
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/275672363

Learning	mathematics	without	a	suggested
solution	method:	Durable	effects	on
performance	and	brain	activity

Article		in		Trends	in	Neuroscience	and	Education	·	April	2015

DOI:	10.1016/j.tine.2015.03.002

CITATION

1

READS

1,053

6	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Learning	to	engage	the	brain	View	project

Bert	Jonsson

Umeå	University

28	PUBLICATIONS			274	CITATIONS			

SEE	PROFILE

Yvonne	Liljekvist

Karlstads	Universitet

9	PUBLICATIONS			15	CITATIONS			

SEE	PROFILE

Mathias	Norqvist

Umeå	University

6	PUBLICATIONS			15	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Bert	Jonsson	on	05	June	2015.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/275672363_Learning_mathematics_without_a_suggested_solution_method_Durable_effects_on_performance_and_brain_activity?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/275672363_Learning_mathematics_without_a_suggested_solution_method_Durable_effects_on_performance_and_brain_activity?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Learning-to-engage-the-brain?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bert_Jonsson?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bert_Jonsson?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Umea_University?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bert_Jonsson?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yvonne_Liljekvist?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yvonne_Liljekvist?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Karlstads_Universitet?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yvonne_Liljekvist?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mathias_Norqvist?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mathias_Norqvist?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Umea_University?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mathias_Norqvist?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bert_Jonsson?enrichId=rgreq-aaf961f9b462fb6cb7e2be93c968ee32-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY3MjM2MztBUzoyMzY4NzE4MDQ1MTg0MDBAMTQzMzQ4NjA0NzE5Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Research Article

Learning mathematics without a suggested solution method: Durable
effects on performance and brain activity

Linnea Karlsson Wirebring a,b,e,n, Johan Lithner c,d, Bert Jonsson e, Yvonne Liljekvist f,g,
Mathias Norqvist d,h, Lars Nyberg a,b,i

a Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
b Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
c Department of Science and Mathematics Education, Umeå University, 901 87 Umeå, Sweden
d Umeå Mathematics Education Research Centre, Umeå University, 901 87 Umeå, Sweden
e Department of Psychology, Umeå University, 901 87 Umeå, Sweden
f Department of Mathematics and Computer Science, Karlstad University, 651 88 Karlstad, Sweden
g The Centre of Science, Mathematics and Engineering Education Research, Karlstad University, 651 88 Karlstad, Sweden
h Department of Mathematics and Mathematical Statistics, Umeå University, 901 87 Umeå, Sweden
i Department of Radiation Sciences (Diagnostic Radiology), Umeå University, 901 87 Umeå, Sweden

a r t i c l e i n f o

Article history:
Received 5 September 2014
Received in revised form
20 February 2015
Accepted 9 March 2015

Keywords:
Mathematics
Learning
fMRI
Parietal cortex
Angular gyrus
Education

a b s t r a c t

A dominant mathematics teaching method is to present a solution method and let pupils repeatedly
practice it. An alternative method is to let pupils create a solution method themselves. The current study
compared these two approaches in terms of lasting effects on performance and brain activity. Seventy-
three participants practiced mathematics according to one of the two approaches. One week later,
participants underwent fMRI while being tested on the practice tasks. Participants who had created the
solution method themselves performed better at the test questions. In both conditions, participants
engaged a fronto-parietal network more when solving test questions compared to a baseline task.
Importantly, participants who had created the solution method themselves showed relatively lower
brain activity in angular gyrus, possibly reflecting reduced demands on verbal memory. These results
indicate that there might be advantages to creating the solution method oneself, and thus have
implications for the design of teaching methods.

& 2015 Elsevier GmbH. All rights reserved.

1. Introduction

One of the fundamental cognitive skills an individual has to learn
to master during development is the ability to reason logically with
numbers. In fact, the ability associated with mathematical under-
standing during school age has been found to be highly predictive of
success later in life (e.g. [1]) while poor mathematical skills can have
negative consequences for the individual (e.g. [2,3]). Not surprisingly,
mathematics is prioritized as a core subject in all school systems,
from kindergarten to college, and countries’ educational qualities are
consistently evaluated and compared not least on the basis of pupils’
mathematical performance (e.g. TIMSS and PISA international sur-
veys). Recently, the neurosciences have witnessed an increase in the

number of studies targeting learning of arithmetics (for one review,
see e.g. [4]).

How can an educational system assure that mathematics is
being taught in a way that most efficiently promotes mathematical
learning? This is an area of extensive debate [5–7]. What has been
observed in detailed analyses of mathematics textbooks and
curriculums is that one dominant mathematical teaching method
centers on presenting typical task types and then give suggestions
for solution methods (for examples from Sweden, see: [8,9], and
from the US: [7]). These suggestions for solutions, commonly in
the form of algorithmic templates (e.g. rules, methods, solved
example tasks: [10]), are then typically subjected to extensive
repeated practice, for example via practice tasks throughout a
book chapter. A typical introductory example task in a chapter on
percentages could read: “Of 80 students finishing grade nine, 16
applied for the natural science upper secondary program. How
many percent of the students was that?” This is then followed by a
template solution and the correct answer: “Proportion of appli-
cants: 16/80¼0.20¼20% Answer: 20% of the students applied for
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the natural science program.” Finally, this is usually followed by
many practice tasks that are isomorphs to the introductory task,
for example: “At a traffic control outside a school it was found that
84 cars out of 400 drove too fast. How many percent was that?”

