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Two related concepts

These lectures are about two related properties of polynomials,
hyperbolicity and stability.

These notions have been at the heart of some fundamental results
in very different fields, dating from 60 years ago to the present.

I will survey the development and key uses of these concepts,
devoting the first lecture largely to hyperbolicity and the second to
stability.
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Definitions

A homogeneous polynomial p of degree m is said to be hyperbolic
in direction x ∈ Rd if p(y + ix) 6= 0 for all y ∈ Rd.

A polynomial q is said to be stable if q(z) 6= 0 whenever each
coordinate zj is in the strict upper half plane.

Proposition 1 (hyperbolicity vs. stability)

A real homogeneous polynomial is stable if and only if it is
hyperbolic in every direction in the positive orthant. �

Notation: d will denote the number of variables and m the degree.
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What you are missing, part I:

Definition of hyperbolicity in the inhomogeneous case

Note: once we have restricted to the homogenous case, we may
also assume without loss of generality that p is real: for
homogeneous polynomials, hyperbolicity implies that some multiple
is real.
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Real roots

Proposition 2 (location of zeros)

q(y + ix) 6= 0 for all y if and only if q(x) 6= 0 and z 7→ q(y + zx)
has all real zeros when y is real.

Proof: Absorb the real part of zx into y. �
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Example: Lorentzian quadratic

Let p be the Lorentzian quadratic t2 − x2
2 − · · · − x2

d, where we
have renamed x1 as “t” because of its interpretation as the time
axis in spacetime; then p is hyperbolic in every timelike direction,
that is, for each direction x with p(x) > 0.

The time axis is left-right
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Example: coordinate planes

The coordinate function xj is hyperolic in direction y if and only if
yj 6= 0 (this is true for any linear polynomial).

It is obvious from the definition that the product of polynomials
hyperbolic in direction y is again hyperbolic in direction y.

It follows that
∏d

j=1 xj is hyperbolic in every direction not
contained in a coordinate plane, that is, in every open orthant.
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More examples

Early works developing the theory of hyperbolic functions seem to
treat the Lorentzian quadratic as the only motivating example,
though they discuss a few others to show that the theory is more
general. The generality turned out to be useful in contexts that
were only dreamed of much later. Along with these contexts came
new examples.

We won’t have time here to discuss two sources of examples,
namely lacunas and self-concordant barrier functions. We will,
however, discuss the example of rational Taylor series. It turns out
that any polynomial, when localized at a point on the boundary of
its amoeba, is hyperbolic. More on these notions later, but here is
a picture.
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Example: Fortress polynomial

w4 − u2w2 − v2w2 +
9

25
u2v2

is the projective localization of the denominator (cleaned up a bit)
of the so-called Fortress generating polynomial. It follows
from [BP11, Proposition 2.12] that this polynomial is hyperbolic.
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Another example from combinatorics

This is from a 1-parameter family of hyperbolic polynomials. It is
irreducible (the collar in the middle is not a flat plane) except for
one parameter value.
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Ubiquity of zeros of polynomials

“The one contribution of mine that I hope will be
remembered has consisted in pointing out that all sorts
of problems of combinatorics can be viewed as problems
of the location of the zeros of certain polynomials...”

– Gian-Carlo Rota (1985)
cited by Borcea, Brändén and Liggett (2009)

Also: PDE’s/harmonic analysis, probability, number theory, ...
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Organization

The first lecture will be more geometric. The important properties
of hyperbolic functions are related to convexity and to cones of
hyperbolicity. Applications are to propagation of wave-like PDE’s,
inverse Fourier transforms, and their application to analytic
combinatorics.

The second lecture has a more algebraic flavor. Closure properties
of the class of stable polynomials play a large role. Many of the
applications concern determinants.
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Hyperbolicity
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Major uses of hyperbolicity

Highlights:

* Gårding’s necessary and sufficient condition for stability of the
evolution of a wave-like PDE (1951). See also Petrovsky (1947).

* Atiyah-Bott-Gårding’s computation of inverse Fourier transforms
and lacunas for homogeneous rational functions (1970).

* Interior methods for convex programming (1997).

* Asymptotics of Taylor coefficients for rational functions (2011).
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Properties

Properties of hyperbolic polynomials:

* Directions of hyperbolicity are partitioned into convex cones
(Proposition 4);

* if x and y are in the same cone then the roots of q(y + tx) are
nonpositive.

* Cones of hyperbolicity for localizations of q can be arranged into
a semi-continuously varying family (Theorem 11).

* The space plane can be deformed into the forward cone
(Theorem 12 and the construction immediately following).

