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Story

Some notation throughout the lectures for collections of random
variables taking the values 0 and 1:

Bn is a Boolean lattice of rank n

P is a probability measure on Bn

The random variable Xk is the kth coordinate, i.e.,
Xk(ω1, . . . , ωn) = ωk .

In case anyone here is unclear on why we are studying collections
of zero-one valued variables, here is a word from our sponsor.
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Why negative dependence?

Two motivations:

1. Sampling

2. Concentration
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Sampling

Consider a population of n individuals, of which you wish to
sample a random subset. Interpret the random variable Xk as
telling you whether the kth individual is in the sample.

For statistical purposes, if i and j have similar properties (e.g, they
are neighbors, they are related, they are members of the same
PAC), it’s best if Xi and Xj are not positively correlated.

We don’t necessarily know anything about who is similar to whom,
but in the spirit of R. A. Fisher, we can solve this for all possible
hidden similarities by making sure that Xi and Xj are negatively
correlated for every pair i 6= j .
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With versus without replacement

The flavor of negative dependence is captured by sampling without
replacement. Let X be the mean of a sample of k subjects chosen
uniformly from a population of n with replacement and let Y be
the mean when you sample without replacement.

Both X and Y have the same expectation (the population mean).
It seems obvious that X should have greater dispersion than Y ,
but the proof, due to Hoeffding (1963) is not trivial.

A recent argument due to Luh and Pippenger (2014) shows that in
fact Y = E(X |F) for an appropriate σ-field f . This is one way to
prove convex domination, namely the inequality Eg(X ) ≥ Eg(Y )
for all convex functions g .
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πps-sampling problem

Often we would like to ensure that the marginal probabilities EXk

are equal to, or proportional to, a set of prescribed probabilities
{πk : 1 ≤ k ≤ n}. This is the so-called πps-sampling problem.

One can consider the further problem of πps-sampling under the
requirement of negative dependence.

By the end of the lectures, I will tell you about a number of such
schemes and the negative dependence properties they possess.

Some of this is surveyed by Brändén and Jonasson (2012); see also
references therein, by Brewer and Hanif (1983) and Tillé (2006).
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Concentration inequalities

Often one is interested in the total number of ones, that is, the
sum S :=

∑n
k=1 Xk .

Similarly, one might care about a subset sum SA :=
∑

k∈A Xk .

There is a long literature on tail bounds and limit theorems for
sums of random variables under various dependence conditions.

A simple example:

The relatively weak condition of pairwise negative correlation
implies Var (S) ≤

∑n
k=1 EXk(1− EXk), and consequent

Chebyshev bound P(|S− ES| ≥ a) ≤ Var (S)/a2.
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Better negative dependence properties

I will discuss a hierarchy of conditions on P, the strongest of which
is called the strong Rayleigh property.

Why do we care about these fancier properties?

1. Stronger properties give stronger conclusions.

2. Sometimes to prove a weaker property the only way is to
establish a stronger property which is somehow better behaved.

Before defining strong Rayleigh, let’s review some of the most
natural and most studied positive and negative dependence
conditions.
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Positive association

Say that the measure P on Bn is positively associated if

Efg ≥ (Ef) (Eg)

whenever f and g are both monotone increasing on Bn. Taking
f = Xi, g = Xj this implies pairwise negative correlation.

Take f = X1 and let P1 and P0 denote the conditional distribution
of P given X1 = 1 and X1 = 0 respectively. In this case positive
association says

∫
g dP1 ≥

∫
g dP0 for all increasing functions g.

We say that P1 stochastically dominates P0 and write P1 � P0.

P1 � P0 if and only if you can couple them so that the sample
from P0 is obtained from the P1 sample by changing some ones to
zeros (or doing nothing).

Pemantle Negative Association



Coupling for positive association

5X X X X X1 2 3 4

One can sample simultaneously from (P|X1 = 1) and (P|X1 = 0)
in such a way that turning off the bit at X1 also turns off some of

the other bits (in this case X2 and X5).
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Negative association

Negative association is a trickier business because f can’t be
negatively correlated with itself.

The measure P on Bn is negatively associated if

Efg ≤ (Ef) (Eg)

whenever f and g are both monotone increasing and they depend
on disjoint sets of coordinates.