Such teaching methods are guaranteed to lead to learning in
the short term but conceptually, they appear to have much in
common with ‘rote learning’: the process of learning something by
repeating it until you remember it rather than by understanding
the meaning of it (cf. Oxford Advanced Learners Dictionary).
However, in spite of being short-term efficient there are data
indicating that teaching based only on such methods fail to
enhance students’ long-term development of conceptual under-
standing [7]. Throughout this paper, we will refer to mathematical
teaching methods of this kind as methods inviting Algorithmic
reasoning (AR) [10].

As an alternative, it has been suggested that encouraging the
individuals to create a solution method themselves should be
superior for promoting mathematical learning, compared to expli-
citly presenting the solution method and invite extensive repeated
practice with it [5]. This suggestion has been further specified by
Lithner and colleagues by designing practice tasks inviting Crea-
tive Mathematically founded Reasoning (CMR) [8,10,11]. To com-
pare with the example above, a task inviting CMR would include
the same type of task, for example: “At a traffic control outside a
school it was found that 84 cars out of 400 drove too fast. How
many percent was that?”—but would not be preceded by the
solved introductory task and template solution. Moreover, instead
of being followed by many practice tasks, a task inviting CMR
would instead be followed by explicit encouragement to create a
solution method (e.g. a formula for the solution of the task).
Jonsson et al. [11] have recently demonstrated that practice tasks
designed to invite CMR might have superior effects on perfor-
mance compared to tasks designed to invite AR.

The purpose of this study was to further compare these two
kinds of practice tasks—designed to invite AR and CMR, respec-
tively, both in terms of performance as well as in terms of brain
activity. Participants first trained in an environment where they
solved numerical tasks with given solution methods (AR), or
solved numerical tasks without given solution methods (CMR).
One week later they were tested on similar numerical tasks
without given solution methods while being scanned with func-
tional magnetic resonance imaging (fMRI), which allowed compar-
ing the two teaching methods in terms of their effects on
mathematical performance as well as on brain activity. A central
question was whether these two kinds of practice tasks give rise to
performance differences in the long-term [11].

Key to an environment designed to invite CMR rather than AR is
that the solution method is not given but has to be self-generated
[5,10]. Cognitive psychology research show that generating an
answer compared to just reading it has large positive effects on
long-term retention of that material, an effect known as the
generation effect (e.g. [12]; see [13] for a review). This effect is
related to the testing effect: repeated testing on a content for
learning has stronger effects on long-term retention compared to
repeatedly studying the same content (e.g. [14]). The generation
effect has also been demonstrated with mental arithmetic [15,16].
For example, it has been shown that more answers to multiplication
problems are remembered after previous practice on generating the
answers compared to just reading the problem together with the
answer [15]. Further, the benefit of generating the arithmetic
solution has been shown to be larger for participants with low
prior knowledge [16]. Even though the generation effect and the
testing effect are empirical phenomena, with a wide range of
potential theoretical explanations (see e.g., [13,17–20]), the demon-
strated long-term performance benefits after self-generation are
robust and compelling.

If participants trained in the CMR environment will have an
easier time accessing their knowledge of a solution method during
a later test, are there reasons to believe that this is manifested in
relative differences in brain activity? To date, imaging studies of
mathematics have in part focused on arithmetic tasks such as one-
or two-digit multiplication, subtraction or addition tasks [4] or on
task solving with algebra (see e.g., [21]) also for advanced algebra
(e.g. [22]). Less is known about to what extent relative differences
in brain activity observed in such tasks are also evident during less
constrained and more general solution modes, as in, for example,
creative mathematically founded reasoning.

One central aspect of practice effects in mental arithmetic that
has gained much attention in imaging research is the shift as a
function of practice from procedural calculation operations to
retrieval of stored facts from memory (cf. [23]). Combining
neuroimaging with multiplication tasks, for example, this shift
has been observed to be mirrored by a relative shift in activity
from frontal areas to parietal areas, in particular to the left angular
gyrus (see e.g., [24,25]; for a review see [4]). Angular gyrus plays a
key role in a model for number processing [26] and has been
shown to be important for operations that in general require
access to verbal memory of arithmetic facts, potentially supporting
the verbal aspects of mental arithmetic. Thus, to the extent that
participants trained in the CMR environment will require less
effort to retrieve their knowledge of a solution method at the one-
week follow-up test, we expect relatively lower activity in left
angular gyrus in the CMR compared to the AR condition.

