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Overview of generating functions and the base case
Rate functions and methods of computational algebra

Analytic methods for sharp asymptotics

Purpose
Scope
Generating functions and how to obtain them
Phenomena
Base case: smooth points
Application to CLT and large deviations

Three lectures

I Overview of generating functions and the base case (smooth
point computations)

II Rate functions, convex duals and algebraic computation

III Analytic method for sharp asymptotics: saddle point integrals
and inverse Fourier transforms
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Generating functions and how to obtain them
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Lecture I outline

(i) Purpose of these lectures

(ii) Scope of GF method

(iii) Introduction to generating functions: what are they and how
do you compute them?

(iv) Examples and phenomena
—————————————————————-

(v) Base case: the smooth point formula

(vi) Application: Gaussian behavior and large deviations
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Purpose

The purpose of these lectures is to introduce you to a method for
computing asymptotics for models in probability and combinatorics
which are amenable to generating function analysis.

The three lectures draw on a forthcoming book; the manuscript
was recently submitted for publication by Cambridge University
Press [PW13]; a freely available download is available on my
webpage.

Analytic Combinatorics in Several Variables
Robin Pemantle and Mark C. Wilson
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Emphases

Because of the audience, I will emphasize applications to
probability.

There will be few proofs, but I will give references to where the
proofs may be found in [PW13].

The lectures are meant to be user-friendly and to focus on how one
might actually carry out the computations. This involves some
computational algebra and some complex integration, all of which
will be explained with examples as it arises.
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Arrays of numbers

We consider models in which probabilities (or other interesting
quantities) are indexed by several parameters and therefore form an
array, e.g., {p(r , s, t) : i , j , k ∈ Z+}.

More generally, we might write {p(r) : r ∈ Zd}, where d always
denotes the number of parameters (dimension) and the indices
may be negative as well as positive (but always discrete); when
d ≤ 3 we use letter alphabetically from r instead of subscripts.

The method is most useful when the quantities p(r) obey some
kind of recursion. Some examples are as follows.
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Example: binomial coefficients

Binomial coefficients: use the symmetric form C(r, s) :=

(
r + s

r, s

)
.

These satisfy

C(r, s) = C(r, s− 1) + C(r − 1, s)

for r, s ≥ 0, (r, s) 6= (0, 0), where coefficients with negative indices
are taken to be zero by convention and the recursion fails at (0, 0).

A probabilist might also consider normalized binomial coefficients
p(r, s) = 2−r−sC(r, s) satisfying

p(r, s) =
p(r, s− 1) + p(r − 1, s)

2
.
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Example: random walk

Let µ be a measure on Zd and and let p(r,n) := Pn(0, r) denote
the probability of an n-step transition from 0 to r. Then

p(r,n) =
∑

s

p(s,n)µ(s− r) .
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Further examples

A number of further examples are as follows. We will study some
of these later, but mention them now to indicate the scope.

I directed percolation probabilities

I random walks with boundary conditions

I quantum walk

I lattice paths

I transfer matrix method

I stationary distributions on the lattice

I queuing probabilities

I orientation probabilities in random tilings
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Narrow, yet broad

The point of these examples is that the method is both narrow and
broad: narrow because it works only (mostly) for exactly solvable
models; broad because of the many models and phenomena that
are included under this.

The whole enterprise has an old-fashioned feel. Early books on
random walk, e.g. [Spi64] or discrete probability theory [Fel68]
devoted much of their attention to explicitly computable examples
and secondarily to general results flowing from these.

The existence of new tools such as computational algebra and
topological methods of the 1970’s and 80’s paves the way for a
renaissance of this genre.
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Multivariate generating function

The generating function for {p(r)} is the formal series in d
variables:

F (z) := F (z1, . . . , zd) :=
∑
r

p(r)z r .

Here, z r := z r1
1 · · · z

rd
d is monomial power notation. If r ∈ (Z+)d

then this is a formal power series; if coordinates of r may be
negative, then it is a formal Laurent series.

As long as p(r) does not grow more than exponentially in r , the
formal series F is also a convergent series on some domain in Cd .
If p(r) ∈ [0, 1] for all r , then F converges on at least the unit
polydisk. If p(r)→ 0 faster than exponentially in |r | then F is
entire.