Taking f = X1, the consequence is that the conditional law of the
remaining variables given X1 = 0 stochastically dominates the law
given X1 = 1. Thus a sample conditioned on X1 = 1 is obtained
from one conditioned on X1 = 0 by turning some ones into zeros,
except the first coordinate, which goes from zero to one.
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Coupling for negative association

5X X X X X1 2 3 4

This time, turning off the bit X1 causes the sample from
(P|X1 = 1) to gain some ones when it turns into a sample from
(P|X1 = 0).
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Lattice conditions

A 4-tuple (a, b, c,d) of the Boolean lattice Bn is a diamond if b
and c cover a and if d covers b and c, where x covers y if x ≥ y
and x ≥ u ≥ y implies u = x or u = y.

b c

d

a

 

Say that P satisfies the positive lattice condition if
P(b)P(c) ≤ P(a)P(d) for every diamond (a,b, c,d). The reverse
inequality is called the negative lattice condition.
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FKG

The positive lattice condition is very useful, due to the following
result of Fortuin, Kastelyn and Ginibre (1971).

Theorem 1 (FKG)

If P satisfies the positive lattice condition then P is positively
associated and the projection of P to any smaller set of variables
satisfies both these conditions as well.

The positive lattice condition involves checking the ratios of
probabilities of nearby configurations. This is often much easier
than computing correlations between bits, which involves summing
over all configurations.
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Negative lattice condition

Unfortunately, the FKG theorem does not hold when the positive
lattice condition is replaced by the negative lattice condition.

As a result, negative association is very difficult to check!

A profusion of properties has been suggested that are somewhat
weaker than NA. These are not totally ordered with respect to
implication. Many concern the stochastic domination of some
conditional distribution of P by others. The litany is long,
including many ultimately failed concepts introduced by RP.

The next slide reviews four reasonably useful properties, each of
which is strictly stronger than the last.

In each case, a consequent concentration inequality will be given.
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Negative dependence hierarchy

1. Pairwise negative correlation: EXiXj ≤ (EXi)(EXj).

2. Negative cylinder property: E
∏

k∈AXk ≤
∏

k∈A EXk.

3. Negative association: Efg ≤ (Ef)(Eg) whenever f and g are
increasing functions on Bn measurable with respect to disjoint
sets of coordinates.

4. Strong Rayleigh: definition TBA.

1. NC implies P(|S− ES| ≥ a) ≤ n/(4a2)

2. NCP implies Gaussian bounds: P(S−ES ≥ a) ≤ exp(−2a2/n)

3. NA implies a self-normalized CTL: (S− ES)/Var (S)1/2 → χ

4. SR implies Gaussian tail bounds for all Lipschitz functionals
on Bn (details will be given later in the lecture).
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Strong Rayleigh distributions

Pemantle Negative Association



Generating functions

Given a set of random variables X1, . . . ,Xn taking values in Z+,
the associated generating function is the polynomial in n variables
defined by

F(x1, . . . , xn) =
∑

a1,...,an

P(X1 = a1, . . . ,Xn = an) xa11 · · · x
an
n .

When the variables {Xn} are Boolean, the corresponding
generating function is multi-affine: no powers can by higher than 1.

A useful identity computes the probability of all 1’s in a set A:

E
∏
k∈A

Xk =
∂

∂xk1
· · · ∂

∂xkr
F(1, . . . , 1)

where k1, . . . , kr enumerates A.
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NC and NC+ in terms of generating functions

In terms of the generating function, NC is expressed by

EXiXj ≤ (EXi)(EXj)⇐⇒ F(1)
∂2F

∂xixj
(1) ≤ ∂F

∂xi
(1)

∂F

∂xj
(1) .

If we require this not just at (1, . . . , 1) but at all points in the
positive orthant, for all x we get the so-called Rayleigh property.

Probabilistically, this is the property that all measures produce
from P by external fields are NC; here an external field is a
reweighting of each ω ∈ Bn by λω1

1 · · ·λωn
n for some fixed positive

real parameters λ1, . . . , λn.
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External field
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Definition of strong Rayleigh

Definition 2

A measure P on Bn is said to be strong Rayleigh if its generating
function F satisfies

F (x)
∂2F

∂xixj
(x) ≤ ∂F

∂xi
(x)

∂F

∂xj
(x) (1)

for all x ∈ Rn (negative coordinates now allowed!)

This strengthening, while not intuitive, makes algebraic methods
more powerful because the variables are no longer constrained.

VERY USEFUL FACT: For multi-affine functions, (1) is equivalent
to F being nonzero on Hn where H is the open upper half plane.
This property, called stability, has been well studied.
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Stability theory in 3 slides (and two pictures)

It is not the place to take a long detour into complex function
theory.