Finally, in this study we also investigated the potential role of
individual differences in cognitive abilities of relevance for math-
ematical performance. It has previously been suggested that
working memory is one potent predictor of mathematical achieve-
ment (e.g. [27]). Can individual differences in working memory
explain variance in mathematical performance over and above
potential effects of the different practice tasks? It has also been
demonstrated that another potent predictor of mathematical
competence is the acuity of the Approximate Number System
(ANS: see e.g. [28,29]). The ANS is said to represent numerical
magnitude in a non-symbolic mode. In order to investigate which
cognitive abilities – if any – that explain variance in performance
over and above the practice tasks, we included measures of
working memory (Operation Span) and ANS acuity, as well as
measures of vocabulary (SRB1) and visuo-spatial processing and
integration (Raven’s advanced matrices).

We hypothesized that ? (a) creative mathematically founded
reasoning (CMR) will promote better performance at test one week
after training than algorithmic reasoning (AR) [11], (b) CMR will
translate into less engagement of left angular gyrus at test
compared with AR, and (c) that working memory and ANS acuity
will be significant predictors of individual differences in mathe-
matical performance (independent of teaching method).

2. Methods

2.1. Participants

Seventy-three pupils and students participated in the study. The
pupils (n¼40, 24 males, 18–20 years old, Mage¼18.5 years,
SDage¼0.60) studied in their last year of the Swedish “gymnasium”

(compares with upper secondary school/senior high school) and
were enrolled in programs with a focus on natural sciences. The
students (n¼33, 24 males, 18–22 years old, Mage¼20.0 years,
SD¼1.2) were enrolled in different engineering programs, in their
first semester, and had all completed advanced mathematics courses
during the gymnasium. All participants were right-handed and had
normal or corrected-to-normal vision. Participants signed a written
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informed consent before participation. The study was approved by
the Umeå University local ethics committee.

2.2. Design, procedure and materials

Participation included one session of individual difference
measures, one mathematical training session and one mathema-
tical test session. The mathematical training was done in one of
two environments as a between-group design: participants either
trained in one environment that was designed to invite algorith-
mic reasoning (AR) or in one that was designed to invite creative
mathematical reasoning (CMR). The test session was done in the
fMRI scanner. In order to reveal the possible lasting effects of
mathematical training on performance, the test session was
administered 6 days after the training session.

2.2.1. Individual difference measures
About one to three weeks prior to the mathematical training

participants completed a battery of individual difference mea-
sures. These included a short form (18 items) of the Raven’s
advanced matrices [30], an automated operation span task (OSPAN;
[31]), a vocabulary test (SRB1, [32]) and a test of the approximate
number system (ANS; [28]). Moreover, participants completed a
form with demographic variables, including information about
their latest mathematics grade in upper secondary school/senior
high school. Afterwards, participants were matched to two experi-
mental conditions (AR and CMR), conditional on the groups being
matched on Raven’s score, latest mathematics grade and gender.
About half of the pupils were allotted to the AR condition (n¼19;
12 male) and the other half (n¼21; 12 male) to the CMR condition.
Half of the students were allotted to the AR condition (n¼17; 12
male) and n¼16 (12 male) to the CMR condition.

2.2.2. Mathematical training
Participants completed practice instances of nine mathematical

task sets (see Table 1). The task sets were carefully tested in a
separate study to ensure that they induced reasonable levels of
performance irrespective of condition (see [11] for details). The
nine task sets were in two different versions, one version designed
to invite AR and one version designed to invite CMR. The tasks
asked for a numerical solution to problems where it would be
helpful to have a solution method at hand, as the constituent
variables in each practice instance of a task set grew too large for
feasible simple mental arithmetic. As an example, one of the task
sets involved computing how many matchsticks would be needed
in order to create one row of x squares of matches, where x varied
between 6 and 100 in the practice instances.

In both versions of the task sets, the task was first introduced in
general terms, together with an illustrative figure and a concrete

question (see [11] for an illustration of the task). With the match-
stick task for example, it was stated that: “When you put together
squares in a row it looks like in the figure. For four squares in a
row one will need 13 matchsticks.” The question in the first
instance was: “How many matchsticks do you need in order to
put together one row of 6 squares of matchsticks?” Participants
were carefully instructed to try to solve every instance and to
press ENTER when they had figured out the correct answer. In
cases when they were sure that they would not be able to solve it,
they were instructed to press the SPACE bar to move on the next
instance.

After pressing ENTER participants were given multiple response
alternatives in an alternative forced-choice task. They were shown
three numerical response alternatives and a fourth alternative “None
of the above” (which was never correct). Participants marked which
of the alternatives was the correct one and received feedback. After
each response participants were asked to rate how confident they
were that they were going to solve the instance when they first read
it, on a scale from 1 (“not at all sure I would make it”) to 5 (“totally
sure I would make it”). Participants encountered a few instances of
each task set before moving on to the next, with the value of x in the
question differing from instance to instance.

A few key design features administered to this basic task setup
were done in order to form a typical AR or CMR task, respectively.

The version of the task designed to invite AR had additional
information below the general formulation of each task. A solution
method adequate to solve the particular task set was presented
(and in the first instance of the task set together with an
explanation of how to use it in order to compute an answer). For
the matchsticks example, the additional information given to the
AR condition was “If x is the number of squares to be put in a row
one can calculate the number of matchsticks, y, with the formula
y¼3xþ1. (For example, if four squares are to be put in a row
y¼3xþ1¼3�4þ1¼13 matchsticks are needed.)” Last was the
question, for example “How many matchsticks do you need in
order to put together one row of 6 squares of matchsticks?” The
AR group was given five instances of each task set. Participants
had 5 min at their disposal to solve each instance.

