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Zero sets are important throughout mathematics!

Number Theory: The most prominent outstanding problem of our
time is to determine whether the zeros of the Riemann Zeta
function all lie on the line <{s} = 1/2.

Why? Precise estimates for counting primes are obtained from
contour integrals of the Zeta function and related functions.

SSI∗

Musical digression...
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Zeta song lyrics

Last verse:

Oh, where are the zeros of zeta of s?

We must know exactly, we cannot just guess,

In orer to strengthen the prime number theorem,

The integral’s contour must not get too near ’em.

Lyrics (SSI) credited to Tom Apostol
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Zero sets are important throughout mathematics!

Algebraic Geometry: The “geometry” of a polynomial refers to the
geometry of its zero set. In fact, for an algebraic geometer, a
polynonmial is equated with it zero set.

Curricular Digression: Gröbner bases are the new Gaussian
elimination. In the future, every math major will learn the
algorithmic soultion of systems of polynomial equations, just as
they now learn algorithmic soultion of systems of linear equations.

Pemantle Zeros of polynomials



Zero sets throughout mathematics
Geometry of poles

Zero-free regions

Zero sets are important throughout mathematics!

Algebraic Geometry: The “geometry” of a polynomial refers to the
geometry of its zero set. In fact, for an algebraic geometer, a
polynonmial is equated with it zero set.
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Zero sets are important throughout mathematics!

Linear Algebra: The eigenvalues are the zeros of the characteristic
polynomial.

Impartial games: Winning positions are those with value ∗0 .

ODE’s: Solutions to

pn(x)
dn

dxn
f + · · ·+ p0(x)f = 0

fail to be regular (have a phase change) where pn vanishes.
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Zero sets are important throughout mathematics!

PDE’s: The evolution of an equation governed by the linear
operator P(∂/∂x)F = 0 is determined by the geometry of the zero
set of the polynomial P, cf. Gårding’s theory of hyperbolic
polynomials and operators.

Certain components of the complement of the real zero set of a
hyperbolic polynomial are convex, leading to many useful
properties.
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Combinatorics

Algebraic Combinatorics (Gian-Carlo Rota, 1985):

“The one contribution of mine that I hope will be
remembered has consisted in pointing out that all sorts
of problems of combinatorics can be viewed as problems
of the location of the zeros of certain polynomials...”

What did he mean? One class of examples
is graph polynomials, whose zeros are often
constrained to certain regions of the complex
plane, yielding enumerative information. In
many cases the zeros seem to approach a
very definite shape. SSI
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Real roots

Long Digression: univariate polynomials with real roots.

Suppose f(x) = a0 + a1x + · · ·+ anxn is a polynomial with
nonnegative coefficients and real roots. Then the sequence
{ak : 0 ≤ k ≤ n} is unimodal, in fact it is log-concave, and in fact{

ak(n
k

)}

is log-concave. This is a theorem of I. Newton (1707).
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Closure properties

Closure properties: the class of univariate polynomials with all real
roots is closed under taking the derivative. [Why? The zeros of the
derivative interlace the zeros of the polynomial.]

It is not only closed under products (obvious) but under
coefficient-wise products (Hadamard products – not obvious!).

f(x) = a0 + a1x + · · ·+ anxn

g(x) = b0 + b1x + · · ·+ bnxn

(f ∗ g)(x) := (a0b0) + (a1b1)x + · · ·+ (anbn)xn

This is a consequence of the Pólya-Schur Theorem (1914).
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Complex roots

Digression within the digression: roots of the derivative.

The (complex) roots of f ′ are contained in the convex hull of the
roots of f (the Gauss-Lucas Theorem).

f ′ cannot have more non-real roots than f does.

If n complex numbers are chosen independently from a law µ and f
is the polynomial with these roots, then the empirical distribution
of the roots of f ′ converges to µ as n→∞ [PR12].
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Today’s topics: combinatorics and probability

TODAY:

Combinatorial Enumeration: Topic #1 is the dependence of the
Taylor series coefficients of 1/Q on the geometry of the zero set of
the polynomial Q.