Instead, I will state two results whose proofs require this detour.

These results are very intuitive when stated probabilistically. Once
we accept them, the remaining content of the lectures you can be
argued in a more or less self-contained manner.

Further details may be found in the original source Borcea,
Brändén and Liggett (2009) or in my (2012) survey.
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Polarization

Let X1, . . . ,Xn be nonnegative integer random variables, all
bounded by M. Polarization means replacing X1 by Boolean
variables {Y1, . . . ,YM} such that, conditional on X1, . . . ,Xn, the
Y variables are exchangeable and sum to X1.

Lemma 3

If the generating function for X1, . . . ,Xn is stable then the
generating function for Y1, . . . ,YM ,X2, . . . ,Xn is stable.

The polarization construction can be described in algebraic terms,
without reference to probability, and is proved via the
Grace-Welsh-Szegö Theorem.
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Splitting X1 into exchangeable variables Y1, . . . ,Ym

8

X  , X  ,  ...1 2 X  , X  ,  ...1 2

1

0

2

0

1  0  0  0  1  0  1  0
3

1

0

2

0

X Y  , Y   , ...  Y  1 1 2

On the left is a sample from a distribution on positive integers
where all variables are bounded by M := 8.

On the right, given that X1 = 3, this variable was replaced by 8
binary variables, three of which were chosen to be 1, uniformly

among the

(
8

3

)
possibilities.
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Homogenization

Often algebra works better with homogeneous polynomials. A
generating function F is homogeneous if and only if the random
variable S :=

∑n
k=1 Sk is constant.

Lemma 4 (Homogenization Lemma)

Let F be a stable polynomial in n variables with nonnegative real
coefficients. Then the (usual) homogenization of F is a stable
polynomial in n + 1 variables.

The proof uses hyperbolicity theory, showing that nonnegative
directions are in the cone of hyperbolicity.

Probabilistic interpretaion: if {X1, . . . ,Xn} have stable generating
function then adding Xn+1 := n −

∑n
k=1 Sk preserves stability.
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Symmetric homogenization

Putting these two constructions together yields a natural stability
preserving operation within the realm of Boolean measures.

Definition 5

The symmetric homogenization of a measure on Bn is the measure
on B2n obtained by first adding the variable Xn+1 := n −

∑n
k=1 Xk

(homogenizing) and then polarizing: splitting Xn+1 into n
conditionally exchangeable Boolean variables.

Theorem 6

Symmetric homogenization preserves the strong Rayleigh property.
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Example of symmetric homogenization

On the left is a configuration in B9. Symmetric homogenization
extends this, on the right, to a configuration on B18 in which the
number of new 1’s is the number of old 0’s and vice versa.
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Time to start reaping benefits

Fruitfulness of the strong Rayleigh property rests on these.

1. Strong conclusions.

It implies negative association, and all that follows.

2. Relatively checkable hypotheses.

There are many classes of examples.

I hope I have convinced you of the strong conclusions, pending a
proof of SR implies NA. But...

How is this crazy hypothesis checkable?

We need to discuss closure properties...
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Elementary closure properties

Here are five properties that preserve SR, for which the proof is
more or less immediate from the full definition of stability.

1. Permuting the variables: F (xπ(1), . . . , xπ(n))) is stable if F is.

2. Merging independent collections: FG is stable if F and G are.

3. Forgetting a variable: setting the indeterminate xj = 1.
More generally, setting xj = a for a ∈ H preserves stability.

4. Replacing X1 and X2 by X1 + X2: F (x1, x1, x3, . . . , xn).

5. Conditioning on Xj :
∂F

∂xj
and F − xj

∂F

∂xj
are stable if F is.
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Not so obvious closure properties

Three more closure properties hold that are probabilistically
meaningful but less automatic.

1. External field: F (λ1x1, . . . , λnxn) is stable if F is.

2. Stirring, that is, replacing F by a convex combination of F
and F ij := F (x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi , xj+1, . . . , xn).

3. Conditioning on the total, S : (P|S = k) is SR if P is.
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Stirring

+ 1−qq
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Conditioning on the total

(P | S = 3)P
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Proofs

1. External field. Immediate from the defition of stability: that F
be nonvanishing on Hn.

2. Stirring. The nonvanishing of pF + (1− p)F ij may be checked
for each fixed set of values of {xk : k 6= i , j} in H. These
specializations of F are stable, 2-variable, multi-affine polynomials
with complex coefficients. It suffices to check for this class that
stability is closed under F 7→ pF (x , y) + (1− p)F (y , x). This can
be done by brute force.