Pemantle Generating Function Computations in Probability and Combinatorics



Overview of generating functions and the base case
Rate functions and methods of computational algebra

Analytic methods for sharp asymptotics

Purpose
Scope
Generating functions and how to obtain them
Phenomena
Base case: smooth points
Application to CLT and large deviations

Multivariate generating function

The generating function for {p(r)} is the formal series in d
variables:

F (z) := F (z1, . . . , zd) :=
∑
r

p(r)z r .

Here, z r := z r1
1 · · · z

rd
d is monomial power notation. If r ∈ (Z+)d

then this is a formal power series; if coordinates of r may be
negative, then it is a formal Laurent series.

As long as p(r) does not grow more than exponentially in r , the
formal series F is also a convergent series on some domain in Cd .
If p(r) ∈ [0, 1] for all r , then F converges on at least the unit
polydisk. If p(r)→ 0 faster than exponentially in |r | then F is
entire.

Pemantle Generating Function Computations in Probability and Combinatorics



Overview of generating functions and the base case
Rate functions and methods of computational algebra

Analytic methods for sharp asymptotics

Purpose
Scope
Generating functions and how to obtain them
Phenomena
Base case: smooth points
Application to CLT and large deviations

Obtaining generating functions

The way this usually works is that the nicer the recursion for
{p(r)}, the nicer the expression for F . For example, in decreasing
order of niceness:

I rational function (linear recurrence)

I algebraic function (convolution equation)

I solution to linear differential equation (polynomial recurrence)

I worse: a sum, or a nasty implicit equation

The analytic properties are then used to estimate p(r).
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Obtaining generating functions

The main emphasis is on this last part: using analytic techniques
to estimate p(r) given a nice expression for F .

First though, if we are to have any hope of using this to compute,
we need to take a few minutes to carry out the step of obtaining
the generating function.

I will so this by example. For details and theory you can
consult [PW13, Chapter 2] or one of the many fine combinatorics
texts dealing with this, my favorites being [Wil94]
and [Sta97, Sta99].
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Generating functions from recursions

Linear recursions with constant coefficients lead to rational
generating functions, provided it is not a forward recursion in any
variable.

This is described in [PW13, Section 2.2].

Here follows a worked example.
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Linear recursions

Example: lattice path counting. Let a(r) denote the number of
lattice paths from the origin to r whose steps are in the finite set
E ⊆ (Zd)+. Let P(z) :=

∑
x∈E zx . The relation

ar =
∑
x∈E

ar−x

with the single boundary conditions a0 = 1 leads to(
1−

∑
m∈E

zm

)
F (z) =

∑
r

δ0 ,rz r = 1 .

Thus

F (z) =
1

1− P(z)
.
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Delannoy numbers

A sub-example of lattice path counting is the Delannoy numbers,
which count N-E-NE paths.

Example: The Delannoy numbers count N-E-NE paths.

FDel(z) =
1

1− x − y − xy
.

(4,5)
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Rook paths

How many ways can a rook get from (0, 0) to (r , s) moving only
north and east (any length of step at each move)?

The allowable jumps are (0, 1), (0, 2), . . . , (1, 0), (2, 0), . . .. This is
not a finite set but has a simple generating function

P(x , y) =
x

1− x
+

y

1− y
.

The generating function counting NE-rook paths is therefore

F (x , y) =
1

1− P(x , y)
=

(1− x)(1− y)

1− 2x − 2y + 3xy
.
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Kernel method

When the recursion is forward looking, the relation
ar =

∑
x∈E ar−x fails along a whose coordinate plane. This leads

to
(1− P(z))F (z) = R(z)

where R(z) represents the boundary conditions and need not be
polynomial.

When the look-ahead in the recursion is well behaved, the
generating function is still algebraic; this is the kernel method;
see, e.g. [BMJ05]. I will give only a brief example; see [PW13,
Section 2.3] for details.
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Example: W-SE random walk

Example [LL99]. A random walker begins at (r , s) ∈ (Z+)2 and
moves by fair coin-flip either west (−1, 0) or southeast (1,−1).
What is the probability of first hitting the axes at (0, 1)?

The recursion yields (2− x − y/x)F = R but R is not rational.
The Laurent polynomial (2− x − y/x) is called the kernel.
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Result of the kernel method

Setting the kernel 2− x − y/x to zero yields x = 1±
√

1− y . The
kernel method yields the algebraic function

F (x , y) =
2

1−
√

1− y − x
.