Probability: Topic #2 concerns properties of a discrete probability
measure which follow from the location of the zeros of the
probability generating function.
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Inverse Fourier transforms

RATIONAL SERIES: coefficients and poles
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Generating functions

A generating function for an array {ar : r ∈ (Z+)d} of numbers is a
power series in d variables

F(x1, . . . , xd) =
∑
r∈Zd

arx
r .

For any array {ar}, this exists as a formal power series, but when
{ar} grow at most exponentially in |r|, then the series F has a
positive radius of convergence and F is an analytic object as well.

As a function, F may or may not have a nice closed form. In any
case, the use of analytic tools to estimate ar once F is given in
some form is known as “analytic combinatorics”.

Example: d = 1, F is a polynomial; real nonpositive zeros imply
unimodality/log-concavity.
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Rational generating functions

Rational generating functions F = P/Q correspond to arrays {ar}
that obey linear recurrences. For example, the number of lattice
paths from (0,0) to (i, j) that move only North and East satisfies
ai,j − ai−1,j − ai,j−1 = 0 as long as (i, j) 6= (0, 0).

+1−1

−1

This configuration
sums to zero as long
as the +1 is not at
the origin

This leads to (1− x− y)F(x, y) = 1, corresponding to the fact that
the (i, j)-coefficient of (1− x− y)F is zero when (i, j) 6= (0, 0) and
one when i = j = 0.
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Rational generating functions

In one variable, the theory of rational generating functions is
complete and nearly trivial. In more than one variable the theory is
interesting and far from complete. Some of the areas in which they
arise are:

I Queuing theory

I Counting lattice points

I Quantum random walk

I Random tiling ensembles
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Phenomena: Quantum Walks

For these applications, estimating quantities of interest boils down
to estimating the Taylor coefficients of a rational power series. A
picture gives an idea that the behavior of these coefficients might
have some complexity.

Intensity plot of
quantum walk at
time 200
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Phenomena: Cube Groves

F (x , y , z) =
1

(1− z)(3− x − y − z − xy − xz − yz + 3xyz)

is the generating function for the probabilities {arst} of horizontal
line elements at the barycentric coordinate (r , s, t) in the order
r + s + t cube grove.

Randomly sampled
order-100 cube grove
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ANALYSIS

The analysis may be separated into two steps.

The first is to find the exponential rate of growth or decay, namely
the function g(r) such that

ar = exp(g(r) + o(|r |)) .

It will turn out that g(r) = x · r for some x ∈ Rd with a nice
geometric description.

The second step, arriving at a true asymptotic formula by nailing
down the o(|r |) term to within o(1), I will only hint at. It requires,
essentially, the computation of an inverse Fourier transform.
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Domains of convergence

The power series P/Q =
∑

r arz r converges for some z ∈ Cd if
and only if it converges for any z ′ whose coordinates differ from z
by unit complex multiples. The logarithmic domain of
convergence is the set of all x ∈ Rd such that

∑
r arz r converges

when <{log z} = x .

Example: if Q = (3− 2x − y)(3− x − 2y) then the power series
converges for (log x , log y) in the white region in the lower left of
the figure.
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Amoebas

Digression on amoebas:

The figure in red is the set of all points log z with Q(z) = 0. Of
course these points cannot be in the domain of convergence (the
whit must be disjoint from the red) and in fact the boundary the
domain of convergence must lie in the red set.

Amoeba of
(3−2x−y)(3−x−2y)

For extra credit: what are the other white regions?
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Legendre inequality

Pick any x ∈ B. Absolute convergence of
∑

r arz r means that the
terms must tend in magnitude to zero, which implies that

lim sup
r→∞

log |ar |+ r · x ≤ 0 .

Dividing by |r | and denote the unit vector r̂ := r/|r |,

lim sup
r→∞

log |ar |
|r |

≤ −r̂ · x .

The limsup exponential rate in direction r is at most −r̂ · x .
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Legendre transform

Let x vary over B and optimize lim supr→∞
log |ar |
|r | ≤ −r̂ · x :

lim sup
r→∞

log |ar |
|r |

≤ φ(r̂) := −r̂ · x∗

where x∗ is the support point of B normal to r̂ . The Legendre
transform φ is thus an upper bound for the exponential growth.
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Exponential rate

Often this is sharp: the exponential rate g(r) is equal to φ(r).