Pemantle Hyperbolicity, stability and applications



Overview
Hyperbolicity

Stability

Evolution of wavelike PDE’s
Riesz kernel, and propagation in a cone
Morse deformations and application to Taylor coefficients

Properties

Properties of hyperbolic polynomials:

* Directions of hyperbolicity are partitioned into convex cones
(Proposition 4);

* if x and y are in the same cone then the roots of q(y + tx) are
nonpositive.

* Cones of hyperbolicity for localizations of q can be arranged into
a semi-continuously varying family (Theorem 11).

* The space plane can be deformed into the forward cone
(Theorem 12 and the construction immediately following).

Pemantle Hyperbolicity, stability and applications



Overview
Hyperbolicity

Stability

Evolution of wavelike PDE’s
Riesz kernel, and propagation in a cone
Morse deformations and application to Taylor coefficients

Properties

Properties of hyperbolic polynomials:

* Directions of hyperbolicity are partitioned into convex cones
(Proposition 4);

* if x and y are in the same cone then the roots of q(y + tx) are
nonpositive.

* Cones of hyperbolicity for localizations of q can be arranged into
a semi-continuously varying family (Theorem 11).

* The space plane can be deformed into the forward cone
(Theorem 12 and the construction immediately following).

Pemantle Hyperbolicity, stability and applications



Overview
Hyperbolicity

Stability

Evolution of wavelike PDE’s
Riesz kernel, and propagation in a cone
Morse deformations and application to Taylor coefficients

Properties

Properties of hyperbolic polynomials:

* Directions of hyperbolicity are partitioned into convex cones
(Proposition 4);

* if x and y are in the same cone then the roots of q(y + tx) are
nonpositive.

* Cones of hyperbolicity for localizations of q can be arranged into
a semi-continuously varying family (Theorem 11).

* The space plane can be deformed into the forward cone
(Theorem 12 and the construction immediately following).

Pemantle Hyperbolicity, stability and applications



Overview
Hyperbolicity

Stability

Evolution of wavelike PDE’s
Riesz kernel, and propagation in a cone
Morse deformations and application to Taylor coefficients

Properties

Properties of hyperbolic polynomials:

* Directions of hyperbolicity are partitioned into convex cones
(Proposition 4);

* if x and y are in the same cone then the roots of q(y + tx) are
nonpositive.

* Cones of hyperbolicity for localizations of q can be arranged into
a semi-continuously varying family (Theorem 11).

* The space plane can be deformed into the forward cone
(Theorem 12 and the construction immediately following).

Pemantle Hyperbolicity, stability and applications



Overview
Hyperbolicity

Stability

Evolution of wavelike PDE’s
Riesz kernel, and propagation in a cone
Morse deformations and application to Taylor coefficients

What you are missing, part II:

Properties of hyperbolicity in the inhomogeneous case
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Stable evolution of PDE’s

Let q be a polynomial in d variables and denote by Dq the
operator q(∂/∂x) obtained by replacing each xi by ∂/∂xi.

Let r be a vector in Rd, let Hr be the hyperplane orthogonal to r,
and consider the equation

Dq(f) = 0 (1)

in the halfspace {r · x ≥ 0} with boundary conditions specified on
Hr (typically, f and its first d− 1 normal derivatives).

We say that (1) evolves stably in direction r if convergence of the
boundary conditions to 0 implies convergence of the solution to 0.
Convergence here means uniform convergence of the function and
its derivatives on compact sets.
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r  
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Gårding’s Theorem

Theorem 3 ([Går51, Theorem III])

The equation Dqf = 0 evolves stably in direction r if and only if q
is hyperbolic in direction r.

Let us see why this should be true.

We begin with the observation that if ξ ∈ Cd is any vector with
q(ξ) = 0 then fξ(x) := exp(iξ · x) is a solution to Dqf = 0. (Our
solutions are allowed to be complex but live on Rd.)
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Forward direction

Stability implies hyperbolicity:

Assume WLOG that r = (0, . . . , 0, 1).

Suppose q is not hyperbolic. Then at least one line parallel to r has
a pair of complex roots, meaning that there is a ξ with q(ξ) = 0
and ξ = (a1, . . . , ad−1, ad ± bi), with {ai} and b real and b 6= 0.

Picking b < 0, the function fξ grows exponentially in direction r.
For large λ, the function fλξ grows even faster.

Sending λ→∞, we may take initial conditions going to zero such
that fλξ(r) = 1 for all λ.
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Argument for the reverse direction

The other direction is harder, but here is a hand-waving argument.

