Analytic Combinatorics in Several Variables

Robin Pemantle and Mark Wilson

A of A conference, 30 May, 2013

About the book

Cambridge Studies in Advanced Mathematics
140

Analytic
 Combinatorics
 in Several
 Variables

Dedication

To the memory of Philippe Flajolet, on whose shoulders stands all of the work herein.

The book is in four parts

The book is in four parts

I General introduction and univariate methods

The book is in four parts

I General introduction and univariate methods
II Some complex analysis and some algebra

The book is in four parts

I General introduction and univariate methods
II Some complex analysis and some algebra
III Multivariate asymptotics

The book is in four parts

I General introduction and univariate methods
II Some complex analysis and some algebra
III Multivariate asymptotics
IV Appendices

The Big Question

The Big Question

How painful will this be?

The Big Question

How painful will this be?

Can I really use these methods without a ridiculous investment of time?

Scope of method

Structures with recursive nature

Scope of method

Structures with recursive nature

- Analysis of algorithms

Scope of method

Structures with recursive nature

- Analysis of algorithms
- Various families of trees and other graphs

Scope of method

Structures with recursive nature

- Analysis of algorithms
- Various families of trees and other graphs
- Probability: random walks, queuing theory, etc.

Scope of method

Structures with recursive nature

- Analysis of algorithms
- Various families of trees and other graphs
- Probability: random walks, queuing theory, etc.
- Stat mech: particle ensembles, quantum walks, etc.

Scope of method

Structures with recursive nature

- Analysis of algorithms
- Various families of trees and other graphs
- Probability: random walks, queuing theory, etc.
- Stat mech: particle ensembles, quantum walks, etc.
- Tilings

Scope of method

Structures with recursive nature

- Analysis of algorithms
- Various families of trees and other graphs
- Probability: random walks, queuing theory, etc.
- Stat mech: particle ensembles, quantum walks, etc.
- Tilings
- Random polynomials

Running example

Example

Lattice paths to $(2 n, 2 n, 2 n)$ with steps $\{(2,0,0),(0,2,0),(0,0,2),(1,1,0),(1,0,1),(0,1,1)\}$.

$$
F(x, y, z)=\frac{1}{1-x^{2}-y^{2}-z^{2}-x y-x z-y z}
$$

Analogy with univariate singularity analysis

Analogy with univariate singularity analysis

1. Find the dominant singularity(ies) and you will know the (limsup) exponential growth rate

Analogy with univariate singularity analysis

1. Find the dominant singularity(ies) and you will know the (limsup) exponential growth rate
2. Behavior of \mathbf{f} near the dominant singularity(ies) determines the exact asymptotics

Analogy with univariate singularity analysis

1. Find the dominant singularity(ies) and you will know the (limsup) exponential growth rate
2. Behavior of \mathbf{f} near the dominant singularity(ies) determines the exact asymptotics

Rational multivariate case
$\mathbf{F}(\mathbf{x})=\mathbf{P}(\mathbf{x}) / \mathbf{Q}(\mathbf{x})$: singularity is the surface $\mathcal{V}:=\{\mathbf{Q}=0\}$.
Carry out same two steps.

STEP 1: Find dominant singularity

1a. Algebra
1b. Geometry

Step 1a: Algebra

Step 1a: Algebra

- Is the singular surface \mathcal{V} smooth?

Step 1a: Algebra

- Is the singular surface \mathcal{V} smooth?
- If not, what kind of singularities does it have?

Step 1a: Algebra

- Is the singular surface \mathcal{V} smooth?
- If not, what kind of singularities does it have?

$$
\operatorname{Basis}\left(\left[Q, \frac{\partial}{\partial x_{1}} Q, \ldots, \frac{\partial}{\partial x_{d}} Q\right]\right)
$$

Step 1a: Algebra

- Is the singular surface \mathcal{V} smooth?
- If not, what kind of singularities does it have?

$$
\operatorname{Basis}\left(\left[Q, \frac{\partial}{\partial x_{1}} Q, \ldots, \frac{\partial}{\partial x_{d}} Q\right]\right)
$$

Answer: [1].
Aha, it's smooth.

