Zeros of polynomials and their importance in combinatorics and probability

Robin Pemantle
Departement of Mathematics University of Pennsylvania

AMS-MAA Joint Invited Address, 11 January 2013

Zero sets are important throughout mathematics!

Number Theory: The most prominent outstanding problem of our time is to determine whether the zeros of the Riemann Zeta function all lie on the line $\Re\{s\}=1 / 2$.

Zero sets are important throughout mathematics!

Number Theory: The most prominent outstanding problem of our time is to determine whether the zeros of the Riemann Zeta function all lie on the line $\Re\{s\}=1 / 2$.

Why? Precise estimates for counting primes are obtained from contour integrals of the Zeta function and related functions.
 All the points where the function has zero value seem to lie on the same "critical" line (the black downward spikes), an observation known as the Riemann Hypothesis.

SSI*

Zero sets are important throughout mathematics!

Number Theory: The most prominent outstanding problem of our time is to determine whether the zeros of the Riemann Zeta function all lie on the line $\Re\{s\}=1 / 2$.

Why? Precise estimates for counting primes are obtained from contour integrals of the Zeta function and related functions.
 All the points where the function has zero value seem to lie on the same "critical" line (the black downward spikes), an observation known as the Riemann Hypothesis.

SSI*
Musical digression...

Zeta song lyrics

Last verse:

Oh, where are the zeros of zeta of s?
We must know exactly, we cannot just guess,
In orer to strengthen the prime number theorem, The integral's contour must not get too near 'em.

Lyrics (SSI) credited to Tom Apostol

Zero sets are important throughout mathematics!

Algebraic Geometry: The "geometry" of a polynomial refers to the geometry of its zero set. In fact, for an algebraic geometer, a polynonmial is equated with it zero set.

Zero sets are important throughout mathematics!

Algebraic Geometry: The "geometry" of a polynomial refers to the geometry of its zero set. In fact, for an algebraic geometer, a polynonmial is equated with it zero set.

Curricular Digression: Gröbner bases are the new Gaussian elimination. In the future, every math major will learn the algorithmic soultion of systems of polynomial equations, just as they now learn algorithmic soultion of systems of linear equations.

Zero sets are important throughout mathematics!

Linear Algebra: The eigenvalues are the zeros of the characteristic polynomial.

Zero sets are important throughout mathematics!

Linear Algebra: The eigenvalues are the zeros of the characteristic polynomial.

Impartial games: Winning positions are those with value $* 0$.

Zero sets are important throughout mathematics!

Linear Algebra: The eigenvalues are the zeros of the characteristic polynomial.

Impartial games: Winning positions are those with value $* 0$.
ODE's: Solutions to

$$
p_{n}(x) \frac{d^{n}}{d x^{n}} f+\cdots+p_{0}(x) f=0
$$

fail to be regular (have a phase change) where p_{n} vanishes.

Zero sets are important throughout mathematics!

PDE's: The evolution of an equation governed by the linear operator $\mathbf{P}(\partial / \partial \mathbf{x}) \mathbf{F}=0$ is determined by the geometry of the zero set of the polynomial \mathbf{P}, cf. Gårding's theory of hyperbolic polynomials and operators.

Zero sets are important throughout mathematics！

PDE＇s：The evolution of an equation governed by the linear operator $\mathbf{P}(\partial / \partial \mathbf{x}) \mathbf{F}=0$ is determined by the geometry of the zero set of the polynomial \mathbf{P} ，cf．Gårding＇s theory of hyperbolic polynomials and operators．

Certain components of the complement of the real zero set of a hyperbolic polynomial are convex，leading to many useful properties．

Combinatorics

Algebraic Combinatorics (Gian-Carlo Rota, 1985):
"The one contribution of mine that I hope will be remembered has consisted in pointing out that all sorts of problems of combinatorics can be viewed as problems of the location of the zeros of certain polynomials..."

Combinatorics

Algebraic Combinatorics (Gian-Carlo Rota, 1985):
"The one contribution of mine that I hope will be remembered has consisted in pointing out that all sorts of problems of combinatorics can be viewed as problems of the location of the zeros of certain polynomials..."

What did he mean? One class of examples is graph polynomials, whose zeros are often constrained to certain regions of the complex plane, yielding enumerative information. In many cases the zeros seem to approach a very definite shape.

Combinatorics

Algebraic Combinatorics (Gian-Carlo Rota, 1985):
"The one contribution of mine that I hope will be remembered has consisted in pointing out that all sorts of problems of combinatorics can be viewed as problems of the location of the zeros of certain polynomials..."

What did he mean? One class of examples is graph polynomials, whose zeros are often constrained to certain regions of the complex plane, yielding enumerative information. In many cases the zeros seem to approach a very definite shape.