3. Conditioning on the total. Homogenize to obtain the new stable

function G (x1, . . . , xn, y) =
∑n

j=0 Ej(x1, . . . , xn)y j . Derivatives
preserve stability. Differentiating k times with respect to y and
n − k times with respect to y−1 leaves a constant multiple of Ek .
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for each fixed set of values of {xk : k 6= i , j} in H. These
specializations of F are stable, 2-variable, multi-affine polynomials
with complex coefficients. It suffices to check for this class that
stability is closed under F 7→ pF (x , y) + (1− p)F (y , x). This can
be done by brute force.

3. Conditioning on the total. Homogenize to obtain the new stable

function G (x1, . . . , xn, y) =
∑n

j=0 Ej(x1, . . . , xn)y j . Derivatives
preserve stability. Differentiating k times with respect to y and
n − k times with respect to y−1 leaves a constant multiple of Ek .
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EXAMPLES OF STRONG RAYLEIGH LAWS
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Conditioned Bernoulli sampling

Let {πi : 1 ≤ i ≤ n} be numbers in [0, 1]. Let P be the product
measure making EXi = πi for each i . Let P′ = (P|S = k). The
measure P′ is called conditioned Bernoulli sampling.

Theorem 7

For any choice of parameter values, the measure P′ is strong
Rayleigh. Given any probabilities p1, . . . , pn summing to k , there is
a one-parameter family of vectors (π1, . . . , πn) whose conditional
Poisson sampling law has marginals p1, . . . , pn. All of these
produce the same law, which maximizes entropy among laws with
marginals p1, . . . , pn.

Proof: P is trivially SR (e.g., because it is a product). P′ is SR
by closure under conditioning. The remaining facts are well known,
e.g., Brändén and Jonasson (2012) or Singh and Vishnoi (2013).
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Exclusion processes

Closure of SR under stirring, applied in a continuous manner,
produces the following result.

Theorem 8

Let P be a strong Rayleigh measure on Bn. Suppose for each i , j ,
the values of Xi and Xj swap at some prescribed, not necessarily
constant rates βij(t). Then for fixed T , the law at time t is strong
Rayleigh.

One application to sampling occurs when the ground set is not
{1, . . . , n} but some set of configurations understood only locally.
A Monte Carlo scheme starts with a set of configurations, then
repeatedly picks one at random and swaps it out for a neighbor.
Then the configuration after T swaps is SR.
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Pivot sampling

Once more let {pi} be probabilities summing to an integer k < n.
Recursively, define a sampling scheme as follows.

If p1 + p2 ≤ 1 then set X1 or X2 to zero with respective
probabilities p2/(p1 + p2) and p1/(p1 + p2), then to choose the
variables other than what was set to zero, run pivot sampling on
(p1 + p2, p3, . . . , pn).

If p1 + p2 > 1, do the same thing except set one of X1 or X2 equal
to 1 instead of 0 and the other to p1 + p2 − 1.

This method is very quick and does not involve having to compute
auxilliary numbers such as the numbers pi in conditional Bernoulli
sampling. Brändén and Jonasson (2012) show that several
πps-sampling procedures, including pivot sampling, are SR.
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Example of pivot sampling

5/8

X X X X1 2 3 4 5

.6 .2 .7 .8 .5

0 .7 .8 .5

.5 0 1 .8 .5

.3 0 1 1 .5

0 0 1 1 .8

0 0 1 1 0

p p p p p
1 2 3 4 5

.8

Probability of this was 

Probability of this was Probability of this was 

Probability of this was 

Probability of this was 

Probability of this was 

3/4

7/15

2/10

8/13

X
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Proof that pivot sampling is SR

Induct on n. Assume WLOG that p1 + p2 ≤ 1. Let P denote the
law of pivot sampling with probabilities (p1 + p2, p3, . . . , pn). By
induction P is strong Rayleigh.

Let P′ be the product of the degenerate law δ0 with P, that is,
sample from P then prepend a zero. This is trivially SR as well.

Let P′′ be the law qP′ + (1− q)(P′)12, obtained from P′ by
transposing 1 and 2 with probability q := p1/(p1 + p2).

P′′ is strong Rayleigh by closure under stirring.

But P′′ is the law of pivot sampling on (p1, . . . , pn); this completes
the induction.
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Determinantal measures

The law P on Bn is determinantal if there is a Hermitian matrix M
such that for all subsets A of [n], the minor det(M|A) computes
E
∏

k∈A Xk .