The version of the task designed to invite CMR did not include
the additional information about the formula. The CMR condition
was given two basic instances of each task set. Participants had
10 min at their disposal to solve each instance. After these
instances they were explicitly asked to try to create a formula
for the solution of the task. For the example with matches, it was
asked “x denotes the number of squares in a row and y the number
of matchsticks needed to create the squares. How can one describe
y as a function of x? For example, it holds that y¼13 if x¼4
according to the figure. That y is a function of x means that there is
a relationship, for example y¼14∙x, y¼12�x, y¼2∙xþ1, y¼3/x or
some other relation.” Participants were then given three formulas

Table 1
Content and target questions of the nine different task sets.

Content Target question

Matches—one row of squares “How many matches do you need to put together one row of x squares?”
Matches—two rows of squares “How many matches do you need to put together two rows of x squares?”
Box—quadratic bottom ”Compute the area of the box (the four sides and the bottom area) on a box where the edge of the bottom is x dm and the height is y dm.”
Box—equilateral ”Compute the area of the box (the four sides and the bottom area) on a box where the edges are x dm.”
Box—rectangular ”Compute the area of the box (the four sides and the bottom area) on a box where the edges of the bottom are x and y dm respectively, and

the height is z dm”

Flowers and stone squares—one
row

“How many stones do you need if you want to plant x flowers in a row?”

Flowers and stone squares—three
rows

“How many stones do you need if you want to plant x flowertriplets?”

Dots—circumference ”How many dots make the circumference of a x . y rectangle?”
Dots—between dots ”How many crosses are there between the dots in a x . y rectangle?”

L. Karlsson Wirebring et al. / Trends in Neuroscience and Education 4 (2015) 6–148



as response alternatives and a fourth alternative “None of the
above” (which was never correct). Participants marked which of
the alternatives was the correct one and received feedback.

In sum, the key features that by design differed between the AR
condition and the CMR condition were: (a) the AR condition was
given a solution method while the CMR condition was not, (b) the
AR condition was given five instances to practice using the formula
while the CMR condition was given two instances to construct a
solution method and one instance to formalize it into a mathe-
matical function, and (c) in the CMR condition participants had
10 min at their disposal for each instance while participants in the
AR condition had 5 min. The time limits were well above the
average solutions times indicated by the pilot study [11].

The nine task sets were presented in the same order for each
participant, starting off with an easy task and rounding off with a
more difficult task, in order to mimic a realistic didactic learning
scenario (i.e. the typical build-up of a mathematics text-book
chapter). The ranked difficulty of a task was based on results from
the previous study [11] as well as on the authors’ didactical
understanding of the tasks.

2.2.3. Mathematical testing with fMRI
Six days after the mathematical training, the participants were

invited to the fMRI lab and were scanned while completing one test
instance of each of the nine training task sets they had encountered,
in randomized order. The test instances were identical for every
participant. For the example with matchsticks, the test question was
“How many matchsticks do you need in order to put together 50
squares of matchsticks in one row?” The given number in the test
questions were chosen to be too large for counting the matchsticks in
a simple imagined visual extension of the figure, and would instead
target the knowledge of a more general solution method acquired
during training. Participants were instructed to push a button on a
response pad when they had solved the task and, after a variable
delay, they were shown three numerical response alternatives and a
fourth alternative “None of the above” (which was never correct).
Participants marked which of the alternatives was the correct one
and, after a variable delay, moved on to the next task (see Fig. 1 for an
illustration of the scanning tasks).

The fMRI test was implemented in a blocked design, with a
mathematical task always being followed by a cognitive-perceptual
baseline task to allow for subtraction of perceptual, attention and
reading processes (described below).

In a mathematical block (see Fig. 1A), participants were presented
with a task probe for 2 s, the mathematical task question for a
maximum of 30 s (self-paced), a fixation cross as an inter-stimulus
interval (ISI) for a minimum of 2 s and a maximum of (32 s minus the
response time: MISI¼5.2 s), the alternative forced-choice task for a
maximum of 6 s (self-paced), and an inter-trial interval (ITI) for 1.5–
7.5 s. The task was self-paced in order to get measures of response
times and in order to get an indication of what part of each block
actually contained fMRI data related to solving the task.

The baseline task was by display perceptually very similar to the
mathematical task display but unrelated to mathematics in semantic
content. The task was instead to judge whether the text on the slide
contained a spelling mistake or not. For example, for one baseline
task the introductory text read (in Swedish, here translated to
English): “Water and an engine is good to have when going by boat
and there is no wind.”, and was presented together with a picture of
a motorboat. Instead of the mathematical question it read: “The first
motorboat was built in the 1860’s and was driven by coal gas, which
is a kind of highly explisive town gas”. Participants were instructed to
push a button on a response pad when they knew the answer and,
after a variable delay, they were shown two response alternatives
(“Yes” and “No”) and could mark what was correct. After a variable
delay, they moved on to the next task. In the example above, the
correct answer would be “Yes” as the text contained a spelling
mistake: “explisive” instead of “explosive”. In a baseline block (see
Fig. 1B), participants were presented with a task probe for 2 s, the
baseline task question for a maximum of 10 s (self-paced), a fixation
cross as an inter-stimulus interval (ISI) for a minimum of 2 s and a
maximum of (12 s minus the response time), the alternative forced-
choice task for a maximum of 6 s (self-paced) and an inter-trial
interval (ITI) for 1.5–7.5 s.