Hyperbolicity imples stability:

Suppose q is hyperbolic. For every real r′ = (r1, . . . , rd−1) in
frequency space there are d real values of rd such that
q(r) := q(r′, rd) = 0. For each such r, the function fr is a solution
to Dq(f) = 0 traveling unitarily.

These d solutions are a unitary basis for the space Vr′ that they
span, of solutions to (1) that restrict on Hξ to eir′·x, and the same
is true at any later time.

Pemantle Hyperbolicity, stability and applications



Overview
Hyperbolicity

Stability

Evolution of wavelike PDE’s
Riesz kernel, and propagation in a cone
Morse deformations and application to Taylor coefficients

Argument for the reverse direction

The other direction is harder, but here is a hand-waving argument.

Hyperbolicity imples stability:

Suppose q is hyperbolic. For every real r′ = (r1, . . . , rd−1) in
frequency space there are d real values of rd such that
q(r) := q(r′, rd) = 0. For each such r, the function fr is a solution
to Dq(f) = 0 traveling unitarily.

These d solutions are a unitary basis for the space Vr′ that they
span, of solutions to (1) that restrict on Hξ to eir′·x, and the same
is true at any later time.

Pemantle Hyperbolicity, stability and applications



Overview
Hyperbolicity

Stability

Evolution of wavelike PDE’s
Riesz kernel, and propagation in a cone
Morse deformations and application to Taylor coefficients

Argument for the reverse direction

The other direction is harder, but here is a hand-waving argument.

Hyperbolicity imples stability:

Suppose q is hyperbolic. For every real r′ = (r1, . . . , rd−1) in
frequency space there are d real values of rd such that
q(r) := q(r′, rd) = 0. For each such r, the function fr is a solution
to Dq(f) = 0 traveling unitarily.

These d solutions are a unitary basis for the space Vr′ that they
span, of solutions to (1) that restrict on Hξ to eir′·x, and the same
is true at any later time.

Pemantle Hyperbolicity, stability and applications



Overview
Hyperbolicity

Stability

Evolution of wavelike PDE’s
Riesz kernel, and propagation in a cone
Morse deformations and application to Taylor coefficients

Heuristic

Handwave: Because the vector space has dimension d over any
spatial frequency, we can believe we have all the solutions. They
all evolve unitarily. Thus, writing any boundary conditions
f = g0, f ′ = g1, . . . , f(d−1) = gd−1 as an integral of functions fr,
unitary evolution implies a Parseval-type relation, meaning that
small boundary conditions will lead to small values at any positive
time.
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Discussion

I That hyperbolicity is the “right” condition for stability of
PDE’s is not in question: Gårding’s criterion is necessary and
sufficient.

I Hyperbolicity was used in a very direct way, implying
q(t) := q(r ′ + tr) has d real roots for any r ′.

I The actual proof is dozens of pages and beyond our scope
here, but at its heart is the construction of the Riesz kernel,
to which we will return shortly.
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Cones of hyperbolicity

Before going on, we need a little more of the theory of hyperbolic
polynomials.

Proposition 4 (cones of hyperbolicity)

Let p be real and homogeneous and denote the zero set of p by V.
If K is a connected component of Rd \ V containing a direction of
hyperbolicity for p, then every x ∈ K is a direction of
hyperbolocity for p. �

The component of Vc containing x is called a cone of
hyperbolocity of p and is denoted K (p, x).
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Example

Example 5 (Lorentzian quadratic)

Let p = t2 − x2
2 − · · · − x2

d or any other nondegenerate quadratic
with signature (1, d − 1). Then p is hyperbolic in direction x if and
only if x is timelike, meaning that p(x) > 0. The two cones of
hyperbolicity for p are the forward and backward cones (timelike
vectors with x1 respectively positive and negative).

Example 6 (coordinate planes)

Let p =
∏d

j=1 xj . Each monomial xj is hyperbolic and its cones are
two open halfspaces. The product of hyperbolic functions is
hyperbolic and the cones are just the intersections. Consequently,
p is hyperbolic with the 2d orthants as cones of hyperbolicity.
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Dual cones

Let K ⊆ Rd be a cone and let K ∗ denote the dual cone, that is the
set of all y such that x · y ≥ 0 for all x ∈ K .

K

K*
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Riesz kernel

Let K be a cone of hyperbolicity for the homogeneous polyomial q
of degree m and let K ∗ denote its dual cone.