It is easy to see that determinantal measures have negative
correlations. The diagonal elements give the marginals. By the
Hermitian property, the determinant of M|ij must be less than
MiiMjj . Thus,

(EXi )(EXj) = MiiMjj ≤ MiiMjj −MijMij = EXiXj .
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SR property for determinantal measures

Theorem 9

Determinantal measures are strong Rayleigh.

Sketch of proof: By the theory of determinantal measures, the
eigenvalues of M must lie in [0, 1]. Taking limits later if necessary,
assume they lie in the open interval.

Then F = C det(H − Z ) where Z is the diagonal matrix with
entries (x1, . . . , xn) and H = M−1 − I is positive definite. This is a
sufficient criterion for stability (Gårding, circa 1951).
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Determinantal sampling

The following result, although we will not use it, is interesting.

Theorem 10 (Lyons)

Given probabilities p1, . . . , pn summing to an integer k < n, we can
always accomplish πps-sampling via a determinantal measure.

Proof: The sequence {pi : 1 ≤ i ≤ n} is majorized by the
sequence which is k ones followed by n − k zeros. This
majorization is precisely the criterion in the Schur-Horn Theorem,
for existence of a Hermitian matrix M with p1, . . . , pn on the
diagonal and eigenvalues consisting of 1 with mulitplicity k and 0
with multiplicity n − k . The matrix M defines the desired
determinantal processes.
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Spanning tree measures

Let G = (V ,E ) be a graph with positive edge weights {w(e)}.

The weighted spanning tree measure is the measure WST on
spanning trees proportional to

∏
e∈T w(e).

Pemantle Negative Association



Spanning trees are strong Rayleigh

The WST is determinantal; see, e.g., Burton and Pemantle (1993).

It follows that the random variables {Xe := 1e∈T} have the strong
Rayleigh property. In particular, they are NA.

Oveis Gharan et al. (2013) use the strong Rayleigh property for
spanning trees in a result concerning TSP approximation. From
the strong Rayleigh property, they deduce a lower bound on the
probability of a given two vertices simultaneously having degree
exactly 2.
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Further properties of SR measures useful for TSP

They make use of SR ⇒ NA, as well as the following properties.

1. Let P be SR and let S :=
∑n

k=1 Xk . Then S has the same law
as the sum of independent Bernoullis. In particular, the
sequence {P(S = k) : 0 ≤ k ≤ n} is ultra-log-concave and it’s
mode and mean differ by at most one.

Proof: The univariate GF for S is a diagonal of F , hence is
SR, hence has all real roots. The remaining properties follow,
as will be discussed later.

2. Stochastically increasing levels: the law (P|S = k + 1)
stochastically dominates the law (P|S = k).

3. The law of P conditioned on S ∈ {k , k + 1} is strong Rayleigh.
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A key lemma

Lemma 11 (rank re-scaling)

Let P on Bn be strong Rayleigh and let {bi : 0 ≤ i ≤ n} be a finite
sequence of nonnegative numbers such that

∑n
i=0 bix

i is stable
(equivalently, has only real roots). Then the measure

n∑
i=0

bi (P|S = i)

normalized to have total mass 1, is also strong Rayleigh.
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Example of rank re-scaling

8

0

0

4

1

The sequence 1, 8, 4, 0, 0 corresponds to the polynomial
1 + 8x + 4x2, which has all real roots. A generic measure on B4 (on
the left) becomes a new measure in which ranks 3 and 4 are gone.
Points in rank 1 increase in weight by the most, followed by rank 2
and then rank 0. Resulting weights are normalized to sum to 1.
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Proof that rank re-scaling preserves SR

Proof:

1. In the special case bi = δi ,k , this is just saying that (P|S = k) is
SR, which we alredy proved.

2. In general, because the reversed sequence {bn−k : 0 ≤ k ≤ n} is
real rooted, we may construct independent Bernoulli random
variables Y1, . . . ,Yn whose law Q on Bn gives
Q(
∑n

j=0 Yj = k) = bn−k for all k .

3. The product law P×Q is SR (closure under products). By Step
(1), the law (P× Q|

∑2n
j=0 ωj = n) of the product conditioned on

the sum of all the X and Y variables being equal to n is SR as
well. Forgetting about the Y variables, this is

∑n
i=0 bi (P|S = i). �
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Cleaning up two arguments from before

Applying the lemma with bi := 1k≤i≤k+1 proves that
(P|k ≤ S ≤ k + 1) is strong Rayleigh.