Example: If the coefficients ar are all nonnegative then
g(r) = φ(r).

In general, the determination of g(r) requires a topological
computation on the complex hypersurface {Q = 0}.
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Feasible regions

Let’s see what happens when the boundary of the logartihmic
domain of convergence passes through the origin, as is common in
combinatorial applications.

K

This results in a Legendre transform that is zero on the dual cone
K at x∗ and strictly negative elsewhere. There is exponential decay
of ar when r is not in the feasible cone, K .
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Examples of feasible cones

Feasible cone
is circular
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Examples of feasible cones

Feasible cone is
a rounded square
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Cauchy’s formula

How do we get the more detailed information as to the behavior of
ar inside the feasible region?

Cauchy’s formula:

ar =

(
1

2πi

)d ∫
T

z−r−1 F (z) dz

=

(
1

2π

)d ∫
[−π,π]d

exp(−r · y) F ◦ exp(x + iy)dy

This is an inverse Fourier problem; I will give you a reference at the
end where you can read further. [Hint: let x → x∗ within B.]
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ZEROS OF PROBABILITY GENERATING
FUNCTIONS
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Real root property

Recall that a univariate polynomial with real roots satisfies
Newton’s inequalities.

Extending this in a useful way to the multivariate setting was an
open problem for decades.

This was recently accomplished and sheds light on some very
natural classes of probability generating functions.
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Review of Newton’s inequalities

To summarize the univariate case, a sequence of positive numbers
b0, . . . , bd is log concave if bj−1bj+1 ≤ b2

j for 1 ≤ j ≤ d − 1.

Theorem 1 ([New07])

Let f (x) :=
∑d

n=0 anxn be a real polynomial all of whose roots are
real and nonpositive. Then the sequence a0, . . . , ad is ultra-log
concave, meaning that the sequence {an/

(d
n

)
} is log concave.
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Unimodality

A consequence of log concavity, hence of ultra-log concavity is
unimodality, meaning the sequence increases to a greatest value
(or possibly two consecutive equal values) then decreases.
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Real-rooted polynomials

What makes the real root property particularly useful is that the
class of real-rooted polynomials has some nice closure properties,
in particular, under term by term multipication by a so-called
Pólya-Schur multiplier sequence.

In the remainder of this talk I will explain the recent
(2006–present) success of various researchers (Borcea, Brändén,
Wagner, Gurvits, Liggett) to extend to the multivariate setting.

Pemantle Zeros of polynomials



Zero sets throughout mathematics
Geometry of poles

Zero-free regions

Univariate polynomials
Polynomials in several variables
Binary valued random variables
Examples of stable PGF’s

Real-rooted polynomials

What makes the real root property particularly useful is that the
class of real-rooted polynomials has some nice closure properties,
in particular, under term by term multipication by a so-called
Pólya-Schur multiplier sequence.

In the remainder of this talk I will explain the recent
(2006–present) success of various researchers (Borcea, Brändén,
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HALF PLANE PROPERTY
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Half-plane property

Let F (x1, . . . , xn) be a polynomial in n variables. Say that F is
stable (alternatively, F has the upper half-plane property) if it
has no zeros in the n-fold product of upper half-planes:

={xj} > 0 for all 1 ≤ j ≤ n ⇒ F (x1, . . . , xn) 6= 0 .

When n = 1 and all coefficients are real, zeros come in conjugate
pairs, so no zeros in the upper half-plane is equivalent to all real
zeros. Mysteriously, among the many possible such equivalent
formulations, this one appears to have extraordinary closure
properties.
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Easy properties

Proposition 2 (easy closure properties)

The class of stable polynomials is closed under the following.