Theorem 7 (Riesz kernel)

The function

Q(r , α) := (2π)−d
∫
Rd

q(x + iy)−α exp[r · (x + iy)] dy

is well defined when m · Re {α} > d and is independent of the
choice of x ∈ K . For any α, Q(r , α) is defined in the sense of
distributions and is always supported on the dual cone K ∗.
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Proof

Proof: Hyperbolicity in direction x implies that q(x + iy) does
not vanish for any y [use q(−y + ix) 6= 0 and homogeneity], from
which an easy estimate is

|q(x + iy)−α| ≤ Cx |y |−m·Re {α}

and convergence of the integral for m · Re {α} > d follows.

x

The space x + iRd does not intersect the complex variety {q = 0}.
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x

By holomorphicity we may deform x within the connected
component K without changing the integral. If y · x < 0 for some
x ′ ∈ K then deforming x to λx ′ and sending λ to infinity shows
that the integral vanishes, proving that Q is supported on K ∗.

To extend to all α we use the first of the following facts.
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Properties of Q

Recall:

Q(r , α) := (2π)−d
∫
Rd

q(x + iy)−α exp[r · (x + iy)] dy

Let E (r) denote Q(r , 1). Then

DqQ(r , α) = Q(r , α− 1) (α 6= 1)

Q(·, α) ∗ Q(·, β) = Q(·, α + β)

DqE = δ

where δ is the delta function at the origin.

Note: the Riesz kernel is used to complete the (non-handwaving) proof of

Gårding’s theorem. Specifically, if Dqf = 0 then f = (I − IqDq)Pξ(f )

where Pξ is a continuous function of the boundary values and Iq is

convolution with the Riesz kernel.
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Consequences

Consequences of these facts: f is constructed from the boundary
conditions by convolution with E and E is supported on K ∗, so
f (x) depends only on the boundary conditions on the intersection
of Hξ with x − K ∗.
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Propagation of two-dimensional wave equation

Example 8 (2-D wave equation)

Let f solve ftt − fyy = 0 with boundary conditions f (0, y) = g(y)
and ft(0, y) = h(y). Then an explicit formula for f in the right half
plane is given by

f (t, y) =
1

2

[
f (0, y + t) + f (0, y − t) +

∫ y+t

y−t
f ′(0, u) du

]
.

y

f(t,y)

y−t

y+t

t
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The Riesz kernel is so named because Riesz already computed it
for Lorentzian quadratics (the only hyperbolic quadratics) in 1947.

The fundamental solution E is computed in by
∫

q−1er ·(x+iy) dy ,
however one would like a more explicit form.

In fact for some polynomials the Riesz kernel may be represented
as an explicitly computable rational or algebraic integral.

To do so, [ABG70] turned the integral into a homogeneous integral.
This required some more geometry of hyperbolic functions.
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What you are missing, part III:

Application of the theory of hyperbolic functions to the
construction of self-concordant barrier functions in convex

programming.
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Let p be a homogeneous polynomial and let m = mx(p) denote the
degree of vanishing of p at x . Denote by loc(p, x) the
m-homogeneous part of p(x + ·) which we call the localization.
By definition if p(x) 6= 0 then loc(p, x) is a nonzero constant.

Example 9

If p = x2
1 −

∑d
j=2 x2

j is the Lorentzian quadratic, vanishing on the
light cone {p = 0}, then the hyperplanes tangent to the cone are
the vanishing sets of localizations of p.
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Family of cones

Proposition 10 (family of local cones)

If p is hyperbolic then the functions loc(p, x) are also. If C is a
cone of hyperbolicity of p then each loc(p, x) has a cone of
hyperbolicity containing C . Denote this by Kp,C (x).

Recall that if y is a hyperbolic direction for loc(p, x) then
q(x + ty) 6= 0 for t > 0 (all roots are negative real). Thus y
“points away from V. By picking one of the cones of hyperbolicity
at each x , we have in effect chosen a forward orientation from
{p = 0} into its complement.
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Picture of orientation

For example, at each point in the intersection of j of the planes,
choose the 2−j -space containing the positive orthant.
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Stratified behavior

In the previous examples, the cones Kp,C (x) did not vary
continuously with x but they did vary semi-continuously in the
sense that they can only drop down at a limit point. This turns out
to be true in general. The following result occupies Section 5
of [ABG70].

Theorem 11 (semi-continuity)

Let C be any cone of hyperbolicity of p. Then the family of cones
Kp,C is semicontinuous in the sense that

lim inf
x ′→x

Kp,C (x ′) ⊇ Kp,C (x) .

This is used to establish:
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Vector field

Theorem 12 ([ABG70])

As x varies, suppose each K p,C (x) contains some vector v with
r · v > 0. Then there is a continuous, 1-homogeneous section
x 7→ v(x) such that v(x) ∈ Kp,C (x) and r · v(x) > 0 for all x.