Upon completion of the fMRI protocol and structural images,
participants filled out a follow-up questionnaire on a computer
outside the scanner. Participants were asked, for each of the nine
task sets, how difficult they thought it was, and were asked to
respond on a scale from 1 (very easy) to 5 (very difficult).

2.3. Image acquisition

Image acquisition was made on a 3T GE Discovery MR 750
scanner (General Electrics). Functional T2n-weighted images were
obtained with a single-shot gradient echo EPI sequence used for
blood oxygen level dependent imaging. The following parameters

Spelling + +

Task probe (2s) Task (max. 10s) ISI (12s–Task RT) AFC (max. 6s) ITI (1.5–7.5s)

[Text] [Figure]

[Text]

Spelling mistake?
1: Yes
2: No

Mathematics + +

[Problem] [Figure]

[Test question]

What is correct?
1: 151
2: 153
3: 200
4: None

Task probe (2s) Task (max. 30s) ISI (32s–Task RT) AFC (max. 6s) ITI (1.5–7.5s)

Fig. 1. Illustration of the fMRI tasks. (A) A mathematical task block. (B) A baseline task block. ISI¼ inter-stimulus interval; AFC¼alternative forced choice; ITI¼ inter-trial
interval.
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were used for the sequence: echo time: 30 ms, repetition time:
2000 ms (37 slices acquired), flip angle: 901, field of view:
25�25 cm, 96�96 matrix and 3.4 mm slice thickness. A 32 channel
SENSE head coil was used. Signals arising from progressive saturation
were eliminated through ten “dummy scans” performed prior to the
image acquisition. The stimuli were presented on a computer screen
that the participants viewed through a tilted mirror attached to the
head coil. Presentation and reaction time data were handled by a PC
running E-Prime 2.0 (Psychology Software Tools, Inc., USA) and fMRI
optical response keypads (Current Designs, Inc., USA) were used to
collect responses.

2.4. fMRI data analysis

The data was analyzed in SPM8 (Wellcome Department of
Cognitive Neurology, UK) implemented in Matlab 7.11 (Mathworks
Inc., USA). All images were corrected for slice timing, realigned to
the first image volume in the series, unwarped, normalized to the
standard anatomical space defined by the MNI atlas (SPM8), and
smoothed using an 8.0 mm FWHM Gaussian filter kernel. Data
were high-pass filtered with a cut-off of 128 s. The model
consisted of two effects of interest (the mathematical task and
the baseline task) and eight effects of no interest (math probe,
math ISI, math alternative forced-choice, math ITI, baseline probe,
baseline ISI, baseline alternative forced-choice, and baseline ITI).
We chose to model the events of the two tasks as separate effects
in order to incorporate potential differences during the probe, ITI,
alternative forced-choice and ISI that would not be of relevance to
the core question addressed. The movement parameters were
included as covariates of no interest. All regressors were convolved
with a hemodynamic response function. In the first level analysis,
model estimations were made for each participant.

To define the regions important for the mathematical task,
contrasted model estimations (Math task vs Baseline task) from
each individual were taken into a second level one-sample t-test
with a statistical threshold of po0.05 (FWE corrected for multiple
comparisons) at the voxel level and k40 at the cluster level.

This activation map served as a mask for the between-group
contrasts. Inclusive masking with SPM was used to identify whether
there were condition differences in how the math-related brain
regions were recruited at mathematical testing (i.e. within the
defined task-related network). The condition differences were ana-
lyzed by subjecting the Math vs Baseline difference in beta values to a
two-sample t-test. Because of the short duration of the intervention,
we did not expect large effects of the manipulation. Hence, the
statistical threshold for the masked condition contrasts was set to
po0.005 (uncorrected), k420. Here it should be noted that because
the search space was reduced by the masking procedure, as we
sought activation differences between the two conditions in the
math network, this effectively corresponded to a markedly more
stringent p-threshold (see Section 3).

To investigate which regions were active during the mathema-
tical task and played an important role for performance regardless
of condition, we re-ran the second level one-sample t-test (Math
vs Baseline) with performance as a covariate of interest and
specifically targeted regions within the network (with the network
as a mask) that covaried with performance. This analysis was also
thresholded at po0.005, k420.

2.4.1. Control analyses
A number of control analyses were undertaken in relation to

the condition comparisons. To investigate the possible interaction
with subsample (pupils vs. students) on the condition differences,
an analysis of variance was done with activity differences (Math
vs. Baseline) as dependent variable and condition (AR vs. CMR)

and subsample (pupils vs. students) as between-subject factors. To
control for the possible effects of task difficulty on the condition
differences, the procedure (the definition of brain regions impor-
tant for the mathematical task to use as mask and the condition
contrast within those regions) was redone using subjective diffi-
culty ratings, averaged over the nine test tasks, and performance
at test as covariates of no interest when comparing the two
conditions.

