
$\underset{\operatorname{Dimer}(G W B)}{\operatorname{Dimer}(G, \mathcal{N})}=\operatorname{superposition~of~} \operatorname{Dimer}\left(G^{B W}\right)$
IIn the Double-dimer model the odd nodes in \mathcal{N} will always be connected
(paired) with the even nodes - pairing σ. E.g. $\sigma=\{\{1,2\},\{3,4\}\}$.] Theorem 4 (Kenyon-Wilson). The probability of a certain pairing σ of the $2 n$ nodes \mathcal{N} is a rational function of $X_{i j}, \frac{Z_{i,}}{J}$, where
$Z_{i, j}$ is the weighted sum of dimer covers of $G \backslash\{i, j\}$, and Z it $Z_{i,}$ is the weighted sum of dimer cove
the weighted sum of dimer covers of G
E.g. $\operatorname{Pr}(\{\{1,2\},\{3,4\}\})=\frac{X_{1} x_{2},}{X_{1}, x_{3}, x_{1}, X_{2}}$

Marginal pairing probabilities
Probability that node i is paired with
node j when $\# V$ is
Aode j when \#V is large?
Theorem 5 (Kenyon-Wilson). Let S be a set of equal number of
white and black nodes, then

Preprint at arXiv: 1205.6578 v 1

Main Results

With the definitions from Sections Cover-inclusive Dyck tilings, definition and Chord posets, statistics:
Theorem 1 (Conjecture 1 in (Kenyon-Wilson 2011)). Given a Dyck path λ of order n, we have
\qquad
where the sum is over all cover-inclusive Dyck tilings T with fixed lower path λ
Theorem 2. Given a Dyck path λ of order n, we have

$$
\sum_{\text {Dyck }} \sum_{i l i n g s} T \in \mathcal{D}(\lambda, *) \quad z^{\operatorname{dis}(T)}=\sum_{\sigma \in \mathcal{L}\left(P_{X}\right)} z^{\operatorname{des}(\sigma)}
$$

is the Jordan-Hölder set (set of linear extensions) of the chord poset
Proof. The two bijections DTS and DTR, defined below, and the q-hook-length formula:
$\sigma \in \mathcal{L}(P) \longleftrightarrow$ Dyck tilings with lower shape λ : DTR $(\lambda, \sigma$ and DTS (λ, σ), s.t.
$\operatorname{art}(\operatorname{DTS}(\lambda, \sigma))=\operatorname{inv}(\sigma) \quad$ and $\quad \operatorname{dis}(\operatorname{DTR}(\lambda, \sigma))=\operatorname{des}(\sigma)$
Theorem 3. The maps DTR and DTS are bijections between integer s

Bijections: $\operatorname{DTS}: \operatorname{art}(\operatorname{DTS}(\lambda, L))=\operatorname{inv}(L) \quad \operatorname{DTR}: \operatorname{dis}(\operatorname{DTR}(\lambda, \sigma))=\operatorname{des}(L)$
(

Chord Posets, statistics		
The chords of a Dyck pa steps (matching parenthes Partial order on chor inside the () of c_{i}). Chor Chord Poset P_{λ}	ath λ are the segments es in the corresponding b ds: $c_{i} \prec c_{j}$ if c_{j} is vertic d length $\|c\|=$ number	between matching Up and Down balanced parentheses expression) cally above c_{i} (the () of c_{j} nest of Up steps on or above c.
Reference natural labeling \mathbf{L}_{0} of \mathbf{P}_{λ} (left-to-right depth-first search)		${ }_{22}^{11}, 23,24,1,12,18,21,10, \ldots$ $\ldots,{ }_{3}^{2}, 16,16,14,7,20,195$ Left and right endpoints of chords $\hat{l}_{1}, \ldots, l_{n}^{n}$ of λ listed in the order given by L.
3, 7, 10, 12, 6, 1, 4, 9, 8, 5, 11, 2 $6,12,1,7,10,5,2,9,8,3,11,4$ Preorder word $L \circ L_{0}^{-1}$ Element of $\mathcal{L}\left(P_{\lambda}\right): L_{0} \circ L^{-1}$, (list of labels of L encountered in left- inverse preorder word, to-right depth first search) standardization of $\ell_{1}, \ldots, \ell_{n}$.		
Linear extensions of naturally labeled poset P_{λ} :$\mathcal{L}(P)=\left\{L_{0} \circ L^{-1}: L \text { is a natural labeling of } P\right\} .$		
Inversions statistic of a permutation σ on $[n]$ (element of $\mathcal{L}(P)): \operatorname{inv}(\sigma)=\#\{(i, j)$ $1 \leq i<j \leq n, \sigma(i)>\sigma(j)\}$, descent statistic: $\operatorname{des}(\sigma)=\#\left\{i<n: \sigma_{i}>\sigma_{i+1}\right\}$.		
Labeled tree/chord poset $\left(P_{\lambda}, L\right)$ \leftrightarrow sequence of insertion locations of chords $\left(p_{1}, \ldots, p_{n}\right)$, s.t. $0 \leq p_{i}<2 i-1: p_{i}=\#\left\{j<i: \ell_{j}<\ell_{i}\right\}+\#\left\{j<i: r_{j}<\ell_{i}\right\}$ \leftrightarrow Perfect matchings on $1, \ldots, 2 n$: $\operatorname{match}\left(p_{1}, . ., p_{n}\right)=I_{p_{n}} \circ \operatorname{match}\left(p_{1}, . ., p_{n-1}\right) \cup\left\{\left(p_{n}+1,2 n\right)\right\}, I_{m}(a)= \begin{cases}a, & m \geq a \\ a+1, & \text { o.w. }\end{cases}$		

Hook-length Formula

Knuth: the number of linear extensions of a tree poset P is $\frac{n!}{\prod_{v e P} h}$, the number of descendants of v plus 1. q-analog [Björner and Wachs]$\begin{gathered} \sum_{\sigma \in \mathcal{L}\left(P_{\lambda}\right)} q^{\operatorname{inv}(\sigma)}=\frac{[n]_{q}!}{\prod_{\text {vertices } v \in P_{\lambda}}[\mid \text { subtree rooted at } v \mid]_{q}}, \\ \text { where }[n]_{q}=1+q+\cdots+q^{n-1} \text { and }[n]_{q}!=[1]_{q} \cdots[n]_{q} . \end{gathered}$

Dyck tableaux and Dyck tilings

Proposition 7. There is a bijection between the cover-inclusive Dyck tilings T of a skew shape λ / μ and the weakly increasing assignments of nonnegative integers to the poset of chords P_{λ}, such that the number
g_{c} assigned to chord c satisfies $0 \leq g_{c} \leq h_{c}$, where h_{c} is the maximum g_{c} assigned to number of Dyck tiles that can cover the chord c and fit within the shape λ / μ. This bijection satisfies $\sum_{c} g_{c}=(\operatorname{area}(T)-\operatorname{tiles}(T)) / 2$.

Proposition 8. There is a bijection between the cover-inclusive Dyck
ilings whose lower path is the zig-zag path zigzag $=(\text { UD })^{n}$ of n up Hown whose lower path is the zig-zag path zigzag ${ }_{n}=(\mathrm{UD})^{n}$ of n up
up down steps and Dyck tableaux introduced by Ava,
Dasse-Hartaut in ARXIv:1109.0370v2 | of order n

Hermite histories

The MAD statistic