Zero sets throughout mathematics

Geometry of poles
Zero-free regions

Real roots

Long Digression: univariate polynomials with real roots.

Real roots

Long Digression: univariate polynomials with real roots.

Suppose $\mathbf{f}(\mathbf{x})=\mathbf{a}_{0}+\mathbf{a}_{1} \mathbf{x}+\cdots+\mathbf{a}_{\mathbf{n}} \mathbf{x}^{\mathbf{n}}$ is a polynomial with nonnegative coefficients and real roots. Then the sequence $\left\{\mathbf{a}_{\mathbf{k}}: 0 \leq \mathbf{k} \leq \mathbf{n}\right\}$ is unimodal, in fact it is log-concave, and in fact

$$
\left\{\frac{a_{k}}{\binom{n}{k}}\right\}
$$

is log-concave. This is a theorem of I. Newton (1707).

Closure properties

Closure properties: the class of univariate polynomials with all real roots is closed under taking the derivative. [Why? The zeros of the derivative interlace the zeros of the polynomial.]

Closure properties

Closure properties: the class of univariate polynomials with all real roots is closed under taking the derivative. [Why? The zeros of the derivative interlace the zeros of the polynomial.]

It is not only closed under products (obvious) but under coefficient-wise products (Hadamard products - not obvious!).

$$
\begin{aligned}
\mathbf{f}(\mathbf{x}) & =\mathbf{a}_{0}+\mathbf{a}_{1} \mathbf{x}+\cdots+\mathbf{a}_{\mathbf{n}} \mathbf{x}^{\mathbf{n}} \\
\mathbf{g}(\mathbf{x}) & =\mathbf{b}_{0}+\mathbf{b}_{1} \mathbf{x}+\cdots+\mathbf{b}_{\mathbf{n}} \mathbf{x}^{\mathbf{n}} \\
(\mathbf{f} * \mathbf{g})(\mathbf{x}) & :=\left(\mathbf{a}_{0} \mathbf{b}_{0}\right)+\left(\mathbf{a}_{1} \mathbf{b}_{1}\right) \mathbf{x}+\cdots+\left(\mathbf{a}_{\mathbf{n}} \mathbf{b}_{\mathbf{n}}\right) \mathbf{x}^{\mathbf{n}}
\end{aligned}
$$

This is a consequence of the Pólya-Schur Theorem (1914).

Zero sets throughout mathematics

Complex roots

Digression within the digression: roots of the derivative.

Complex roots

Digression within the digression: roots of the derivative.

The (complex) roots of \mathbf{f}^{\prime} are contained in the convex hull of the roots of \mathbf{f} (the Gauss-Lucas Theorem).

Complex roots

Digression within the digression: roots of the derivative.

The (complex) roots of \mathbf{f}^{\prime} are contained in the convex hull of the roots of \mathbf{f} (the Gauss-Lucas Theorem).
\mathbf{f}^{\prime} cannot have more non-real roots than \mathbf{f} does.

Complex roots

Digression within the digression: roots of the derivative.

The (complex) roots of \mathbf{f}^{\prime} are contained in the convex hull of the roots of \mathbf{f} (the Gauss-Lucas Theorem).
\mathbf{f}^{\prime} cannot have more non-real roots than \mathbf{f} does.
If \mathbf{n} complex numbers are chosen independently from a law μ and \mathbf{f} is the polynomial with these roots, then the empirical distribution of the roots of \mathbf{f}^{\prime} converges to μ as $\mathbf{n} \rightarrow \infty$ [PR12].

Today's topics: combinatorics and probability

TODAY:

Today's topics: combinatorics and probability

TODAY:

Combinatorial Enumeration: Topic \#1 is the dependence of the Taylor series coefficients of $1 / \mathbf{Q}$ on the geometry of the zero set of the polynomial \mathbf{Q}.

Today's topics: combinatorics and probability

TODAY:

Combinatorial Enumeration: Topic \#1 is the dependence of the Taylor series coefficients of $1 / \mathbf{Q}$ on the geometry of the zero set of the polynomial \mathbf{Q}.

Probability: Topic \#2 concerns properties of a discrete probability measure which follow from the location of the zeros of the probability generating function.