3. Results

We first report behavioral results from the training and test
sessions, then relate the individual difference measures to test
performance, and finally report the imaging results.

3.1. Behavioral results

3.1.1. Training session
Participants spent on average 23 min (SD¼6 min) solving the

nine task set instances during training (excluding time for instruc-
tions and completion of follow-up questions). There was no
difference in solution time between the two conditions
(MAR¼23 min, SD¼6 min vs. MCMR¼23 min, SD¼6 min; t (1,
71)¼�0.4; p¼0.68) nor between the two subsamples (Mpu-

pils¼22 min, SD¼5 min vs. Mstudents¼23 min, SD¼7 min; t (1, 71)¼�
1.0; p¼0.32).

3.1.2. Test session
To investigate whether the CMR condition performed at a

higher level than the AR condition at test, as hypothesized, while
considering the possible differences between the two subsamples,
we performed an analysis of variance with number of correct
answers at test as the dependent variable and condition (AR vs.
CMR) and subsample (pupils vs. students) as between subject
factors. The results revealed a main effect of condition: the CMR
condition performed better than the AR condition (F(1,69)¼5.1;
MSE¼15.6; p¼0.03: Fig. 2). There was no main effect of subsample
(F(1,69)¼0.07; MSE¼0.23; p¼0.79) nor an interaction between
subsample and condition (F(1,69)¼0.44; MSE¼1.34; p¼0.51).

Most participants needed almost all of the available solution
time during scanning (30 s). Subjecting solution times (in seconds)
during the test session (i.e. when the participants indicated they
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Fig. 2. Performance during the mathematical test, performed during fMRI scan-
ning. (AR¼Algorithmic reasoning group, CMR¼Creative Mathematical Reasoning
group). Error bars: 71 SE.
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had solved the task) to the same type of analysis as for perfor-
mance with condition and subsample as between subject factors
revealed no difference between the conditions (MAR¼27.1 s,
SD¼3.5 s vs. MCMR¼26.5 s, SD¼3.3 s), no interaction between
condition and subsample but the university sample responded
somewhat slower than the pupils (Mpupils¼26.0 s, SD¼3.3 s vs.
Mstudents¼27.7 s, SD¼3.3 s; F(1,69)¼4.3; p¼0.04).

Finally, we investigated whether participants in the two con-
ditions judged the test tasks to be equally difficult by comparing
participants difficulty ratings averaged over the nine test tasks. In
the AR condition the tasks were judged to be more difficult than in
the CMR condition, although the difference were just bordering
significant (MAR¼2.7, SD¼0.67 vs. MCMR¼2.4, SD¼0.82; F(1,69)¼
3.8; p¼0.06). There was no main effect of subsample or an
interaction between subsample and condition.

3.1.3. Cognitive abilities and test performance
The participant characteristics are shown in Table 2. First, as

shown, the two conditions were well-matched with respect to
Ravens score, mathematics grades, and gender, in both subsam-
ples. In order to investigate which other variables except training
environment (AR or CMR) had an effect on test performance, we
conducted linear hierarchical regression analyses. In a first step,
we included condition (i.e. training environment: AR or CMR) as
independent variable and test performance as dependent variable.
Condition significantly predicted performance (standardized
β¼�0.27, t(71)¼�2.4, p¼0.02). In a second step, we also
included subsample (i.e., pupils or students), mathematics grades,
gender, Ravens score, working memory score, vocabulary score,
and ANS acuity as independent variables. This slightly modified
the effect of condition on performance (standardized β¼�0.26,
t(71)¼�2.2, p¼0.03). Additionally, working memory (but not ANS
acuity (p¼0.68)) emerged as an additional significant predictor
(standardized β¼0.30, t(71)¼2.5, p¼0.01).

3.2. Imaging results

3.2.1. Definition of brain regions important for the mathematical
task

First, we defined the clusters that were more involved in
solving the mathematical test tasks than the baseline tasks. The
contrast revealed an extensive difference in fronto-parietal brain

regions, including left and right middle and superior prefrontal
cortex, inferior, superior and medial parietal cortex, middle occi-
pital cortex as well as temporal, cerebellar and subcortical regions
(Fig. 3A).

3.2.2. Group differences within the mathematics network
The AR4CMR contrast revealed a significant difference in left

precentral cortex (xyz: �40 2 62, Z¼3.25, k¼35) and the left
angular gyrus (xyz: �40 �66 46, Z¼2.95, k¼52, see Fig. 3B). The
reversed contrast (CMR4AR) yielded no clusters above the
statistical threshold. To further investigate the differences in
angular gyrus activity, in relation to subsample, we performed
an ANOVA with activity differences in angular gyrus (Math vs.
Baseline) within a sphere with a radius of 5 mm around the peak
voxel as dependent variable and condition (AR vs. CMR) and
subsample (pupils vs. students) as between-subject factors. There
was neither a main effect of subsample (F(1,69)¼2.41; MSE¼0.40;
p¼0.13) nor an interaction between subsample and condition (F
(1,69)¼0.9; MSE¼0.15; p¼0.35). Similar results were observed for
left precentral cortex, with no main effect of subsample (F(1,69)¼
2.34; MSE¼0.27; p¼0.13) nor an interaction (F(1,69)¼1.86;
MSE¼0.22; p¼0.18).