To deduce stochastically increasing levels, homogenize the measure
(P|k ≤ S ≤ k + 1), yielding a SR measure ν. Negative association
implies that the homogenizing variable Xn+1 := 1S=k is
ν-negatively correlated with any upward event in Bn. This is the
desired conclusion.

Remark: we can’t continue and apply the lemma to bi := 1k≤i≤k+2

because xk + xk+1 + xk+2 does not have all real roots.

Therefore, (P|k ≤ S ≤ k + 2) is NOT in general SR.
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Exercise

Exercise: show that SR implies the stochastic covering property.

Say that ν stochastically covers µ if it is stochastically greater and
can be coupled so that the sample from ν is either equal to the
one from µ or contains precisely one more element.

Let µ and ν are the respective conditional measures on Bn−1
defined by µ = (P|Xn = 1) and ν = (P|Xn = 0). A measure is said
to have the SCP if ν stochastically covers µ, and this holds when
P is replaced by any conditionalization or index permutation.

Hint: stochastic domination follows from negative association. For
a homogeneous measure, stochastic covering follows from
stochastic domination. In general, P can be extended to a
homogeneous measure (symmetric homogenization), and that’s
good enough.
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A recurring argument

Negative association for the spanning tree measure was first proved
by Feder and Mihail (1992). In fact this argument is at the heart
of a number of others, so we should be aware, although they state
somewhat less, of what their argument showed.

Theorem 12 (Feder and Mihail (1992, Lemma 3.2))

Let M be a class of probability measures on Boolean lattices that
are all homogeneous and pairwise negatively correlated. Suppose
M is closed under conditioning on the value of one of the variables.
Then all measures in the class M are negatively associated.
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SR implies NA

With this, we can pay off a debt and prove that SR implies NA.

Proof that strong Rayleigh measures are negatively
associated:

1. The critical step is that P can be extended to a homogeneous
measure, namely its symmetric homogenization.

2. Observe that SR implies Rayleigh which implies pairwise
negative correlation.

3. The class of strong Rayleigh distributions is closed under
conditioning. The hypotheses of Feder-Mihail are satisfied,
therefore all strong Rayleigh measures are negatively
associated.

�
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CONCENTRATION INEQUALITIES
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Concentration of the sum

Perhaps the most classical theorems in probability theory concern
the distribution and tail bounds for sums of independent variables.

The hypothesis of joint independence is very strong. Weakening
these has been a major theme. I will repeat two results that came
up a few dozen slides ago.

1. Negative cylinder dependence is enough to derive exponential
moments, hence Gaussian tail bounds on S .

2. If P is SR then S has a univariate generating function with all
real roots. For example, it is immediate that S has the law of
a sum of Bernoullis, from which a CLT follows directly.
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Further properties of real-rooted sequences

Proposition 13 (generating polynomials with real roots)

1. (Newton, 1707) A nonnegative coefficient sequence of a
polynomial with real roots is log concave. In fact the sequence
is ultra-logconcave, meaning that {ak/

(n
k

)
} is log-concave.

2. (Edrai, 1953) A polynomial with nonnegative real coefficients
has real roots if and only if its sequence of coefficients
(a0, . . . , an) is a Pólya frequency sequence, meaning that all
the minors of the matrix (ai−j) have nonnegative determinant.

3. Such a sequence is unimodal and its mean is within 1 of its
mode.

A good survey of such results may be found in Francisco Brenti’s
(1989) AMS Memoir.
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Generalizing the sum

Instead of generalizing the measure, one could ask about
concentration inequalities for something other than the sum.

One vein of research concerns maximal inequalities: here the
functional to be bounded is typically something like the maximum
partial sum f := maxk≤n

∑k
j=1 Xj .

In the context of Boolean measures, it makes sense to look for
bounds that hold for the distribution any reasonably behaved
function f : Bn → R.

One notion of “well behaved” is to be Lipschitz with respect to the
Hamming distance.
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Lipschitz functionals

A Lipschitz function f : Bn → R is one that changes by no more
than some constant c (without loss of generality c = 1) when a
single coordinate of ω ∈ Bn changes.

Example 1: S :=
∑n

k=1 Xk is Lipschitz-1.