Proof: By hypothesis, for each x there is a v . By
semi-continuity, this v works for all x ′ in some neighborhood of x .
By compactness (we are working in projective space), finitely many
of these neighborhoods cover. By convexity, we may piece these
together with a partition of unity while staying inside Kp,C (x) at
each point x . �
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Consequences

I.

This is used by [ABG70] to deform the chain x + iRd over which
the inverse Fourier transform is integrated into a conical chain C.

x + i R Cd
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application to multivariate generating functions

II.

Let us see how this was used in [BP11] to compute asymptotics of
the Taylor series for

F (x , y , z) =
1

(1− Z )(3− X − Y − Z − XY − XZ − YZ + 3XYZ )

=
∑
r

a(r , s, t)X rY sZ t (2)

where a(r , s, t) is the probability of the cube grove of order
r + s + t having a horizontal edge at barycentric coordinate (r , s, t).
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Figure: a random cube grove of size 100
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Amoebas

To see how one applies the [ABG70] theory to rational generating
functions, we need one more definition. The amoeba of a
polynomial q is the image of its zero set under the coordinatewise
log-modulus map

(z1, . . . , zd) 7→ (log |z1|, . . . , log |zd |) .
The connected components of the complement of any amoeba are
open convex sets.
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Cauchy’s integral formula

The method works for any rational function P/Q. Any Laurent
expansion of P/Q is convergent on some component B of the
complement of amoeba(Q) and its coefficients are given there by
Cauchy’s formula, where x is any point in B:

arst = (2πi)−3

∫
x+iT d

e−r ·z f (z) dz . (3)

Here we have changed to logarithmic coordinates, so
f (z) := F (ez1 , . . . , ezd ) and T d := (R/2πZ)d .
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The imaginary fiber through any point in a cone of hyperbolicity,
such as the point shown, does not intersect the zero set of q.
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Hyperbolicity on the amoeba boundary

Let x be any point on the common boundary of amoeba(Q) and
one of the components B of its complement. Let q := Q ◦ exp
denote Q in logarithmic coordinates.

Theorem 13 (hyperbolicity on the amoeba boundary)

The polynomial loc(q, x) is hyperbolic and has a cone of
hyperbolicity, C , containing the geometric tangent cone tanx(B).

If x is the origin then C
is the directions between
5:00 and 10:00
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projective integral

It follows that the integral computing arst can be pushed onto a
cone pointing outward from x .

By the apparatus in [ABG70], one then has

ar ∼ E (r), E (r) =

(̂
1

Q

)
,

where 1
Q is the inverse Fourier transform of 1/q, otherwise known

as the fundamental solution to the wave equation DqE = δ.

When Q is the denominator of (2), this gives

arst ∼
1

π
arctan

(√
2(rs + rt + st)− (r 2 + s2 + t2)

r + s − t

)
.
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II: Applications of stability in probability and
combinatorics

Robin Pemantle

Current Developments in Mathematics, 18 November 2011
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Outline

I Univariate stable functions

II Multivariate stable functions

III Negatively dependent random variables

IV Multi-affine stability / strong Rayleigh property

Plan: go through I and II catalogue style: many statements, few
proofs, and hitting highlights rather than results that build on each
other. Then, for III and IV, try to give a coherent development.
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Univariate stable functions
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Real roots

A univariate stable polynomial f is by definition one with no roots
in the open upper half plane.

If f is real, then the set of roots is invariant under conjugation, so f
has no roots in the lower half plane either, hence has all real roots.

If, additionally, the coefficients of f are nonnegative, then all roots
of f are in (−∞, 0]. Polynomials whose roots are all real and
nonpositive have useful properties. Let us denote this class of
univariate polynomials by RR.
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Proposition 14

If f ∈ RR then f /f (1) is the probability generating function for a
sum of independent Bernoulli random variables. �

Proposition 15 (Pólya frequency criterion, Edrei 1953)

A polynomial with nonnegative real coefficients is in RR if and only
if its sequence of coefficients (a0, . . . , ad) is a Pólya frequency
sequence, meaning that all the minors of the matrix (an−k) have
nonnegative determinant.

Corollary 16 (log-concavity)

The coefficient sequence of any polynomial in RR is log-concave. �
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Proposition 15 (Pólya frequency criterion, Edrei 1953)

A polynomial with nonnegative real coefficients is in RR if and only
if its sequence of coefficients (a0, . . . , ad) is a Pólya frequency
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Ultra-log concavity

In fact the coefficients of any f ∈ RR are ultra-logconcave,
meaning that {ak/

(d
k

)
} is log-concave. These inequalities are due

to Newton (1707).