RATIONAL SERIES: coefficients and poles

Generating functions

A generating function for an array $\left\{\mathbf{a}_{\mathbf{r}}: \mathbf{r} \in\left(\mathbb{Z}^{+}\right)^{\mathbf{d}}\right\}$ of numbers is a power series in d variables

$$
F\left(x_{1}, \ldots, x_{\mathbf{d}}\right)=\sum_{\mathbf{r} \in \mathbb{Z}^{\mathbf{d}}} \mathrm{a}_{\mathbf{r}} \mathbf{x}^{\mathbf{r}}
$$

For any array $\left\{\mathbf{a}_{\mathbf{r}}\right\}$, this exists as a formal power series, but when $\left\{\mathbf{a}_{\mathbf{r}}\right\}$ grow at most exponentially in $|\mathbf{r}|$, then the series \mathbf{F} has a positive radius of convergence and \mathbf{F} is an analytic object as well.

Generating functions

A generating function for an array $\left\{\mathbf{a}_{\mathbf{r}}: \mathbf{r} \in\left(\mathbb{Z}^{+}\right)^{\mathbf{d}}\right\}$ of numbers is a power series in d variables

$$
F\left(x_{1}, \ldots, x_{d}\right)=\sum_{r \in \mathbb{Z}^{\mathbf{d}}} a_{r} x^{r}
$$

For any array $\left\{\mathbf{a}_{\mathbf{r}}\right\}$, this exists as a formal power series, but when $\left\{\mathbf{a}_{\mathbf{r}}\right\}$ grow at most exponentially in $|\mathbf{r}|$, then the series \mathbf{F} has a positive radius of convergence and \mathbf{F} is an analytic object as well.

As a function, \mathbf{F} may or may not have a nice closed form. In any case, the use of analytic tools to estimate $\mathbf{a}_{\mathbf{r}}$ once \mathbf{F} is given in some form is known as "analytic combinatorics".

Generating functions

A generating function for an array $\left\{\mathbf{a}_{\mathbf{r}}: \mathbf{r} \in\left(\mathbb{Z}^{+}\right)^{\mathbf{d}}\right\}$ of numbers is a power series in d variables

$$
\mathbf{F}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{d}}\right)=\sum_{\mathbf{r} \in \mathbb{Z}^{\mathbf{d}}} \mathbf{a}_{\mathbf{r}} \mathbf{x}^{\mathbf{r}}
$$

For any array $\left\{\mathbf{a}_{\mathbf{r}}\right\}$, this exists as a formal power series, but when $\left\{\mathbf{a}_{\mathbf{r}}\right\}$ grow at most exponentially in $|\mathbf{r}|$, then the series \mathbf{F} has a positive radius of convergence and \mathbf{F} is an analytic object as well.

As a function, \mathbf{F} may or may not have a nice closed form. In any case, the use of analytic tools to estimate $\mathbf{a}_{\mathbf{r}}$ once \mathbf{F} is given in some form is known as "analytic combinatorics".

Example: $\mathbf{d}=1, \mathbf{F}$ is a polynomial; real nonpositive zeros imply unimodality/log-concavity.

Rational generating functions

Rational generating functions $\mathbf{F}=\mathbf{P} / \mathbf{Q}$ correspond to arrays $\left\{\mathbf{a}_{\mathbf{r}}\right\}$ that obey linear recurrences. For example, the number of lattice paths from $(0,0)$ to (\mathbf{i}, \mathbf{j}) that move only North and East satisfies $\mathbf{a}_{\mathbf{i}, \mathbf{j}}-\mathbf{a}_{\mathbf{i}-1, \mathbf{j}}-\mathbf{a}_{\mathbf{i}, \mathbf{j}-1}=0$ as long as $(\mathbf{i}, \mathbf{j}) \neq(0,0)$.

Rational generating functions

Rational generating functions $\mathbf{F}=\mathbf{P} / \mathbf{Q}$ correspond to arrays $\left\{\mathbf{a}_{\mathbf{r}}\right\}$ that obey linear recurrences. For example, the number of lattice paths from $(0,0)$ to (\mathbf{i}, \mathbf{j}) that move only North and East satisfies $\mathbf{a}_{\mathbf{i}, \mathbf{j}}-\mathbf{a}_{\mathbf{i}-1, \mathbf{j}}-\mathbf{a}_{\mathbf{i}, \mathbf{j}-1}=0$ as long as $(\mathbf{i}, \mathbf{j}) \neq(0,0)$.

This configuration sums to zero as long as the +1 is not at the origin

Rational generating functions

Rational generating functions $\mathbf{F}=\mathbf{P} / \mathbf{Q}$ correspond to arrays $\left\{\mathbf{a}_{\mathbf{r}}\right\}$ that obey linear recurrences. For example, the number of lattice paths from $(0,0)$ to (\mathbf{i}, \mathbf{j}) that move only North and East satisfies $\mathbf{a}_{\mathbf{i}, \mathbf{j}}-\mathbf{a}_{\mathbf{i}-1, \mathbf{j}}-\mathbf{a}_{\mathbf{i}, \mathbf{j}-1}=0$ as long as $(\mathbf{i}, \mathbf{j}) \neq(0,0)$.