As the two conditions had been found to differ in terms of test
performance and perceived difficulty of the test tasks, as a control
analysis we investigated whether the observed differences in brain
activity between the two groups were influenced by general task
difficulty (i.e. instead of being associated with task-specific pro-
cesses). In so doing, we re-ran the two-sample t-test comparing AR
with CMR within the brain regions defined important for mathe-
matics, now including performance at test and perceived task
difficulty (averaged over the nine test tasks) as covariates of no
interest. This analysis showed that the outcome was not con-
founded by difficulty/performance differences, with slightly
improved statistics for both angular gyrus (Δz¼0.71, k¼289)
and precentral cortex (Δz¼0.56, k¼91).

3.2.3. Individual differences and mathematics
We finally examined if any of the brain regions important for

mathematics played a role for performance regardless of condi-
tion. Interestingly, a cluster within the right superior parietal
cortex (xyz¼18 �76 58; z¼4.1; po0.0001; k¼43) was most
strongly related to performance, in that the better performance
during test, the larger was the difference score in this region
(r¼0.46 between peak activation and performance: Fig. 4; r¼0.42
after removal of a potential outlier). Activity in the right superior
parietal cortex also correlated with the working memory scores
(r¼0.33; p¼0.004). Thus, there was a correlative triad among
mathematical performance, working memory capacity, and right
superior parietal brain activity.

As expected, because using performance as a covariate of no
interest in the group difference analysis actually improved the
statistics, posthoc correlation analyses between mathematical
performance and activity differences in angular gyrus and pre-
central cortex separately for the two groups rendered no correla-
tions above the statistical threshold (all p’s 40.005).

4. Discussion

To foster mathematical understanding is one of the most
important challenges of any educational curriculum of today. To
this end, teachers want to use the best teaching methods available.
A dominant mathematical teaching method has been to present a
solution method (e.g. a formula) and let the pupils repeatedly
practice it (algorithmic reasoning, AR). However, the dominance of
this method has been questioned (see e.g., [7,9,10]). An alternative

Table 2
Mean (SD) participant characteristics.

Variable AR-group CMR-group t-Value p

High-school pupils
N 19 21 – –

Age 18.4 (0.61) 18.5 (0.61) – –

Math grades 16.3 (5.49) 15.5 (5.22) – –

Gender 7 female 9 female – –

Raven’s 10.9 (3.45) 10.9 (3.73) �0.009 0.99
Working memory 60.3 (8.47) 57.8 (10.4) 0.83 0.41
Vocabulary 20.0 (4.48) 20.0 (3.32) �0.4 0.97
ANS acuity 0.21 (0.07) 0.23 (0.07) �1.18 0.25
University students
N 17 16 — —

Age 20.1 (1.35) 19.8 (1.11) — —

Math grades 12.6 (3.12) 12.5 (3.65) — —

Gender 5 female 4 female — —

Raven’s 12.1 (4.59) 10.7 (2.57) 1.05 0.30
Working memory 58.6 (10.3) 60.1 (8.94) �0.46 0.65
Vocabulary 17.6 (3.61) 19.3 (3.11) �1.41 0.17
ANS acuity 0.21 (0.05) 0.28 (0.19) �1.50 0.15

Note: Math grades¼range 0–20; Raven’s¼Raven’s advanced matrices, short ver-
sion; working memory¼operation span; vocabulary¼SRB1; ANS acuity¼Weber
fraction.
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method is to let the pupils create the solution method themselves
(creative mathematically founded reasoning, CMR). In this study we
compared two kinds of practice tasks – designed to promote AR
and CMR, respectively – in terms of their possible different effects
on mathematical performance and brain activity. We were able to
demonstrate that practice tasks promoting CMR not only lead to
better performance one week after mathematical training com-
pared to practice tasks promoting AR (in line with our previous
behavioral study: [11]), but also taxed brain regions important for
certain mathematical component processes to a lesser extent.

4.1. Creative mathematically founded reasoning affects performance
in the long-term

Interestingly, nothing in the instructions or design hindered the
participants in the AR condition to reason carefully during each
practice task or to try to understand whether the given solution
method made sense. The AR condition was even given strictly more
information in each practice instance than the CMR condition.
Further, the performance advantage was observed despite the fact
that the two conditions spent equal time on the training, that the
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AR condition were given more than twice as many practice
instances with each task set and that the conditions were matched
with respect to grades and Ravens scores. This tentatively provides
evidence that due to the fact that the solution method had to be
self-generated with CMR, participants had an easier time accessing
their knowledge of a solution method at the test one week later
enabling better mathematical performance [15,16]. Further research
should be devoted to clarify whether memory for the solution
method indeed is superior in the CMR condition compared to the
AR condition (see [11] for evidence pointing in this direction).