Table of contents checklist

1. Introduction
2. Enumeration
3. Univariate asymptotics
4. Complex analysis: univariate saddle integrals
5. Complex analysis: multivariate saddle integrals
6. Symbolic algebra
7. Geometry of minimal points (amoebas)

Table of contents checklist

\checkmark 1. Introduction
\checkmark 2. Enumeration
\checkmark 3. Univariate asymptotics
4. Complex analysis: univariate saddle integrals
5. Complex analysis: multivariate saddle integrals
6. Symbolic algebra
7. Geometry of minimal points (amoebas)

Table of contents checklist

\checkmark 1. Introduction
\checkmark 2. Enumeration
\checkmark 3. Univariate asymptotics
4. Complex analysis: univariate saddle integrals
5. Complex analysis: multivariate saddle integrals
$\checkmark 6$. Symbolic algebra
7. Geometry of minimal points (amoebas)

Table of contents checklist

\checkmark 1. Introduction
\checkmark 2. Enumeration
\checkmark 3. Univariate asymptotics
\checkmark 4. Complex analysis: univariate saddle integrals
5. Complex analysis: multivariate saddle integrals
$\checkmark 6$. Symbolic algebra
7. Geometry of minimal points (amoebas)

Univariate integrals

$$
\int_{-\infty}^{\infty} f(t) e^{-\lambda t^{2} / 2} d t=\sqrt{2 \pi} f(0) \lambda^{-1 / 2}
$$

Step 1b: Geometry

Next, we use what we know from Step 1a to draw a picture of the singularities "nearest to the origin". In one variable, "nearest" means the least value of $|z|$. In several variables, we mean those points $\left(x_{1}, \ldots, x_{r}\right) \in \mathcal{V}$ with $\left(\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right)$ minimal in the partial order.

Step 1b: Geometry

Chapter 7 is the science of determining this set, which is a portion of the boundary of the amoeba of Q. Typically, this set is a real $(d-1)$-dimensional subspace of \mathcal{V}. There is a science to this, which you can read about in Chapter 7.

Step 1b: Geometry

Chapter 7 is the science of determining this set, which is a portion of the boundary of the amoeba of Q. Typically, this set is a real $(d-1)$-dimensional subspace of \mathcal{V}. There is a science to this, which you can read about in Chapter 7.

Often we change to logarithmic coordinates, in which case the amoeba looks something like this.

Step 1b: Geometry

In many natural cases, the coefficients of f are nonnegative. In this case there is a Pringsheim theorem telling us that the postiive real points of \mathcal{V} are minimal points.

Step 1b: Geometry

In many natural cases, the coefficients of f are nonnegative. In this case there is a Pringsheim theorem telling us that the postiive real points of \mathcal{V} are minimal points.

Example: $Q=1-x^{2}-y^{2}-z^{2}-x y-x z-y z$

Completing Step 1

Having described the minimal points, we find the dominating point $z \in \mathcal{V}$ (or x in the amoeba boundary) corresponding to the asymptotic direction r of interest. It will be the point on the minimal surface normal to r.

Completing Step 1

Having described the minimal points, we find the dominating point $z \in \mathcal{V}$ (or x in the amoeba boundary) corresponding to the asymptotic direction r of interest. It will be the point on the minimal surface normal to r.

Example: $Q=1-x^{2}-y^{2}-z^{2}-x y-x z-y z$. By symmetry, the point

$$
z_{*}:=\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)
$$

is the dominating point for the diagonal direction. The exponential growth rate of a_{r} is z^{-r}. Thus,

$$
a_{2 n, 2 n, 2 n}=(216+o(1))^{n}
$$

The fancy stuff: Morse theory

What if the coefficients are not guaranteed to be nonnegative real numbers?

The fancy stuff: Morse theory

What if the coefficients are not guaranteed to be nonnegative real numbers?

The Morse theory comes in when the coefficients are of mixed sign or complex and we cannot readily identify the dominating point.

The fancy stuff: Morse theory

What if the coefficients are not guaranteed to be nonnegative real numbers?

The Morse theory comes in when the coefficients are of mixed sign or complex and we cannot readily identify the dominating point.

Example (Bi-colored supertrees (DeVries, 2010))

The fancy stuff: Morse theory

What if the coefficients are not guaranteed to be nonnegative real numbers?

The Morse theory comes in when the coefficients are of mixed sign or complex and we cannot readily identify the dominating point.