Example 2: Let {1, . . . , n} index edges of a graph G whose degree
is bounded by d . Let Y be a random subgraph of G and let
Xe := 1e∈Y . Let f count one half the number of isolated vertices
of Y . Then f is Lipschitz-1 because adding or removing an edge
cannot affect the isolation of an vertex other than an endpoint of e.
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Example Lipschitz function counting isolated vertices

d

a

b

c

The function counting isolated vertices is Lipschitz-2. For example,
removing the edge ab alters the number of isolated vertices by +2,
adding an edge cd alters the count by −1, and so forth.
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Simultaneously generalizing the functional and the measure

Strong tail bounds are available for Lipschitz functions of
independent variables. These are based on classical exponential
bounds going back to the 50’s (Chernoff) and 60’s (Hoeffding).

E. Mossel asked about generalizing from sums to Lipschitz
functions assuming negative association. We don’t know, but we
can do it if we assume the strong Rayleigh property.

Theorem 14 (Pemantle and Peres, 2015)

Let f : Bn → R be Lipschitz-1. If P is k-homogeneous then

P(|f − Ef | ≥ a) ≤ 2 exp

(
−a2

8k

)
.

Without the homogeneity assumption, the bound becomes
5 exp(−a2/(16(a + 2µ)) where µ is the mean.
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Proof

Sketch of proof:

I Strong Rayleigh measures have the stochastic covering
property.

I The classical Azuma martingale, Zk := E(f |X1, . . . ,Xk) can
now be shown to have bounded differences, due to Lipschitz
condition on f and coupling of the different conditional laws.

(See illustration)

Note: this actually proves that any law with the SCP satisfies the
same tail bounds for Lipschitz-1 functionals.

Pemantle Negative Association



Proof

Sketch of proof:

I Strong Rayleigh measures have the stochastic covering
property.

I The classical Azuma martingale, Zk := E(f |X1, . . . ,Xk) can
now be shown to have bounded differences, due to Lipschitz
condition on f and coupling of the different conditional laws.

(See illustration)

Note: this actually proves that any law with the SCP satisfies the
same tail bounds for Lipschitz-1 functionals.

Pemantle Negative Association



Proof

Sketch of proof:

I Strong Rayleigh measures have the stochastic covering
property.

I The classical Azuma martingale, Zk := E(f |X1, . . . ,Xk) can
now be shown to have bounded differences, due to Lipschitz
condition on f and coupling of the different conditional laws.

(See illustration)

Note: this actually proves that any law with the SCP satisfies the
same tail bounds for Lipschitz-1 functionals.

Pemantle Negative Association



Proof

Sketch of proof:

I Strong Rayleigh measures have the stochastic covering
property.

I The classical Azuma martingale, Zk := E(f |X1, . . . ,Xk) can
now be shown to have bounded differences, due to Lipschitz
condition on f and coupling of the different conditional laws.

(See illustration)

Note: this actually proves that any law with the SCP satisfies the
same tail bounds for Lipschitz-1 functionals.

Pemantle Negative Association



Illustration

? ? ? ? ? ? ? ?

? ? ? ? ? ? ??

There is a coupling such that the upper row samples from P, the
lower row samples from (P|X1 = 1), and the only difference is in
the X1 variable and at most one other variable.

A similar picture holds for (P|X1 = 0).

Therefore, f varies by at most 2 from the upper to the lower row,
hence |Ef − E(f |X1)| ≤ 2.
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Application

The proportion of vertices in a uniform spanning tree in Z2 that
are leaves is known to be 8/π2 − 16/π3 ≈ 0.2945. Let us bound
from above the probability that a UST in an N × N box has at
least N2/3 leaves.

Letting f count half the number of leaves, we see that f is
Lipschitz-1. The law of {Xe := 1e∈T} is SR and N2 − 1
homogeneous. Therefore,

P(f − Ef ≥ a) ≤ 2 exp(−a2/(8N2 − 8)) .

The probability of a vertex being a leaf in the UST on a box is
bounded above by the probability for the infinite UST. Plugging in
a = N2(1/3− 8π−2 + 16π−3) and replacing the denominator by
8N2 therefore gives an upper bound of

2 exp

[(
1

3
− 8

π2
+

16

π3

)2

N2

]
≈ 2e−0.0015N

2
.
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FURTHER EXAMPLES
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Sampling without replacement:

Let r1, . . . , rn be positive real weights. Weighted sampling without
replacement is the measure on subsets of size k obtained as
follows. Let Y1 ≤ n have P(Y1 = `) proportional to r`. Next, let
P(Y2 = m|Y1 = `) be proportional to rm for m 6= `. Continue in
this way until Yi is chosen for all i ≤ k and let Xi =

∑k
j=1 1Yj=i .