Note: F has a branch singularity on the (complex) line y = 1 but
also a pole at x =

√
1− y ; some asymptotic directions are

controlled by the branch and some by the pole (these being the
easier, meromorphic case).
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Example: stationary probabilities in queuing model

A two-server queuing model moves from (r , s) to (r − 1, s) or
(r , s − 1) with probabilities p and 1− p if r > s, reversed if s > r .
There are boundary conditions on how the walk behaves from
(0, s) or (r , 0). Let {p(r , s)} be the stationary probabilities.
Matching the boundary conditions in this kind of problem involves
solving a Riemann-Hilbert problem. This is done by hand
in [FM77, FH84]; later the problem was solved in general (for two
variables) by [FIM99].

The resulting generating functions are transcendental but
sometimes have properties resembling well known number-theoretic
functions (theta functions, etc.).
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Phenomena

To give an idea of the variety of behaviors that can be expressed
even in the simplest case of a rational generating function, I will
show a few pictures.
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Example: quantum walk

Here p(r , n) is the amplitude for a quantum walk to be at position
r at time n. This satisfies a linear recursion over C that we will
study in detail later. The picture shows, via an intensity plot, the
probabilities (modulus squared of the amplitude) for the position of
the particle at time 200.
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Example: random tilings

A number of statistical mechanical ensembles of random tilings
obey recursions.

Left: Aztec diamond tiling; Right: fortress tiling.
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More tilings

Left: order-100 cube grove; Right: order-50 double-dimer tiling
(specializes to the Ising model on the triangular lattice)
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Base case: smooth points
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Smooth point formula

Let

F (z) =
∑
r

arz r =
G (z)

H(z)

be a generating function with pole variety V := {z : H(z) = 0}.

For example, when d = 2, the set V is an algebraic curve in C2

(one complex dimension, two real dimensions). Illustrations usually
only show the R× R slice.
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Critical points

The logarithmic gradient is just the usual gradient, multiplied
coordinatewise by (z1, . . . , zd). At the point 1 = (1, . . . , 1) the
gradient and logarithmic gradient concide. We let r̂ := r/|r |
denote a unit vector parallel to r . Asymptotics “in the direction
r̂∗” refer to ar as r →∞ with r̂ → r̂∗.

To compute asymptotics in the direction r̂ we look for points z
that lie on V, and such that the logarithmic gradient to H at z is
parallel to r̂ .

parallel to r
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Critical point equations

This means solving the critical point equations. These are d
equations in d variables and typically describe a zero-dimensional
ideal, i.e., a finite set of points; see [PW13, (8.3.1)-(8.3.2)].

H(z) = 0

rdz1
∂H

∂z1
(z) = r1zd

∂H

∂zd
(z)

...
...

rdzd−1
∂H

∂zd−1
(z) = rd−1zd

∂H

∂zd
(z) .

Pemantle Generating Function Computations in Probability and Combinatorics



Overview of generating functions and the base case
Rate functions and methods of computational algebra

Analytic methods for sharp asymptotics

Purpose
Scope
Generating functions and how to obtain them
Phenomena
Base case: smooth points
Application to CLT and large deviations

Minimal points

Definition:

Say that z ∈ V is minimal if V contains no other points
w in the polydisk {w : |wj | ≤ |zj |, 1 ≤ j ≤ d}.

When the coefficients are nonnegative, the
arc of real points of V bewteen the x- and y -axes consists of

minimal points.
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Smooth point theorem

Theorem (Smooth point asymptotics [PW13, Theorem 9.2.7])

Let z(r̂) vary smoothly with r̂ and be minimal. Then

ar = (2πrd)−(d−1)/2z−rR(z)H(z)−1/2 + O
(

z−r r
−d/2
d

)
where R(z) =

G (z)

zd∂H(z)/∂zd

is the residue of F at z and H(z) is the Hessian matrix for the
parametrization of V as a graph zd = h(z1, . . . , zd−1).

The remainder term is uniform as long as r̂ remains in a compact
set over which z(r) varies smoothly and H(z(r̂)) 6= 0.
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Idea of proof

For now, I will give only a brief sketch of why this is true.
Probabilists should understand this better than combinatorialists!

Think of {ar} as a function a(·) from Z3 to the complex numbers.
Its Fourier-Laplace transform (depending on whether u is real or
imaginary) is given by

â(u) =
∑
r

exp(u · r)ar .