This configuration sums to zero as long as the +1 is not at the origin

This leads to $(1-\mathbf{x}-\mathbf{y}) \mathbf{F}(\mathbf{x}, \mathbf{y})=1$, corresponding to the fact that the (\mathbf{i}, \mathbf{j})-coefficient of $(1-\mathbf{x}-\mathbf{y}) \mathbf{F}$ is zero when $(\mathbf{i}, \mathbf{j}) \neq(0,0)$ and one when $\mathbf{i}=\mathbf{j}=0$.

Rational generating functions

In one variable, the theory of rational generating functions is complete and nearly trivial. In more than one variable the theory is interesting and far from complete. Some of the areas in which they arise are:

Rational generating functions

In one variable, the theory of rational generating functions is complete and nearly trivial. In more than one variable the theory is interesting and far from complete. Some of the areas in which they arise are:

- Queuing theory

Rational generating functions

In one variable, the theory of rational generating functions is complete and nearly trivial. In more than one variable the theory is interesting and far from complete. Some of the areas in which they arise are:

- Queuing theory
- Counting lattice points

Rational generating functions

In one variable, the theory of rational generating functions is complete and nearly trivial. In more than one variable the theory is interesting and far from complete. Some of the areas in which they arise are:

- Queuing theory
- Counting lattice points
- Quantum random walk

Rational generating functions

In one variable, the theory of rational generating functions is complete and nearly trivial. In more than one variable the theory is interesting and far from complete. Some of the areas in which they arise are:

- Queuing theory
- Counting lattice points
- Quantum random walk
- Random tiling ensembles

Phenomena: Quantum Walks

For these applications, estimating quantities of interest boils down to estimating the Taylor coefficients of a rational power series. A picture gives an idea that the behavior of these coefficients might have some complexity.

Phenomena: Quantum Walks

For these applications, estimating quantities of interest boils down to estimating the Taylor coefficients of a rational power series. A picture gives an idea that the behavior of these coefficients might have some complexity.

Intensity plot of quantum walk at time 200

Phenomena: Cube Groves

$$
F(x, y, z)=\frac{1}{(1-z)(3-x-y-z-x y-x z-y z+3 x y z)}
$$

is the generating function for the probabilities $\left\{a_{r s t}\right\}$ of horizontal line elements at the barycentric coordinate (r, s, t) in the order $r+s+t$ cube grove.

Randomly sampled order-100 cube grove

ANALYSIS

The analysis may be separated into two steps.

ANALYSIS

The analysis may be separated into two steps.
The first is to find the exponential rate of growth or decay, namely the function $g(r)$ such that

$$
a_{r}=\exp (g(r)+o(|r|))
$$

It will turn out that $g(r)=x \cdot r$ for some $x \in \mathbb{R}^{d}$ with a nice geometric description.

ANALYSIS

The analysis may be separated into two steps.
The first is to find the exponential rate of growth or decay, namely the function $g(r)$ such that

$$
a_{r}=\exp (g(r)+o(|r|))
$$

It will turn out that $g(r)=x \cdot r$ for some $x \in \mathbb{R}^{d}$ with a nice geometric description.

The second step, arriving at a true asymptotic formula by nailing down the $o(|r|)$ term to within $o(1)$, I will only hint at. It requires, essentially, the computation of an inverse Fourier transform.

Domains of convergence

The power series $P / Q=\sum_{r} a_{r} z^{r}$ converges for some $z \in \mathbb{C}^{d}$ if and only if it converges for any z^{\prime} whose coordinates differ from z by unit complex multiples. The logarithmic domain of convergence is the set of all $x \in \mathbb{R}^{d}$ such that $\sum_{r} a_{r} z^{r}$ converges when $\Re\{\log z\}=x$.

Domains of convergence

The power series $P / Q=\sum_{r} a_{r} z^{r}$ converges for some $z \in \mathbb{C}^{d}$ if and only if it converges for any z^{\prime} whose coordinates differ from z by unit complex multiples. The logarithmic domain of convergence is the set of all $x \in \mathbb{R}^{d}$ such that $\sum_{r} a_{r} z^{r}$ converges when $\Re\{\log z\}=x$.

Example: if $Q=(3-2 x-y)(3-x-2 y)$ then the power series converges for $(\log x, \log y)$ in the white region in the lower left of the figure.

Amoebas

Digression on amoebas:

The figure in red is the set of all points $\log z$ with $Q(z)=0$. Of course these points cannot be in the domain of convergence (the whit must be disjoint from the red) and in fact the boundary the domain of convergence must lie in the red set.