Perhaps the single most useful theorem about the class of
(complex) stable polynomials is that it is closed under
coefficient-wise multiplication by Pólya-Schur multiplier
sequences. Say that a sequence {λ(0), λ(1), . . .} is a multiplier
sequence if

f =
∞∑
n=0

anxn ∈ RR implies T (f ) :=
∞∑
n=0

λ(n)anxn ∈ RR .
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Pólya-Schur Theorem

Theorem 17 (Pólya-Schur, 1914)

Let φ(z) :=
∑

n λ(n)zn/n! be the exponential generating function
for the sequence λ. The following are equivalent.

(i) λ is a multiplier sequence.

(ii) φ is entire and either φ(z) or φ(−z) is the uniform limit on
compact sets of polynomials in RR.

(iii) Either φ(z) or φ(−z) is entire and can be written as
Czneaz

∏∞
k=1(1 + αkz) for a summable sequence of

nonnegative numbers {αk}.
(iv) For all integers n > 0, the polynomial T [(1 + z)n] is

hyperbolic with zeros all of the same sign.
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Multivariate stability

Multivariate stability

The presentation owes a debt to David Wagner’s recent survey
article in the AMS Bulletin [Wag11].

Definition 18

Recall: a complex polynomial q in d variables is said to be stable
if q(z1, . . . , zd) = 0 implies not all coordinates zj are in the open
upper half plane.
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Easy properties

Proposition 19 (easy closure properties)

The class of stable polynomials is closed under the following.

(a) Products: f and g are stable implies fg is stable;

(b) Index permutations: f is stable implies f (xπ(1), ..., xπ(d)) is
stable where π ∈ Sd ;

(c) Diagonalization: f is stable implies f (x1, x1, x3, . . . , xd) is
stable;

(d) Specialization: if f is stable and Im (a) ≥ 0 then
f (a, x2, . . . , xd) is stable;

(e) Inversion: if the degree of x1 in f is m and f is stable then
xm

1 f (−1/x1, x2, . . . , xd) is stable;

�
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Differentiation

Lemma 20 (differentiation)

If f is stable then ∂f /∂xj is either stable or identically zero.

Proof: Fix any values of {xi : i 6= j} in the upper half plane. As
a function of xj , f has no zeros in the upper half plane. By the
Gauss-Lucas theorem, the zeros of f ′ are in the convex hull,
therefore not in the upper half plane. �

The next property, Wagner calls an “astounding” recent
generalization of the Pólya-Schur theorem.
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Multivariate Pólya-Schur theorem

This characterizes not just multiplier sequence but all C-linear
maps preserving stability. To restrict to multiplier sequences, take
T (xα) = λ(α)xα.

Theorem 21 ([BB09, Theorem 1.3])

The C-linear map T : C[x ]→ C[x ] preserves stable polynomials if
and only if either its range is scalar multiples of a single stable
polynomial or the series∑

α∈(Z+)d

(−1)|α|T (xα)
yα

α!

is a uniform limit on compact sets of stable polynomials in C[x , y ].
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What you are missing, part IV: any hint of
the proof

The crucial step is to establish a criterion reminiscent to
criterion (iv) in the univariate case (that T [(1 + z)n] always has
real roots of the same sign):

A power series
∑

α Pα(x)yα whose coefficients are
polynomials in x is in the closure of stable polynomials in
C[x , y ] if and only if for all β ∈ (Z+)d ,∑

α≤β
(β)αPα(x)yα

is stable in C[x , y ].
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Determinants

A number of theorems and conjectures about stable polynomials
have to do with determinants. I will describe one classical result,
one recent result and one conjecture that is still open.

1 Stability of det(A + x1B1 + · · ·+ xdBd).

2 Real roots of the mixed determinant det(xA,−B).

3 Nonnegative coefficients of the polynomial λ 7→ Tr(A + λB)n.
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Positive definite matrices

1.

A classical example of hyperbolicity already cited in [Går51] that if
A is Hermitian and B is nonnegative definite then t 7→ det(A + tB)
has only real zeros.

The multivariate generalization of this is that if A is Hermitian and
B1, . . . ,Bd are positive definite, then

f := det(A + x1B1 + · · ·+ xdBd) (4)

is a real stable polynomial in x1, . . . , xd . Note: if A is also positive
definite, then f has positive coefficients.
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Easy proof

The proof is more or less the same as the proof of hyperbolicity of
det(A + tB).