Example (Bi-colored supertrees (DeVries, 2010))

$$
\begin{aligned}
F & =\frac{P}{Q} \\
Q & =x^{5} y^{2}+2 x^{2} y-2 x^{3} y+4 x+y-2
\end{aligned}
$$

The fancy stuff: Morse theory

What if the coefficients are not guaranteed to be nonnegative real numbers?

The Morse theory comes in when the coefficients are of mixed sign or complex and we cannot readily identify the dominating point.

Example (Bi-colored supertrees (DeVries, 2010))

$$
\begin{aligned}
F & =\frac{P}{Q} \\
Q & =x^{5} y^{2}+2 x^{2} y-2 x^{3} y+4 x+y-2
\end{aligned}
$$

The generating function counts certain combinatorial objects but it is only nonnegative in a certain region where the parameters make sense.

The fancy stuff: Morse theory

Finding all possible candidates is an easy algebraic computation, producing three possibilities.

The fancy stuff: Morse theory

Finding all possible candidates is an easy algebraic computation, producing three possibilities.

> The only minimal point is the rightmost point, but the dominating point is the middle point.

The fancy stuff: Morse theory

Finding all possible candidates is an easy algebraic computation, producing three possibilities.

> The only minimal point is the rightmost point, but the dominating point is the middle point.

> This is difficult to determine but you will not usually need to!

Step 1b: Geometry

Summary: computing the minimal points is not trivial, but in many cases it is not much more than high school geoemtry.

In other words: you don't need Chapter 7 to get started, and it's not so bad anyway.

Table of contents checklist

\checkmark 1. Introduction
\checkmark 2. Enumeration
\checkmark 3. Univariate asymptotics
\checkmark 4. Complex analysis: univariate saddle integrals
5. Complex analysis: multivariate saddle integrals
$\checkmark 6$. Symbolic algebra
$(\checkmark) 7$. Geometry of minimal points: amoebas and cones
$(\checkmark) 9$ (parts dealing with finding the dominating point)

Step 2: classify behavior near singularity and integrate

Step 2: classify behavior near singularity and integrate

Use answer from Step 1a (what kind of a point is it?).

Step 2: classify behavior near singularity and integrate

Use answer from Step 1a (what kind of a point is it?).
Case (i): the dominating point z_{*} is a smooth point of \mathcal{V}. We compute asymptotics in the direction \hat{r}, resulting in:

$$
a_{r} \sim C(\hat{r}) n^{(1-d) / 2} \gamma^{n}
$$

where

Step 2: classify behavior near singularity and integrate

Use answer from Step 1a (what kind of a point is it?).
Case (i): the dominating point z_{*} is a smooth point of \mathcal{V}. We compute asymptotics in the direction \hat{r}, resulting in:

$$
a_{r} \sim C(\hat{r}) n^{(1-d) / 2} \gamma^{n}
$$

where

- $\gamma=z_{*}^{-\hat{r}}$

Step 2: classify behavior near singularity and integrate

Use answer from Step 1a (what kind of a point is it?).
Case (i): the dominating point z_{*} is a smooth point of \mathcal{V}. We compute asymptotics in the direction \hat{r}, resulting in:

$$
a_{r} \sim C(\hat{r}) n^{(1-d) / 2} \gamma^{n}
$$

where

- $\gamma=z_{*}^{-\hat{r}}$
- C is computed in an elementary but tedious way from the partial derivatives of P and Q at z_{*} (it is the curvature of the minimal surface in logarithmic coordinates).

Step 2, running example

$$
\begin{aligned}
\hat{r} & =(1,1,1) \\
Q & =1-x^{2}-y^{2}-z^{2}-x y-x z-y z \\
z_{*} & =\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right) \\
\gamma & =6^{3 / 2} \\
C(\hat{r}) & =\frac{\sqrt{3}}{5 \pi}
\end{aligned}
$$

which leads to

$$
a_{2 n, 2 n, 2 n} \sim 216^{n}\left[\frac{\sqrt{3}}{5 \pi n}+O\left(n^{-2}\right)\right]
$$

Step 2, running example

$$
a_{2 n, 2 n, 2 n} \sim 216^{n} \sqrt{3} /(5 \pi n)
$$

Step 2, running example

$$
a_{2 n, 2 n, 2 n} \sim 216^{n} \sqrt{3} /(5 \pi n)
$$

Numerical accuracy: For $n=16$, relative error is -0.0068 .