Amoeba of

$$
(3-2 x-y)(3-x-2 y)
$$

Amoebas

Digression on amoebas:

The figure in red is the set of all points $\log z$ with $Q(z)=0$. Of course these points cannot be in the domain of convergence (the whit must be disjoint from the red) and in fact the boundary the domain of convergence must lie in the red set.

Amoeba of

$$
(3-2 x-y)(3-x-2 y)
$$

For extra credit: what are the other white regions?

Legendre inequality

Pick any $x \in B$. Absolute convergence of $\sum_{r} a_{r} z^{r}$ means that the terms must tend in magnitude to zero, which implies that

$$
\lim \sup \log \left|a_{r}\right|+r \cdot x \leq 0 .
$$

$$
r \rightarrow \infty
$$

Legendre inequality

Pick any $x \in B$. Absolute convergence of $\sum_{r} a_{r} z^{r}$ means that the terms must tend in magnitude to zero, which implies that

$$
\limsup _{r \rightarrow \infty} \log \left|a_{r}\right|+r \cdot x \leq 0 .
$$

Dividing by $|r|$ and denote the unit vector $\hat{r}:=r /|r|$,

$$
\limsup _{r \rightarrow \infty} \frac{\log \left|a_{r}\right|}{|r|} \leq-\hat{r} \cdot x
$$

Legendre inequality

Pick any $x \in B$. Absolute convergence of $\sum_{r} a_{r} z^{r}$ means that the terms must tend in magnitude to zero, which implies that

$$
\limsup _{r \rightarrow \infty} \log \left|a_{r}\right|+r \cdot x \leq 0
$$

Dividing by $|r|$ and denote the unit vector $\hat{r}:=r /|r|$,

$$
\limsup _{r \rightarrow \infty} \frac{\log \left|a_{r}\right|}{|r|} \leq-\hat{r} \cdot x
$$

The limsup exponential rate in direction r is at most $-\hat{r} \cdot x$.

Legendre transform

Let x vary over B and optimize $\lim \sup _{r \rightarrow \infty} \frac{\log \left|a_{r}\right|}{|r|} \leq-\hat{r} \cdot x$:

$$
\limsup _{r \rightarrow \infty} \frac{\log \left|a_{r}\right|}{|r|} \leq \phi(\hat{r}):=-\hat{r} \cdot x_{*}
$$

where x_{*} is the support point of B normal to \hat{r}. The Legendre transform ϕ is thus an upper bound for the exponential growth.

Exponential rate

Often this is sharp: the exponential rate $g(r)$ is equal to $\phi(r)$.

Exponential rate

Often this is sharp: the exponential rate $g(r)$ is equal to $\phi(r)$.
Example: If the coefficients a_{r} are all nonnegative then $g(r)=\phi(r)$.

Exponential rate

Often this is sharp: the exponential rate $g(r)$ is equal to $\phi(r)$.
Example: If the coefficients a_{r} are all nonnegative then $g(r)=\phi(r)$.

In general, the determination of $g(r)$ requires a topological computation on the complex hypersurface $\{Q=0\}$.

Feasible regions

Let's see what happens when the boundary of the logartihmic domain of convergence passes through the origin, as is common in combinatorial applications.

Feasible regions

Let's see what happens when the boundary of the logartihmic domain of convergence passes through the origin, as is common in combinatorial applications.

This results in a Legendre transform that is zero on the dual cone K at x_{*} and strictly negative elsewhere. There is exponential decay of a_{r} when r is not in the feasible cone, K.

Examples of feasible cones

Feasible cone is circular

Zero sets throughout mathematics

Generating functions
Legendre transforms
Inverse Fourier transforms

Examples of feasible cones

Feasible cone is
a rounded square

Cauchy's formula

How do we get the more detailed information as to the behavior of a_{r} inside the feasible region?

Cauchy's formula

How do we get the more detailed information as to the behavior of a_{r} inside the feasible region?

Cauchy's formula:

$$
a_{r}=\left(\frac{1}{2 \pi i}\right)^{d} \int_{T} z^{-r-1} F(z) d z
$$

Cauchy's formula

How do we get the more detailed information as to the behavior of a_{r} inside the feasible region?

Cauchy's formula:

$$
\begin{aligned}
a_{r} & =\left(\frac{1}{2 \pi i}\right)^{d} \int_{T} z^{-r-1} F(z) d z \\
& =\left(\frac{1}{2 \pi}\right)^{d} \int_{[-\pi, \pi]^{d}} \exp (-r \cdot y) F \circ \exp (x+i y) d y
\end{aligned}
$$

Cauchy's formula

How do we get the more detailed information as to the behavior of a_{r} inside the feasible region?