Fix the real part of x1, . . . , xd , all positive, and remove a factor of
the positive definite square root of Q :=

∑
Re {xj}Bj on both the

right and the left to obtain det Q det(iI + H) where H is Hermitian
(subsuming Q−1/2AQ−1/2 as well as the similar term with A
replaced by the sum of Im {xi}Bi . The eigenvalues of H are real,
hence cannot equal −i . �
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Mixed determinants

2.

If A and B are n × n matrices, define the mixed determinant

det(A,B) :=
∑
S⊆[n]

det(A|S) det(B|Sc ) .

The definition for k matrices instead of two is analogous,
substituting a partition into k parts for {S , Sc}.

Conjecture (Johnson’s conjecture)

If A is Hermitian and B is positive definite then det(xB,−A) has
only real roots.

This (and much more) was recently proved by Borcea and
Brändén [BB08].
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BMV conjecture

3.

Conjecture (Bessis-Moussa-Villani 1975)

If A is Hermitian and B is nonnegative definite then
λ→ Tr(exp(A− λB)) is the Laplace transform of a positive
measure on [0,∞).

This has been proved for 2× 2 matrices but is still open for all
sizes greater than 2. This was shown in 2004 to be equivalent to
the following.

For all nonnegative definite matrices A and B and all
integers n > 0, the polynomial λ 7→ Tr(A + λB)n has
nonnegative coefficients.
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Negative dependence

Negatively dependent random variables
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Binary-valued random variables

Let Bn := {0, 1}n denote the Boolean lattice of rank n. The joint
law of n binary random variables is a measure µ on Bn. The
probability generating function f = fµ is given by

fµ(x1, . . . , xn) :=
∑
ω∈Bn

µ(ω)
n∏

j=1

x
ωj

j = Exω .

Probability generating functions for measures on Bn all share two
properties: they are multi-affine, meaning that no variable
appears with a power greater than one, and their coefficients are
real and nonnegative.
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probability generating function f = fµ is given by

fµ(x1, . . . , xn) :=
∑
ω∈Bn

µ(ω)
n∏

j=1

x
ωj

j = Exω .

Probability generating functions for measures on Bn all share two
properties: they are multi-affine, meaning that no variable
appears with a power greater than one, and their coefficients are
real and nonnegative.
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Negative correlation

Example 22 (n=2)

The function f (x , y) := p2xy + p(1− p)x + p(1− p)y + (1− p)2

generates two IID coin flips with success probability p. The
function f (x , y) + a(xy − x − y + 1) generates two exchangeable
p-coins that are positively correlated if a < 0 and negatively
correlated if a > 0.

(1−p)

2

2

p(1−p)

− a

− a

pp

(1−p)

2

2

p(1−p)p(1−p) + ap(1−p) + a
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Lattice conditions

A 4-tuple (a, b, c , d) of the Boolean lattice Bn is a diamond if b
and c cover a and if d covers b and c , where x covers y if x ≥ y
and x ≥ u ≥ y implies u = x or u = y .

b c

d

a

 

Say that µ satisfies the positive lattice condition if
µ(b)µ(c) ≤ µ(a)µ(d) for every diamond (a, b, c , d). The reverse
inequality is called the negative lattice condition.
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FKG

The positive lattice condition is very useful, due to the following
result.

Theorem 23 (FKG)

If µ satisfies the positive lattice condition then µ is positively
associated and the projection of µ to any smaller set of variables
satisfies both these conditions as well.

Here, positively associated means that

Eµfg ≥ (Eµf ) (Eµg)

whenever f and g are both monotone increasing on µn.
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Negative association

Every function is positively correlated with itself. Thus, to define
negative association, we need to do more than reverse the
inequality.

We say that µ is negatively associated if Eµfg ≤ (Eµf )(Eµg)
whenever f and g are monotone increasing on Bn and in addition
there is a set S ⊆ {1, . . . , n} such that f depends only on
{ωj : j ∈ S} and g depends only on {ωj : j /∈ S}.

Historically, a number of notions of negative dependence have been
defined. The weakest is pairwise negative correlation. Negative
association is the strongest one that was suspected to hold in
many examples.
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In search of a theory

Unfortunately, the negative lattice condition does not imply
negative association. In fact the NLC is not closed under passing
to subsets.

Up until [BBL09] there was no satisfactory theory of negative
dependence. The paper [Pem00] attempted, but failed, to find
one. Say that µ has property h-NLC+ if every measure obtained
from µ by ignoring a subset of the variables or applying an external
field has the NLC. Here an external field means multiplying each
µ(ω) by

∏
j λ

ωj

j and renormalizing.

Conjecture ([Pem00])

h-NLC+ implies negative association.
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Theory found!

It turns out that the “right” condition is not h-NLC+. Say that the
measure µ on Bn is strong Rayleigh if its generating function
f = fµ is stable.