(a) Products: f and g are stable implies fg is stable;

(b) Index permutations: f is stable implies f (xπ(1), ..., xπ(d)) is
stable where π ∈ Sd ;

(c) Diagonalization: f is stable implies f (x1, x1, x3, . . . , xd) is
stable;

(d) Specialization: if f is stable and Im (a) ≥ 0 then
f (a, x2, . . . , xd) is stable;

(e) Inversion: if the degree of x1 in f is m and f is stable then
xm

1 f (−1/x1, x2, . . . , xd) is stable;

�
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Differentiation

Theorem 3 (differentiation)

If f is stable then ∂f /∂xj is either stable or identically zero.

Proof: Fix any values of {xi : i 6= j} in the upper half plane. As
a function of xj , f has no zeros in the upper half plane. By the
Gauss-Lucas theorem, the zeros of f ′ are in the convex hull,
therefore not in the upper half plane. �
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Symmetrization

Theorem 4 (partial symmetrization)

Let f be stable and let τij f denote f with the roles of xi and xj
swapped. If f is stable, then so is (1− θ)f + θτij f for any θ ∈ [0, 1]
and any i and j.

The proof of this is the culmination of a series of lemmas in
Borcea-Brändén-Liggett (2009).
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What does this all mean?

What is this partial symmetriazation operator τij?

If f =
∑

arx r is a probability generating function, with ar being
the probability of drawing the integer vector r , then τij f is the
corresponding PGF when the indices i and j are swapped.

The function (1− θ)f + θτij f is the PGF for the measure resulting
from first flipping a θ-coin to see whether to swap i and j , then
drawing from the (possibly swapped) distribution.
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Why do we care?

Why do we care whether a PGF is stable?

For collections of binary random variables, stability of the PGF
implies a strong analogue of Newton’s inequalities.

The last part of the talk explains what binary variables are, what is
special about their PGF’s, and what inequalities follow from their
stability.
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BINARY VALUED RANDOM VARIABLES
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Multi-affine functions

Suppose X1, . . . ,Xn are random variables taking the values zero or
one. The joint distribution of such a collection is a probability
distribution on the Boolean lattice Bn := {0, 1}n. The probability
generating function ∑

ω∈Bn

µ(ω)xω

is a multi-affine polynoimal (every variable appears with degree at
most one in every monomial).

Nice things happen in the multi-affine case.
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One reason the multi-affine theory is nice

Theorem 5 (Borcea-Branden)

A multiaffine polynoimal f in n variables is stable if and only if for
all real x, and for all i , j ≤ n,

∂f

∂xi
(x)

∂f

∂xj
(x) ≥ f (x)

∂2f

∂xi∂xj
(x) .

Corollary 6

If the PGF for X1, . . . ,Xn is stable, then each pair {Xi ,Xj} is
negatively correlated. In fact the family X1, . . . ,Xn is negatively
associated, a much stronger negative dependence property than
negative correlation.
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Uniform spanning trees

Let T be a uniformly chosen spanning tree of a finite graph.

Digression on spanning trees and algorithms: Suppose G is a
finite square grid. A famous algorithm attributed to Broder
chooses a spanning tree for G in a reasonably short time by
executing a random walk on G and deleting redundant edges. This
algorithm was used in the early computer game RATMAZ, in
which the computer constructs a uniform random maze which you
(the rat) must navigate. This was played on teletypes at the
Lawrence Hall of Science in the early 1970’s.
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Uniform spanning trees

A randomly gener-
ated maze (SSI)

The variables Xe and Xf , recording the presence of edges e and f
in T respectively, are always negatively correlated.
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Conditioning on the sum

Flip n coins independently, with different biases, and condition on
the sum being k. The resulting random variables X1, . . . ,Xn have
a stable PGF.

In particular, the sum over any subset has a univariate stable
distribution, thus satisfies Newton’s inequalities.
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Swap processes

On a finite graph, mark some of the vertices as occupied and leave
the rest vacant. Each edge has an independent timer, programmed
to go off randomly at a certain rate, and when it does, the
endpoints swap. Thus, if one endpoint was occupied and the other
was vacant, then the occupied point becomes vacant and the
vacant point becomes occupied.

When the timer goes off on the
marked edge, the token occupy-
ing the site at the left of the edge
moves across to the right endpoint
of the edge.

Theorem [BBL09]: After any time t, the PGF of the random
configuration is stable.
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