Cauchy's formula:

$$
\begin{aligned}
a_{r} & =\left(\frac{1}{2 \pi i}\right)^{d} \int_{T} z^{-r-1} F(z) d z \\
& =\left(\frac{1}{2 \pi}\right)^{d} \int_{[-\pi, \pi]^{d}} \exp (-r \cdot y) F \circ \exp (x+i y) d y
\end{aligned}
$$

This is an inverse Fourier problem; I will give you a reference at the end where you can read further. [Hint: let $x \rightarrow x_{*}$ within B.]

ZEROS OF PROBABILITY GENERATING FUNCTIONS

Real root property

Recall that a univariate polynomial with real roots satisfies Newton's inequalities.

Real root property

Recall that a univariate polynomial with real roots satisfies Newton's inequalities.

Extending this in a useful way to the multivariate setting was an open problem for decades.

Real root property

Recall that a univariate polynomial with real roots satisfies Newton's inequalities.

Extending this in a useful way to the multivariate setting was an open problem for decades.

This was recently accomplished and sheds light on some very natural classes of probability generating functions.

Review of Newton's inequalities

To summarize the univariate case, a sequence of positive numbers b_{0}, \ldots, b_{d} is \log concave if $b_{j-1} b_{j+1} \leq b_{j}^{2}$ for $1 \leq j \leq d-1$.

Theorem 1 ([New07])
Let $f(x):=\sum_{n=0}^{d} a_{n} x^{n}$ be a real polynomial all of whose roots are real and nonpositive. Then the sequence a_{0}, \ldots, a_{d} is ultra-log concave, meaning that the sequence $\left\{a_{n} /\binom{d}{n}\right\}$ is log concave.

Unimodality

A consequence of log concavity, hence of ultra-log concavity is unimodality, meaning the sequence increases to a greatest value (or possibly two consecutive equal values) then decreases.

Real-rooted polynomials

What makes the real root property particularly useful is that the class of real-rooted polynomials has some nice closure properties, in particular, under term by term multipication by a so-called Pólya-Schur multiplier sequence.

Real-rooted polynomials

What makes the real root property particularly useful is that the class of real-rooted polynomials has some nice closure properties, in particular, under term by term multipication by a so-called Pólya-Schur multiplier sequence.

In the remainder of this talk I will explain the recent (2006-present) success of various researchers (Borcea, Brändén, Wagner, Gurvits, Liggett) to extend to the multivariate setting.

HALF PLANE PROPERTY

Half-plane property

Let $F\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial in n variables. Say that F is stable (alternatively, F has the upper half-plane property) if it has no zeros in the n-fold product of upper half-planes:

$$
\Im\left\{x_{j}\right\}>0 \text { for all } 1 \leq j \leq n \Rightarrow F\left(x_{1}, \ldots, x_{n}\right) \neq 0 .
$$

Half-plane property

Let $F\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial in n variables. Say that F is stable (alternatively, F has the upper half-plane property) if it has no zeros in the n-fold product of upper half-planes:

$$
\Im\left\{x_{j}\right\}>0 \text { for all } 1 \leq j \leq n \Rightarrow F\left(x_{1}, \ldots, x_{n}\right) \neq 0 .
$$

When $n=1$ and all coefficients are real, zeros come in conjugate pairs, so no zeros in the upper half-plane is equivalent to all real zeros. Mysteriously, among the many possible such equivalent formulations, this one appears to have extraordinary closure properties.

Zero sets throughout mathematics Geometry of poles Zero-free regions

Easy properties

Proposition 2 (easy closure properties)

The class of stable polynomials is closed under the following.

Zero sets throughout mathematics Geometry of poles Zero-free regions

Easy properties

Proposition 2 (easy closure properties)
The class of stable polynomials is closed under the following.
(a) Products: f and g are stable implies $f g$ is stable;

Easy properties

Proposition 2 (easy closure properties)

The class of stable polynomials is closed under the following.
(a) Products: f and g are stable implies $f g$ is stable;
(b) Index permutations: f is stable implies $f\left(x_{\pi(1)}, \ldots, x_{\pi(d)}\right)$ is stable where $\pi \in \mathcal{S}_{d}$;

Easy properties

Proposition 2 (easy closure properties)

The class of stable polynomials is closed under the following.
(a) Products: f and g are stable implies $f g$ is stable;
(b) Index permutations: f is stable implies $f\left(x_{\pi(1)}, \ldots, x_{\pi(d)}\right)$ is stable where $\pi \in \mathcal{S}_{d}$;
(c) Diagonalization: f is stable implies $f\left(x_{1}, x_{1}, x_{3}, \ldots, x_{d}\right)$ is stable;