Plugging in z = exp(u) coordinatewise, we see that F (z) = â(u).

Generating functions are Fourier-Laplace transforms. To recover ar
from F we invert the transform. The inversion formula is none
other than the multivariate Cauchy integral fomrula.
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Cauchy integral

If F (z) =
∑

r z r and F is analytic on the polydisk bounded by a
torus T then

ar = (2πi)−d
∫
T

z−r−1 F (z) dz .

We may push T arbitarily close to z ∈ V provided that z is
minimal.

Figure: The torus T for the Cauchy integral and the singular variety of F
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r z r and F is analytic on the polydisk bounded by a
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ar = (2πi)−d
∫
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z−r−1 F (z) dz .
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Figure: The torus T for the Cauchy integral and the singular variety of F
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Dominating point: illustration

Pushing T to the dominating point x ∈ V and performing a simple
residue computation proves the smooth point formula.

x

parallel to r

Figure: The dominating point, x

Pemantle Generating Function Computations in Probability and Combinatorics



Overview of generating functions and the base case
Rate functions and methods of computational algebra

Analytic methods for sharp asymptotics

Purpose
Scope
Generating functions and how to obtain them
Phenomena
Base case: smooth points
Application to CLT and large deviations

Application to CLT and large deviations

In the remainder of this lecture, I will illustrate how the smooth
point formula may be applied to two classical limit theorems.

In these cases the generating function analysis does not tell us
anything we do not already know, but it serves to illustrate the
nature of the asymptotics and to highlight the connetion between
generating function asymptotics and probabilistic limit theory.

Applications to quantum walks and random tilings (tomorrow’s
lecture) give results not subsumed by existing theory.
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generating function asymptotics and probabilistic limit theory.

Applications to quantum walks and random tilings (tomorrow’s
lecture) give results not subsumed by existing theory.
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Random walk on Zd with sub-exponential tails

Let µ be a probability measure on Zd−1 with probability generating
function g(z) =

∑
r µ(r)z r .

If µ(r) = O(exp(−c |r |) for every c > 0, we say that µ has
sub-exponential tails; in this case g is entire.

The spacetime generating function is a d-variate rational fuction:

F (z , y) =
∑
n≥0

∑
r

pn(0, r)yn

=
∑
n≥0

yng(z)n

=
1

1− yg(z)
.
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F is meromorphic and its pole set is smooth

Assuming sub-exponential tails, the pole set V of F is an analytic
variety y = 1/g(z), as shown in the illustration.

Figure: Pole is a complex analytic hypersurface; all that is shown here is
the slice (R+)d × R+, depicted as d = 1.
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Dominating point

The Cauchy integral becomes

p(r , n) =

∫
z−r−1y−n−1F (z , y) dy dz .

The dominating point is the point (z , 1/g(z)) on V where the
lognormal to V is parallel to r̂ .

parallel to r
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Tilted distribution

In our case, that’s the point (λ, 1/g(λ)) where the tilted
distribution µλ has mean r , where

µλ(s) =
1

g(λ)
λrµ(s) .

must be parallel to r
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Resulting formula

The resulting formula is

p(r , n) ∼ (2πn)−d/2 R(λ)λ−rg(λ)n detH(r)−1/2

where H(r) is the Hessian determinant of 1/g(λ) at the point λ(r).

Let us interpret this. The function λ−rg(λ)n, or rather its
logarithm n log g(λ)− r · log λ, is the large deviation rate for the
partial sums to have mean r .

The Hessian matrix is the covariance matrix for the tilted
distribution at mean r .
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Local large deviation formula

To summarize: p(r , n) is asymptotically estimated by

Ceβn(2πn)−d/2

where
β = β(r̂) = g(λ(r̂))− r̂ · log λ(r̂)

is the large deviation rate function.

The Hessian matrix H is the covariance matrix for the tilted
distribution µλ, making it natural for its −1/2 power to appear in
the normalizing constant C .

Pemantle Generating Function Computations in Probability and Combinatorics



Overview of generating functions and the base case
Rate functions and methods of computational algebra

Analytic methods for sharp asymptotics

Purpose
Scope
Generating functions and how to obtain them
Phenomena
Base case: smooth points
Application to CLT and large deviations

Local large deviation formula

To summarize: p(r , n) is asymptotically estimated by

Ceβn(2πn)−d/2

where
β = β(r̂) = g(λ(r̂))− r̂ · log λ(r̂)

is the large deviation rate function.