Theorem 24 ([BBL09])

If µ is strong Rayleigh then µ is negatively associated.

In a short while I will give some indication of how this is proved.

Pemantle Hyperbolicity, stability and applications



Overview
Hyperbolicity

Stability

Univariate stable functions
Multivariate stable functions
Negative dependence
Strong Rayleigh property

Theory found!

It turns out that the “right” condition is not h-NLC+. Say that the
measure µ on Bn is strong Rayleigh if its generating function
f = fµ is stable.

Theorem 24 ([BBL09])

If µ is strong Rayleigh then µ is negatively associated.

In a short while I will give some indication of how this is proved.

Pemantle Hyperbolicity, stability and applications



Overview
Hyperbolicity

Stability

Univariate stable functions
Multivariate stable functions
Negative dependence
Strong Rayleigh property

More about strong Rayleigh measures

Strong Rayleigh measures have more nice properties. For example,
they are closed under partial symmetrization.

Let µij denote µ with the indices i and j transposed. If µ is SR
then for any i , j and any θ ∈ [0, 1] the measure θµ+ (1− θ)µij is
SR. This is [BBL09, Theorem 4.20] and it leads to the very nice
result:

Theorem 25 (exclusion dynamics)

Begin with a configuration in Bn. For each i , j , swap the values ωi

and ωj at some rate βij . Then the law of the configuration at any
time t is SR.
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Nearest neighbor exclusion process on Z

−3 −2 1 2 4−1 3

  
time

−3−2 −1 1 0 32
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Complex geometry

I will not be proving these two results, but I will quote the authors
as to one aspect the methodology.

Clearly [this result] is real stable in nature. However, in
order to establish it, we have to consider the (wider)
complex stable context.

In fact, they prove that stability of fµ implies stability of
fθµ+(1−θ)µij when µ is any complex-valued measure. It is important
that f be multi-affine, but evidently not that f be real.
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Another case of extending beyond R+

The property h-NLC+ turns out to be equivalent to the (ordinary)
Rayleigh property defined as the following inequality for all positive
vectors x :

∀i , j
∂f

∂xi
(x)

∂f

∂xj
(x) ≥ f (x)

∂2f

∂xi∂xj
(x) . (5)

For multi-affine real polynomials, stability is equivalent to (5) for
all x ∈ Rn. Thus SR differs from h=NLC+ in that the inequality is
required for all x rather than for positive x . This should perhaps
be called h-NLC± because it is h-NLC with closure under external
fields both positive and negative!
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Multi-affine stable functions

The theory of multi-affine stable functions
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Polarization

Let f be a polynomial of degree m in one variable and define the
polarization of f to be the result of replacing x j be the normalized
elementary symmetric function

(m
j

)−1
ej(x1, . . . , xm). If f is a

probability generating function then the event {X = j} has been
replaced by the event {

∑m
1=1 X1 = j}.

Lemma 26 (polarization)

1. If f is univariate stable then its polarization is stable.

2. If f is multivariate stable then the analogous polarization,
replacing x j

i in each monomial by ej(xi1, . . . , xi`), is stable.

(In fact part 1 is if and only if)
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Symmetric homogenization

The polarization lemma is proved via the classical
Grace-Walsh-SzegHo coincidence theorem.

It is then used by [BBL09] to prove the following result.

Suppose µ is a measure on Bn and define the symmetric
homogenization µsh of µ to be the measure on µ2n that is
symmetric on xd+1, . . . , x2n, restricts to µ when x1, . . . , xn are set
equal to 1, and is n-homogeneous. In other words, to pick from
µsh, first sample X1, . . . ,Xn from µ, then if these sum to k, choose
n − k indices uniformly from n + 1 to 2n, set those variables equal
to 1 and the rest of Xn+1, . . . ,X2n to zero.
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sh preserves SR

Lemma 27

If µ is strongly Rayleigh then so is µsh.

Proof: First one shows that the usual homogenization of a
polynomial, multiplying each monomial by an appropriate power of
xd+1, preserves stability. This follows from facts about
hyperbolicity found in Gårding’s original paper. Denoting this
homogenization by µ∗, we see that µsh is the polarization of µ∗, so
the result follows from the Polarization lemma. �
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SR implies NA

Proof that strong Rayleigh measures are negatively
associated:

1. Pass to µsh.

2. Observe that SR implies Rayleigh which implies pairwise
negative correlation.

3. The original proof by Feder and Mihail [FM92] of negative
association for balanced matroids now goes through, with
homogeneity of µsh providing the “balance” property.

�
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