Easy properties

Proposition 2 (easy closure properties)

The class of stable polynomials is closed under the following.
(a) Products: f and g are stable implies $f g$ is stable;
(b) Index permutations: f is stable implies $f\left(x_{\pi(1)}, \ldots, x_{\pi(d)}\right)$ is stable where $\pi \in \mathcal{S}_{d}$;
(c) Diagonalization: f is stable implies $f\left(x_{1}, x_{1}, x_{3}, \ldots, x_{d}\right)$ is stable;
(d) Specialization: if f is stable and $\operatorname{Im}(a) \geq 0$ then $f\left(a, x_{2}, \ldots, x_{d}\right)$ is stable;

Easy properties

Proposition 2 (easy closure properties)

The class of stable polynomials is closed under the following.
(a) Products: f and g are stable implies $f g$ is stable;
(b) Index permutations: f is stable implies $f\left(x_{\pi(1)}, \ldots, x_{\pi(d)}\right)$ is stable where $\pi \in \mathcal{S}_{d}$;
(c) Diagonalization: f is stable implies $f\left(x_{1}, x_{1}, x_{3}, \ldots, x_{d}\right)$ is stable;
(d) Specialization: if f is stable and $\operatorname{Im}(a) \geq 0$ then $f\left(a, x_{2}, \ldots, x_{d}\right)$ is stable;
(e) Inversion: if the degree of x_{1} in f is m and f is stable then $x_{1}^{m} f\left(-1 / x_{1}, x_{2}, \ldots, x_{d}\right)$ is stable;

Differentiation

Theorem 3 (differentiation)

If f is stable then $\partial f / \partial x_{j}$ is either stable or identically zero.

Differentiation

Theorem 3 (differentiation)

If f is stable then $\partial f / \partial x_{j}$ is either stable or identically zero.
Proof: Fix any values of $\left\{x_{i}: i \neq j\right\}$ in the upper half plane. As a function of x_{j}, f has no zeros in the upper half plane. By the Gauss-Lucas theorem, the zeros of f^{\prime} are in the convex hull, therefore not in the upper half plane.

Symmetrization

Theorem 4 (partial symmetrization)

Let f be stable and let $\tau_{i j} f$ denote f with the roles of x_{i} and x_{j} swapped. If f is stable, then so is $(1-\theta) f+\theta \tau_{i j} f$ for any $\theta \in[0,1]$ and any i and j.

The proof of this is the culmination of a series of lemmas in Borcea-Brändén-Liggett (2009).

What does this all mean?

What is this partial symmetriazation operator $\tau_{i j}$?

What does this all mean?

What is this partial symmetriazation operator $\tau_{i j}$?
If $f=\sum a_{r} x^{r}$ is a probability generating function, with a_{r} being the probability of drawing the integer vector r, then $\tau_{i j} f$ is the corresponding PGF when the indices i and j are swapped.

What does this all mean?

What is this partial symmetriazation operator $\tau_{i j}$?
If $f=\sum a_{r} x^{r}$ is a probability generating function, with a_{r} being the probability of drawing the integer vector r, then $\tau_{i j} f$ is the corresponding PGF when the indices i and j are swapped.

The function $(1-\theta) f+\theta \tau_{i j} f$ is the PGF for the measure resulting from first flipping a θ-coin to see whether to swap i and j, then drawing from the (possibly swapped) distribution.

Why do we care?

Why do we care whether a PGF is stable?

Why do we care?

Why do we care whether a PGF is stable?
For collections of binary random variables, stability of the PGF implies a strong analogue of Newton's inequalities.

Why do we care?

Why do we care whether a PGF is stable?
For collections of binary random variables, stability of the PGF implies a strong analogue of Newton's inequalities.

The last part of the talk explains what binary variables are, what is special about their PGF's, and what inequalities follow from their stability.

BINARY VALUED RANDOM VARIABLES

Multi-affine functions

Suppose X_{1}, \ldots, X_{n} are random variables taking the values zero or one. The joint distribution of such a collection is a probability distribution on the Boolean lattice $\mathcal{B}_{n}:=\{0,1\}^{n}$. The probability generating function

$$
\sum_{\omega \in \mathcal{B}_{n}} \mu(\omega) x^{\omega}
$$

is a multi-affine polynoimal (every variable appears with degree at most one in every monomial).

Nice things happen in the multi-affine case.