The Hessian matrix H is the covariance matrix for the tilted
distribution µλ, making it natural for its −1/2 power to appear in
the normalizing constant C .

Pemantle Generating Function Computations in Probability and Combinatorics



Overview of generating functions and the base case
Rate functions and methods of computational algebra

Analytic methods for sharp asymptotics

Purpose
Scope
Generating functions and how to obtain them
Phenomena
Base case: smooth points
Application to CLT and large deviations

Central limit

The expression for p(r , n) is uniform in r . We may expand near
r = m, where m is the untilted mean. This always results in
(x , y) = (1, . . . , 1) and x−rg(x)n = 1.

Near r = m, approximating −r · log x by its quadratic Taylor
expansion yields

x−r ∼ exp [−B(r −m)/n]

where B is the quadratic form inverse to H. This leaves

p(n, r) ∼ (2πn)−1/2|H(m)|−1/2e−B(r−m)/n

which is the multivariate normal N(m,H(m)).
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Moral

Moral:

I The local CLT is a special case of large deviations when the
deviations are small.

I It holds uniformly over any region where r −m = o(n2/3) (we
didn’t prove this but it follows easily from the remainder
term).

I For lattice distributions with small tails, the local CLT and
local LD are a consequence of a general formula for the Taylor
coefficients of a rational function in the smooth, minimal case.

Details may be found in [PW13, Section 9.6].
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END PART I
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II: Rates of Exponential Growth and Decay

Robin Pemantle

ICERM tutorial, 13-15 November, 2012
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Lecture II outline

(i) Amoebas

(ii) Upper bounds on rate functions via Legendre transforms

(iii) Sharpness of rate functions via tangent and normal cones

(iv) Limit shapes via dual surfaces
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Amoebas
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Amoeba definition

Let H be a d-variable polynomial. Let ReLog (z) denote the vector
(log |z1|, . . . , log |zd |).

The Amoeba of H is the set

{ReLog z : z ∈ Cd ,H(z) = 0} .

In other words, amoeba(H) is the projection to Rd of the variety
V ⊆ Cd via the coordinatewise log-modulus map.

Our interest in these stems from the connection:

amoeba(H)→ domain of convergence of H → rate of
growth of coefficients of G/H
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Properties of amoebas

The following properties of amoebas may be found in [GKZ94]; see
also the summary in [PW13, Chapter 7].

(i) Components of Rd \ amoeba(H) are open convex sets.

(ii) To each component B there is a Laurent expansion of 1/H
convergent on the set

exp(B) := {exp(x + iy) : x ∈ B, y ∈ Rd} .
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Examples of amoebas

The amoeba of the polynomial 2− x − y looks like this.

The complement has three components, all convex. The
asymptotic directions of the arms form a tropical variety, though
that will not be important to us.
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More examples

Wikipedia has a number of other examples.

Left: H = 1 + x + x2 + x3 + x2y 3 + 10xy + 12x2y + 10x2y 2

Right: H is a cubic of the form A + Bx − other terms.
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Upper bounds on the exponential rate
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Components of the complement

Let us focus on one component B of the complement, namely the
one closed under coordinatewise ≤; the Lauent series convergent in
exp(B) is the ordinary power series (Taylor series).

B

Figure: amoeba(H) for H(x , y) = (3− x − 2y)(3− 2x − y)
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Exponential inequalities

Suppose x ∈ B. Convergence of the power series for F (z) at
z = exp(x) implies that ar exp(x · r)→ 0 from which we take logs
to deduce that all but finitely many r satisfy

log |ar |+ r · log x ≤ 0

whence
log |ar |
|r |

≤ −r̂ · x .

To optimize in x for a given r∗, minimize −r∗ · x over B.
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Optimal r

The point xmin will be the support point on ∂B to a hyperplane
normal to r̂ .