Step 2, running example

$$
a_{2 n, 2 n, 2 n} \sim 216^{n} \sqrt{3} /(5 \pi n)
$$

Numerical accuracy: For $n=16$, relative error is -0.0068 .
Also, we can easily get next term of asymptotics.

Step 2, running example

$$
a_{2 n, 2 n, 2 n} \sim 216^{n} \sqrt{3} /(5 \pi n)
$$

Numerical accuracy: For $n=16$, relative error is -0.0068 .
Also, we can easily get next term of asymptotics.
The $O\left(n^{-2}\right)$ term is $\frac{169 \sqrt{3}}{5625 \pi n^{2}}$.

Step 2, running example

$$
a_{2 n, 2 n, 2 n} \sim 216^{n} \sqrt{3} /(5 \pi n)
$$

Numerical accuracy: For $n=16$, relative error is -0.0068 .
Also, we can easily get next term of asymptotics.
The $O\left(n^{-2}\right)$ term is $\frac{169 \sqrt{3}}{5625 \pi n^{2}}$.
Adding this term gives relative error of 0.000023 with $n=16$.

Step 2, running example

$$
a_{2 n, 2 n, 2 n} \sim 216^{n} \sqrt{3} /(5 \pi n)
$$

Numerical accuracy: For $n=16$, relative error is -0.0068 .
Also, we can easily get next term of asymptotics.
The $O\left(n^{-2}\right)$ term is $\frac{169 \sqrt{3}}{5625 \pi n^{2}}$.
Adding this term gives relative error of 0.000023 with $n=16$.
"Easily": SAGE code exists written by A. Raichev + MCW

Multivariate complex analysis

Incidentally, the math for the multivariate integrals in the smooth case is simply the multivariate version of saddle point integration.

Multivariate complex analysis

Incidentally, the math for the multivariate integrals in the smooth case is simply the multivariate version of saddle point integration.

Instead of integrating $f(z) \exp (-\lambda \phi(z)) d z$ near where ϕ^{\prime} vanishes, we integrate near where $\nabla \phi$ vanishes:

$$
\int f(z) \exp (-\lambda \phi(z)) \sim\left(\frac{2 \pi}{\lambda}\right)^{d / 2} f(0) \mathcal{H}^{-1 / 2}
$$

where \mathcal{H} is the determinant of the Hessian matrix of ϕ.

Multivariate complex analysis

Incidentally, the math for the multivariate integrals in the smooth case is simply the multivariate version of saddle point integration.

Instead of integrating $f(z) \exp (-\lambda \phi(z)) d z$ near where ϕ^{\prime} vanishes, we integrate near where $\nabla \phi$ vanishes:

$$
\int f(z) \exp (-\lambda \phi(z)) \sim\left(\frac{2 \pi}{\lambda}\right)^{d / 2} f(0) \mathcal{H}^{-1 / 2}
$$

where \mathcal{H} is the determinant of the Hessian matrix of ϕ.
This is no more difficult, and the statements (which are all you need) are straightforward.

Multivariate complex analysis

Incidentally, the math for the multivariate integrals in the smooth case is simply the multivariate version of saddle point integration.

Instead of integrating $f(z) \exp (-\lambda \phi(z)) d z$ near where ϕ^{\prime} vanishes, we integrate near where $\nabla \phi$ vanishes:

$$
\int f(z) \exp (-\lambda \phi(z)) \sim\left(\frac{2 \pi}{\lambda}\right)^{d / 2} f(0) \mathcal{H}^{-1 / 2}
$$

where \mathcal{H} is the determinant of the Hessian matrix of ϕ.
This is no more difficult, and the statements (which are all you need) are straightforward.

Time to update the checklist.