One reason the multi-affine theory is nice

Theorem 5 (Borcea-Branden)
A multiaffine polynoimal f in n variables is stable if and only if for all real x, and for all $i, j \leq n$,

$$
\frac{\partial f}{\partial x_{i}}(x) \frac{\partial f}{\partial x_{j}}(x) \geq f(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) .
$$

One reason the multi-affine theory is nice

Theorem 5 (Borcea-Branden)
A multiaffine polynoimal f in n variables is stable if and only if for all real x, and for all $i, j \leq n$,

$$
\frac{\partial f}{\partial x_{i}}(x) \frac{\partial f}{\partial x_{j}}(x) \geq f(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) .
$$

Corollary 6

If the PGF for X_{1}, \ldots, X_{n} is stable, then each pair $\left\{X_{i}, X_{j}\right\}$ is negatively correlated.

One reason the multi-affine theory is nice

Theorem 5 (Borcea-Branden)
A multiaffine polynoimal f in n variables is stable if and only if for all real x, and for all $i, j \leq n$,

$$
\frac{\partial f}{\partial x_{i}}(x) \frac{\partial f}{\partial x_{j}}(x) \geq f(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) .
$$

Corollary 6

If the PGF for X_{1}, \ldots, X_{n} is stable, then each pair $\left\{X_{i}, X_{j}\right\}$ is negatively correlated. In fact the family X_{1}, \ldots, X_{n} is negatively associated, a much stronger negative dependence property than negative correlation.

Uniform spanning trees

Let T be a uniformly chosen spanning tree of a finite graph.

Uniform spanning trees

Let T be a uniformly chosen spanning tree of a finite graph.
Digression on spanning trees and algorithms: Suppose G is a finite square grid. A famous algorithm attributed to Broder chooses a spanning tree for G in a reasonably short time by executing a random walk on G and deleting redundant edges. This algorithm was used in the early computer game RATMAZ, in which the computer constructs a uniform random maze which you (the rat) must navigate. This was played on teletypes at the Lawrence Hall of Science in the early 1970's.

Uniform spanning trees

> A randomly generated maze (SSI)

Uniform spanning trees

A randomly generated maze (SSI)

The variables X_{e} and X_{f}, recording the presence of edges e and f in T respectively, are always negatively correlated.

Conditioning on the sum

Flip n coins independently, with different biases, and condition on the sum being k. The resulting random variables X_{1}, \ldots, X_{n} have a stable PGF.

Conditioning on the sum

Flip n coins independently, with different biases, and condition on the sum being k. The resulting random variables X_{1}, \ldots, X_{n} have a stable PGF.

In particular, the sum over any subset has a univariate stable distribution, thus satisfies Newton's inequalities.

Swap processes

On a finite graph, mark some of the vertices as occupied and leave the rest vacant. Each edge has an independent timer, programmed to go off randomly at a certain rate, and when it does, the endpoints swap. Thus, if one endpoint was occupied and the other was vacant, then the occupied point becomes vacant and the vacant point becomes occupied.

Swap processes

On a finite graph, mark some of the vertices as occupied and leave the rest vacant. Each edge has an independent timer, programmed to go off randomly at a certain rate, and when it does, the endpoints swap. Thus, if one endpoint was occupied and the other was vacant, then the occupied point becomes vacant and the vacant point becomes occupied.

When the timer goes off on the marked edge, the token occupying the site at the left of the edge moves across to the right endpoint of the edge.

Swap processes

On a finite graph, mark some of the vertices as occupied and leave the rest vacant. Each edge has an independent timer, programmed to go off randomly at a certain rate, and when it does, the endpoints swap. Thus, if one endpoint was occupied and the other was vacant, then the occupied point becomes vacant and the vacant point becomes occupied.

When the timer goes off on the marked edge, the token occupying the site at the left of the edge moves across to the right endpoint of the edge.

Theorem [BBL09]: After any time t, the PGF of the random configuration is stable.
J. Borcea, P. Brändén, and T. Liggett.

Negative dependence and the geometry of polynomials.
J. AMS, 22:521-567, 2009.
Y. Baryshnikov and R. Pemantle.

Asymptotics of multivariate sequences, part III: quadratic points.
Adv. Math., 228:3127-3206, 2011.
I. Newton.

Arithmetica universalis: sive de compositione et resolutione arithmetica liber. William Whiston, Cambridge, 1707.

R. Pemantle.

Hyperbollicity and stable polynomials in combinatorics and probability.
In Current Developments in Mathematics, 2011, Preprint.
R. Pemantle and I. Rivin.

The distribution of zeros of the derivative of a random polynomial.
In I. Kotsireas and E. Zima, editors, Proceedings of the Waterloo Workshop on Computer Algebra (W80), May 2011, page to appear. Springer, New York, 2012.
R. Pemantle and M. Wilson.

Analytic Combinatorics in Several Variables.
Cambridge University Press, Cambridge, 2013.