B

Xmin

^r

Related to z = exp(xmin + iy) with log-gradient parallel to r

Pemantle How to Compute with Generating Functions



Overview of generating functions and the base case
Rate functions and methods of computational algebra

Analytic methods for sharp asymptotics

Amoebas
Upper bounds on exponential rates via Legendre transforms
Limit shapes via dual surfaces
Sharpness of rate functions via normal cones

Upper bound on the rate

Defining

xmin(r̂) = Argminx∈B(−r̂ · x)

β∗(r̂) = min
x∈B

(−r̂ · x)

rate(r̂∗) = lim sup
r→∞,r̂→r̂∗

log |ar |
|r |

.

and optimizing the relation
log |ar |
|r |

≤ −r̂ · x over x ∈ B yields

rate(r̂∗) ≤ β∗(r̂∗) .
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Remarks

Remark 1: the theorem that rate(r̂∗) ≤ β∗(r̂∗) requires no
assumptions. It is sometimes sharp.

The converse is more difficult.
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Legendre transform

Remark 2: The function r̂ 7→ β∗(r̂) is a kind of Legendre
transform. The usual Legendre transform arising in large deviation
theory is of a function:

Lf (λ) := sup
x
λ · x − f (x) .

The Legendre transform of the convex set B can be thought of as
the Legendre transform of the convex function that is 1 on B and
∞ off of B.
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Computing amoebas

Some remarks on computing amoebas:

I Amoebas are effectively computable. This is a consequence of
the computability of real semi-algebraic sets.

I Because the computations cannot be done within complex
algebraic geometry, the computation can be messy and
impractical.

I In two variables, more has been done to make this
computation feasible; see [The02, Mik01].

I In the case of nonnegative coefficients, Pringsheim’s Theorem
has the following consequence: B is the coordinatewise log of
the component B ′ of (R+)d \ V containing the origin.
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Computing amoebas

Some remarks on computing amoebas:

I Amoebas are effectively computable. This is a consequence of
the computability of real semi-algebraic sets.

I Because the computations cannot be done within complex
algebraic geometry, the computation can be messy and
impractical.

I In two variables, more has been done to make this
computation feasible; see [The02, Mik01].
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Example: Delannoy numbers

Let’s see all of this in action. For a first example, consider the
Delannoy numbers ars whose generating function was given by
1/(1− x − y − xy).

This has nonnegative coefficients so we may invoke the Pringsheim
result.

Note: generating functions of the form 1/(1− P) where P has
nonnegative coefficients will always themselves have nonnegative
coefficients.
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Real part of Delannoy variety

Left: 1− x − y − xy = 0; Right: logarithmic coordinates.
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Delannoy critical point

Given a direction (r , 1− r), the critical point equations are

1− x − y − xy = 0

(1− r)x(1− y) = ry(1− x) .

The solution is

x(r) =

√
(1− r)2 + r 2 − (1− r)

r

y(r) =

√
(1− r)2 + r 2 − r

1− r
.
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xmin at rate for the Delannoy numbers

Taking logs gives

xmin = log

[√
(1− r)2 + r 2 − (1− r)

r

]

ymin = log

[√
(1− r)2 + r 2 − r

1− r

]

β∗(r) = −r log

[√
(1− r)2 + r 2 − (1− r)

r

]

−(1− r) log

[√
(1− r)2 + r 2 − r

1− r

]
.
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Delannoy rate plot
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Probability generating functions

Often 0 ∈ ∂B. Why?

In probability applications typically p(r) ∈ [0, 1]. Therefore the
open unit polydisk is in B.

For a spacetime generating function,
∑

r p(r , n) = 1, thus

F (1, . . . , 1) =
∑
n

∑
r

p(r , n) =
∑
n

1 =∞

meaning (1, . . . , 1) is a pole of F and (0, . . . , 0) /∈ B.

Moreover, the point (0, . . . , 0) is often a special point of ∂B.
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When 0 ∈ ∂B

If 0 ∈ ∂B then β∗(r̂) ≤ 0 for all r̂ because β∗(r̂) is an infimum
over a set that contains 0. In fact, β(r̂) = 0 if and only if the
hyperplane normal to r̂ through the origin is a support hyperplane
to B.

B

0

B

The set of r for which β∗(r̂) = 0 is the dual cone to the tangent
cone to B at the origin.
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Example: cube groves

The cube grove generating function is

F (x , y , z) =
1

1 + xyz − (1/3)(x + y + z + xy + xz + yz)
.

Because of the combinatorial interpretation we know that the
coefficients are nonnegative and again we can restrict our attention
to the positive orthant, this time of R3. Taking logs gives:
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Cube grove computation

3 + 3eu+v+w − eu − ev − ew − eu+v − eu+w − ev+w = 0 .