Where exactly lies the benefit in self-generating a solution? One
general possibility is that these effects occur because the processes
during self-generation overlaps those used during the subsequent
testing, related to the formulation in the transfer-appropriate proces-
sing framework (cf., [33]; [17,18]). Another possibility is that it is
cognitively more effortful to generate a solution by yourself, which in
turn might strengthen the knowledge in memory and/or induce
more active processing (e.g. [13,19]). In educational science it is in
fact argued that “struggle” with important mathematical concepts is
an important key for enhancing student’s conceptual understanding
[34]. The student needs to be engaged in different processes, such as
generating, formulating and validating, and hence accepting the
mathematical task as her own problem to solve [5]. It is thus an
intriguing possibility for future research to investigate whether the
CMR condition developed enhanced conceptual understanding com-
pared to the AR condition [10].

4.2. Creative mathematically founded reasoning affects brain activity
in the long-term

In line with our prediction we found that participants who had
been trained in the CMR environment activated the left angular gyrus
at the fMRI test session to a lower degree than did the AR condition.
The relatively lower activation following CMR remained after con-
trolling for performance differences and perceived task difficulty.

The angular gyrus is a region often implicated in imaging
studies on mental arithmetic (for a review see e.g., [4]). Angular
gyrus is also important for other tasks. For example, angular gyrus
is implicated in models of memory-related internally directed
attention [35,36] and in relation to semantic information proces-
sing more broadly, as part of a semantic control network [37,38].

In our view, this result implies that the two kinds of practice tasks
(promoting AR or CMR) indeed had different effects on the fluency of
memory-directed verbal processing at the one-week follow-up test
[26]. Tentatively, the CMR condition had an easier time accessing their
memory of a solution method, reflected in the relatively lower brain
activity in left angular gyrus compared to AR.

The second region with relatively lower activity for CMR compared
to AR was left precentral cortex/Brodmann area 6. This area is a region
that has often been implied in neuroimaging of cognitive functions as
especially related to working memory (for a review see [39]). For
example, Tanaka and colleagues provided converging evidence from
fMRI and TMS that activity in the lateral part of BA6 – not distant from
the region reported here – is related to the updating of spatial
information in working memory [40]. Precentral cortex is also
commonly implicated in imaging studies of mental arithmetic in
relation to untrained or more complex tasks compared to trained or
less complex tasks [4]. Tentatively, this implies that participants in the
CMR condition needed to engage working memory processes at test to
a relatively lower degree than the AR condition (see also [11]).

4.3. Individual differences in mathematical performance

We were able to identify a large set of regions related to
mathematics, regardless of condition. These regions are commonly
implicated in more constrained mental arithmetic [4] as well as in

problem solving more generally (see e.g., [41–43]). Within this set
of regions, we observed that the right posterior superior parietal
cortex played an important role for performance. Interestingly, this
part of the parietal cortex has been shown to be important for
tasks that require number manipulations [26]. One interpretation
of the role of this region in mental arithmetic is in terms of an
attentional hub, perhaps enabling internal information integration
that is necessary for number manipulations [26]. Our test tasks
required the manipulation of numbers in order to be solved
correctly and not surprisingly, participants who activated this
region more compared to the baseline task were also those that
performed better.

Previous research has suggested that there might be a link
between individual differences in mathematical achievement and
ANS acuity [28,29], as well as working memory capacity (e.g. [27]).
Here, with a regression analysis we found no support for a role of
ANS acuity for mathematical performance. Interestingly, this is
line with several recent studies which have also failed to establish
such a link (see e.g., [44–47]. It has been suggested that, in part,
this might be explained by methodological issues of the tasks used
to measure ANS acuity (see e.g., [45,48–51]).

We did, however, observe a significant association between
mathematical performance and working memory capacity (as
measured with the Operation Span task, [31]). Performance during
less constrained mathematical reasoning is thus explainable by
individual variation in working memory capacity (e.g. [27]). Even
though this result was not surprising given that participants were
not aided by paper and pencil, or calculators, we consider this
result as a reminder that each pupil’s individual needs are
important to consider within the realms of a teaching situation.

Finally, working memory capacity was found to correlate with
activity in the right superior parietal region that was identified in
relation to mathematical performance. The interrelations among
these three variables (i.e. mathematical performance, working
memory capacity and activity differences in right superior parietal
cortex) might tentatively be seen as reflecting working memory
contributions to complex mathematics, as mediated by superior
parietal cortex. This might overlap the attentional contribution of
parietal cortex as discussed in the model by Dehaene et al. [26] or
could represent an additional independent contributor to mathe-
matical performance.

5. Conclusion

The implications of our study are two-folded. First, our study
demonstrates that different mathematical practice tasks can give
rise to lasting behavioral and neural differences. Creative mathe-
matically founded reasoning leads to better performance and
relatively lower angular gyrus brain activity in the long-term
compared to algorithmic reasoning. Second, these results demon-
strate that the right superior parietal cortex is pivotal for math-
ematical performance in general, possibly reflecting attentional
and/or working memory contributions to complex mathematics.
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