There is a strong intuition that this law should be negatively
associated. The law of a sample of size k is stochastically
increasing in k, a property shared with strong Rayleigh measures.

WRONG!

In a brief note in the Annals of Statistics, K. Alexander (1989)
showed that weighted sampling without replacement is not, in
general, even negatively correlated.
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NA but not SR?

Negative association does not imply strong Rayleigh. The only
published examples, however, are highly contrived.

Problem 1

Find natural measures which are NA but not SR.

There are some candidates: classes of measures that are known to
be NA but for which it is not known whether they are SR. I will
briefly discuss two of these, namely Gaussian threshhold measures
and sampling via Brownian motion in a polytope.
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Gaussian threshhold measures

Let M be a positive definite matrix with no positive entries off the
diagonal. The multivariate Gaussian Y with covariances
EYiYj = Mij has pairwise negative correlations. It is well known,
for the multivariate Gaussian, that this implies negative association.

Let {aj} be arbitrary real numbers and let Xj = 1Yj≥aj . For
obvious reasons, we call the law P of X on Bn a Gaussian
threshhold measure.

Any monotone function f on Bn lifts to a function f on Rn with
Ef (Y) = Ef (X). Thus, negative association of the Gaussian
implies negative association of P.

Problem 2

Is the Gaussian threshhold sampling law, P, strong Rayleigh?
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Sampling and polytopes

Sampling k elements out of n chooses a random k-set. Suppose
we wish to restrict the set to be in a fixed list, M. If we embed Bn
in Rn, then each set in M becomes a point in the hyperplane
{ω :

∑n
i=1 ωi = k}.

The set of probability measures on M maps to the convex hull of
M. The inverse image of p is precisely the set of measures with
marginals given by (p1, . . . , pn). Thus, the πps-sampling problem is
just the problem of choosing a point in the inverse image of p.

A point p in the polytope is
a mixture of vertices in many
ways, each corresonding to a
measure supported on M that
has mean p.
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Brownian vertex sampling

Based on an idea of Lovett and Meka, M. Singh proposed to
sample by running Brownian motion started from p. At any time,
the Brownian motion is in the relative interior of a unique face, in
which it constrained to remain thereafter. It stops when a vertex is
reached. The martingale property of Brownian motion guarantees
that this random set has marginals p.

It turns out that the resulting scheme is negatively associated as
long as the set system M is a matroid. This notion generalizes
many others, such as spanning trees and vector space bases. For
balanced matroids it is known that the uniform measure is strong
Rayleigh, but even negative correlation can fail for other matroids.

Nevertheless...
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Negative association of Brownian vertex sampling

Theorem 15 (Peres and Singh, 2014)

For any matroid M, the random k-set chosen by Brownian vertex
sampling is negatively associated.

Sketch of proof: Let f and g be monotone functions
depending on different sets of coordinates. Then f (Bt)g(Bt) can
be seen to be a supermartingale. At the stopping time, one gets∫

fg dP = Ef (Bτ )g(Bτ ) ≤ Ef (B0)Eg(B0) =

∫
f dP

∫
g dP .
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Is Brownian sampling strong Rayleigh?

Problem 3

Is the Brownian sampler strong Rayleigh?
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Uniform acyclic subgraph

I will conclude by mentioning some measures where negative
dependence is conjectured but it is not known whether any of the
properties from negative correlation to srtong Rayleigh holds.

A spanning tree is a connected acyclic graph. A seemingly small
perturbation of the uniform or weighted spanning tree is the
uniform or weighted acyclic subgraph – we simply drop the
condition that the graph be connected.

Problem 4

Is the uniform acyclic graph strong Rayleigh? Is it even NC?

Note: one might ask the same question for the dual problem,
namely uniform or weighted connected subgraphs. This problem is
open. I don’t know offhand whether the two are equivalent.
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The random cluster model

The random cluster model is a statistical physics model in which a
random subset of the edges of a graph G is chosen. The probability
of H ⊆ G is proportional to a product of edge weights

∏
e∈H λe ,

times qN where N is the number of connected components of H.
When q ≥ 1, it is easy to check the positive lattice condition,
hence positive association. When q ≤ 1, is is conjectured to be
negatively dependent (all properties from negative correlation to
strong Rayleigh being equivalent for this model).

Problem 5 (random cluster model)

Prove that the random cluster model has negative correlations.

Warning: this one has withstood a number of attacks.
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THANKS FOR SITTING SO LONG!
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