Plugging in zero for any two of the variables yields zero, thus the
amoeba contains the x , y and z-axes. There appears to be a
singularity at the origin. The nature of the singularity is easier to
see in the original coordinates. Substituting x = 1 + X , y = 1 + Y ,
z = 1 + Z to recenter at (1, 1, 1) yields 2(XY + XZ + YZ ) + 3XYZ .
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Feasible cone for cube groves

The gradient and log-gradient coincide at (1, 1, 1), so the tangent
cone to B may be computed in the original coordinates.

The polynomial H is quadratic near (1, 1, 1) with leading term
2(XY + XZ + YZ ).

In symmetric coordinates, with m := (X + Y + Z )/3, the tangent
cone is given by

(X −m)2 + (Y −m)2 + (Z −m)2 =
2

3
m2 .

The dual to a circular cone is a circular cone with complementary
apex angle. In this case, the dual cone is given by

{(r , s, t) : rs + rt + st ≤ 1

2
(r 2 + s2 + t2)} .
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Feasible region for cube groves

Outside the circle, the probabilities are exponentially close to
deterministic (just proved), while inside they converge to a nonzero
function of rescaled position (remains to be proved).
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Example: double-dimer configurations

In this simple case we used radial symmetry to conclude that the
dual to a circular cone is circular. It is worth seeing how to
compute the dual in the more general situation.

We consider an example from [KP13]. Edge probabilities in a
double-dimer configurations on a hexagonal lattice are shown to
obey a set of four linear recurrences. Choosing periodic initial
conditions simplifies the recurrence to one whose generating
function F = G/H is rational with

H = 63x2y 2z2 − 62(x2yz + xy 2z + xyz2)− (x2y 2 + x2z2 + y 2z2)

+62(xy + xz + yz) + (x2 + y 2 + z2)− 63 .
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Algebraic duals

Centering via x = 1 + X , y = 1 + Y , z = 1 + Z and taking the
leading homoegeneous term (the cubic term) produces the
polynomial

H = 62(X 2Y + XY 2 + X 2Z + XZ 2 + Y 2Z + YZ 2) + 132XYZ .

A homogeneous polynomial in three variables is a projective
polynomial in two variables. The dual of a projective curve may be
computed by plugging in Z = αX + βY and then solving for (α, β)
such that ∂H/∂X = ∂H/∂Y = 0.
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Gröbner basis computation of the dual

The Maple commands

H1 := subs(Z = αX + βY ,H)

H2 := diff(H,X )

H3 := diff(H,Y )

gb := Basis([H1,H2,H3], plex(X ,Y , α, β))[1]

produce the polynomial

15759439 − 78914840α3 − 78914840 β3 + 34215444α + 34215444 β − 20624238α2

− 20624238 β2 + 117630120αβ + 84505896α2
β + 84505896 β2

α− 20624238α4

− 20624238 β4 + 34215444α5 + 34215444 β5 − 64351116 β3
α− 64351116α3

β + 167534388 β2
α

2

− 97424940αβ4 − 15751503α2
β

4 + 63075096α2
β

3 + 64468220α3
β

3 − 97424940 β α4 + 63075096 β2
α

3

+ 15759439α6 + 15759439 β6 − 32226174 β α5 − 15751503 β2
α

4 − 32226174 β5
α .
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Illustration of the dual

The dual curve in the figure on the left is plotted in barycentric
coordinates α = r/(r + s + t), β = s/(r + s + t).

H1,0,0L H0,1,0L

H0,0,1L

The outer branch of the dual curve is the phase boundary between
the feasible region (nonzero limiting probabilities) and infeasible
region (deterministic limit). Probabilities are constant inside the
inner “facet”.
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Sharpness and the complex normal cone
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Soft improvements to rate function

The normal cone in real space is a projection of a finer structure in
complex space. Resolving into complex cones can sharpen the
upper bound β∗ on the rate function. This argument is still
somewhat soft, as it avoids computing inverse Fourier transforms.

To see what is going on in a simple case, consider the two functions

H1 = (3− x − 2y)(3− 2x − y) ;

H2 = (3− x − 2y)(3 + 2x + y) .