Table of contents checklist

\checkmark 1. Introduction
\checkmark 2. Enumeration
\checkmark 3. Univariate asymptotics
\checkmark 4. Complex analysis: univariate saddle integrals
$\checkmark 5$. Complex analysis: multivariate saddle integrals
$\checkmark 6$. Symbolic algebra
$(\checkmark) 7$. Geometry of minimal points: amoebas and cones
$(\checkmark) 9$ (parts dealing with finding the dominating point)

Step 2: remaining cases go into Part III

Part III addresses:

Step 2: remaining cases go into Part III

Part III addresses:

- \checkmark Chapter 9: smooth points

Step 2: remaining cases go into Part III

Part III addresses:

- \checkmark Chapter 9: smooth points
- Chapter 10: interesections of smooth surfaces

Step 2: remaining cases go into Part III

Part III addresses:

- \checkmark Chapter 9: smooth points
- Chapter 10: interesections of smooth surfaces
- Chapter 11: more complicated local geometry

Step 2: remaining cases go into Part III

Part III addresses:

- \checkmark Chapter 9: smooth points
- Chapter 10: interesections of smooth surfaces
- Chapter 11: more complicated local geometry
- Chapters 12 and 13: wrapping it up (examples and further speculation)

Step 2: remaining cases go into Part III

Part III addresses:

- \checkmark Chapter 9: smooth points
- Chapter 10: interesections of smooth surfaces
- Chapter 11: more complicated local geometry
- Chapters 12 and 13: wrapping it up (examples and further speculation)

I will not pretened Chapters 10 and 11 are easy, but you will not need Chapter 11 unless you are lucky enough to run across GF's with an unusual nature.

Interlude: diagonal computation not recommended

Self-intersections such as are in Chapter 10 arise when one computes asymtotics of an algebraic d-variate generating function F by embedding it as a diagonal of a rational function.

Interlude: diagonal computation not recommended

Self-intersections such as are in Chapter 10 arise when one computes asymtotics of an algebraic d-variate generating function F by embedding it as a diagonal of a rational function.

Unextracting the diagonal, unlike diagonal extraction, is not too hard and allows us to extend everything we know about rational functions to the algebraic case. Now that you know about it, we can check off Chapters 12 and 13.

Part III checklist, updated

- \checkmark Chapter 9: smooth points
- Chapter 10: interesections of smooth surfaces
- Chapter 11: more complicated local geometry
- \checkmark Chapters 12 and 13: wrapping it up (examples and further speculation)

What's left?

What's left?

Case (ii): Self-intersecting smooth surfaces

What's left?

Case (ii): Self-intersecting smooth surfaces
 Requires theory of iterated residues

What's left?

Case (ii): Self-intersecting smooth surfaces
 Requires theory of iterated residues

Case (iii): More complicated local geometry

What's left?

Case (ii): Self-intersecting smooth surfaces
Requires theory of iterated residues
Case (iii): More complicated local geometry
Requires theory of hyperbolic polynomials,

What's left?

Case (ii): Self-intersecting smooth surfaces
Requires theory of iterated residues
Case (iii): More complicated local geometry
Requires theory of hyperbolic polynomials, generalized functions,

What's left?

Case (ii): Self-intersecting smooth surfaces
Requires theory of iterated residues
Case (iii): More complicated local geometry
Requires theory of hyperbolic polynomials, generalized functions, Leray and Petrovsky cycles and

What's left?

Case (ii): Self-intersecting smooth surfaces
Requires theory of iterated residues
Case (iii): More complicated local geometry
Requires theory of hyperbolic polynomials, generalized functions, Leray and Petrovsky cycles and some classical inverse Fourier transform computations.

What's left?

Case (ii): Self-intersecting smooth surfaces
Requires theory of iterated residues
Case (iii): More complicated local geometry
Requires theory of hyperbolic polynomials, generalized functions, Leray and Petrovsky cycles and some classical inverse Fourier transform computations.

These are difficult and we are not going to check them off today.

You know what to do!

Cambridge Studies in Advanced Mathematics
140

Analytic Combinatorics in Several Variables

Analytic Combinatorics in Several Variables (Cambridge Studies in Ac Robin Pemantle v (Author), Mark C. Wilson (v) (Author)
Like (0)
Price: $£ 45.00$ \& this item Delivered FREE in the UK with Super Saver Delivery. See de Pre-order Price Guarantee. Learn more.

This title has not yet been released.
You may pre-order it now and we will deliver it to you when it arrives.
Dispatched from and sold by Amazon. Gift-wrap available.

Trade-In | Amazon.co.uk Trade-In Store |
| :--- |
| Did you know you can trade in your old books for an Amazon.co.uk Gift Card to spend on t |
| details. Learn more. |

Store

Trade-In Did you know you can trade in your old books for an Amazon.co.uk Gift Card to spend on t Store

