$$

$$\operatorname{res}(\sigma) = \sum_{i \in \operatorname{DES}(\sigma)} \#\{k < i : \sigma_i > \sigma_k > \sigma_{i+1}\},$$

$$\operatorname{mad}(\sigma) = \operatorname{desdif}(\sigma) + \operatorname{res}(\sigma).$$

$$\operatorname{mad}(\sigma) = \sum_{i \in \operatorname{DES}(\sigma)} [1 + \#\{k > i+1 : \sigma_i > \sigma_k > \sigma_{i+1}\} + 2 \times \#\{k < i : \sigma_i > \sigma_k > \sigma_{i+1}\}]$$

Theorem 11. For each permutation σ **of order** n ,

$$\operatorname{art}(\operatorname{DTR}(\operatorname{zigzag}_n, \sigma)) = \operatorname{mad}(\sigma).$$

Remark: Combining Theorems 11 and 1, we obtain an involution

$$\operatorname{DTS}(\operatorname{zigzag}_n, \cdot)^{-1} \circ \operatorname{DTR}(\operatorname{zigzag}_n, \cdot)$$

on permutations of order n which goes by way of Dyck tilings and which maps mad
to inv. In particular, this shows that mad is Mahonian.
Corollary: generalization of mad for linear extensions of tree posets P_{λ} ,