The amoeba of a product is the union of the amoebas;
pre-composing with (x , y) 7→ (e iθx , e iψy) does not change an
amoeba; therefore H1 and H2 have the same amoebas.
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H1 = (3− x − 2y)(3− 2x − y); H2 = (3− x − 2y)(3 + 2x + y)

B

(1,1)

L

L2

1

(1,1)

L

L

1

2

(−1,−1)

For H1, above the point (0, 0) ∈ ∂B lies the point (1, 1) ∈ V whose
algebraic tangent cone is the union of lines of slopes −2 and −1/2.

For H2, above the point (0, 0) ∈ ∂B lies a point (1, 1) ∈ V whose
algebraic tangent cone is a line of slopes −1/2 and another point
(−1,−1) ∈ V whose algebraic tangent cone is a line of slopes −2.
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Nonnegative coefficients

By Pringsheim’s Theorem, if F has nonnegative coefficients then
(1, 1, 1) always “covers” (0, 0, 0), that is, the algebraic tangent
cone at (1, 1, 1), maps onto the solid tangent cone K0 to B at
(0, 0, 0) under the log-modulus map.

H1 is an illustration of this.

(1,1)

L

L2

1
→

B
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Complexification

Given x ∈ ∂B, for each z = exp(x + iy), we need to define a piece
of the algebraic tangent cone. Its dual will be the set of directions
controlled by the point z .

The tricky part is that there may be many pieces (e.g., there is
always at least a “positive” and a “negative” piece, and there may
be more, as in the following picture.
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be more, as in the following picture.
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Hyperbolicity

To make a long story short, hyperbolicity theory guarantees the
ability to do this.

Theorem ([BP11, Corollary 2.15])

(i) Let x be a point on the boundary of amoeba(H). Then as
z = exp(x + iy) varies, there are cones K (z) all containing the
solid tangent cone K0 and varying semi-continuously with z.

(ii) The contribution to asymptotics from z in direction r̂ is zero
unless r̂ ∈ K (z)∗.
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Strengthened upper bound

Corollary

If (0, 0, 0) ∈ ∂B then asymptotics in direction r̂ decay
exponentially unless r̂ ∈ N where N is the union of K (z)∗ over all
z in the unit torus, where K (z)∗(z) := ∅ if z /∈ V.

Example

For H = (3− x − 2y)(3 + 2x + y) there are two points (1, 1) and
(−1,−1) on the unit torus in V. In each case, the dual cone is a
the outward normal ray. In the directions of these two rays, the
asymptotics do not decay exponentially, but in all other directions
they do.
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Worked example: quantum walk

I will end this lecure with a more interesting example. The
spacetime generating function for a particular quantum walk in
three dimensions is a rational function with denominator

H := 2
(
x2y 2 + y 2 − x2 − 1 + 2xyz2

)
z2 − 4xy

−z
(
xy 2 − x2y − y − x + z2

(
xy 2 + x2y + y − x

))
.

Intensity plot of quantum walk
at time 200.

Note that the feasible region is
not convex.
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The normal cone (dual to the solid tangent cone of B) is always
convex, so the feasible region is a proper subset. We can identify
this by computing the union N of the normal cones K (z)∗.

Let (α, β, γ) ∈ (R/2π)3 be a triple in the flat unit torus.
Simplifying by hand, we find that (e iα, e iβ, e iγ) ∈ V if and only if(

1− cos2 γ
)

(4 cos γ − cosα)2 =
(
1− cos2 β

)
(cos γ − 2 cosα) r .

The projection of T 3 ∩ V to T 2 is a 4-fold cover, meaning that
(α, β) parametrize V ∩ T 3 with four solutions for each (α, β).
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Each of these points is smooth, therefore determines asymptotics
along a single ray.

The direction associated with (α, β, γ) is

r : s : t :: Hx : Hy : Hz .

Plotting this direction for values of (α, β) filling out the 2-torus
gives the plot on the right (compare to the actual intensity plot on
the left).
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END PART II
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III: Inverse Fourier Transforms

Robin Pemantle

ICERM tutorial, 13-15 November, 2012
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Lecture III outline

(i) Cauchy’s integral theorem in d variables

(ii) The residue form

(iii) Smooth case: Morse theory, quasi-local cycles and saddle
point integrals

(iv) Self-intersections: stratified Morse theory

(v) Cone points: homogeneous expansion and the inverse Fourier
transform
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