
More rigorous results on the Kauffman-Levin model of evolution

Vlada Limic 1,2

Robin Pemantle 3,4

ABSTRACT:
The purpose of this note is to provide proofs for some facts about the NK model of evolution due
to Kauffman and Levin. In the case of normally distributed fitness summands, some of these facts
have been previously conjectured and heuristics given. In particular, we provide rigorous asymptotic
estimates for the number of local fitness maxima in the case when K is unbounded. We also examine
the role of the individual fitness distribution and find the model to be quite robust with respect to
this.

Keywords: fitness, local maxima, genetics, spin-glass

Subject classification: 92D15, 60G60
1Research supported in part by National Science Foundation grant # DMS 0104232
2University of British Columbia, Department of Mathematics, Department of Mathematics,#121-1984 Mathemat-

ics Road, Vancouver, BC V6T 1Z2, Canada, limic@math.ubc.ca
3Research supported in part by National Science Foundation grant # DMS 0103635
4The Ohio State University, Department of Mathematics, 231 W. 18th Avenue, Columbus, OH 43210,

pemantle@math.ohio-state.edu



1 Introduction

The purpose of this note is to provide proofs for some facts about the NK model. Some of these
have been previously formulated, at least approximately, as conjectures or heuristic arguments. Since
we are interested in the mathematical analysis of the model, we include only a brief summary of
the biological motivation, for which we can do no better than to excerpt and paraphrase from the
introductory section of the paper by Evans and Steinsaltz [ES02].

Beginning with Sewall Wright in the early twentieth century, evolution has been modeled as the
gradual motion of a genome through an abstract space, with a tendency toward increasing values of
the fitness function. One may think the graph of this function as a fitness landscape and of natural
selection as a random walk with upward drift on the fitness landscape. One cannot understand
the likely behavior of such a random walk without understanding the qualititative nature of the
landscape as one with “slivers of high fitness looming up above the vast genomic tohubohu” [ES02].
In any random walks model of fitness landscapes and natural selection, the nature of the global
fitness maximum is less important than the number and height of local maxima.

Kauffman and Levin [KL87] introduced the NK model which is a probabilistic model for the
fitness landscape. In this model, there are N loci, at each of which are one of two possible alleles.
Thus a genome is an element of the space {0, 1}N . The fitness of a genome is the sum of N different
fitnesses, the jth of which is determined by the alleles at sites j, j+1, . . . , j+K modulo N . In the NK
model, the 2K+1 alleles in the N possible positions are given fitnesses whose joint distribution is that
of 2K+1N IID picks from a distribution, F . The fitness of a given genome is then the sum of the N
fitnesses corresponding to the actual string of K+1 alleles beginning at each position. Note that this
randomness is present in the model at the start; later one may model natural selection as a random
walk in this random environment, but that is beyond the scope of this paper. Evans and Steinsaltz
point out that since the allele substrings of length K + 1 overlap, there is no easy way to find the
optimal choice for the N alleles. They conclude that, “while no one would mistake this abstract
system for a realistic model of genetic evolution, it has the virtues of a good foundational model:
it is easy to describe, yet contains a wealth of structure that is neither obvious nor superficially
accessible. Before we can analyze a more realistic model, it would seem we must first come to grips
with models such as this one. At the same time, we may hope that some general features of this
model will carry over to something like the real world.”

Most studies of the NK model rely on simulations, which are limited to small to intermediate
values of N (e.g. in [Ka93] N =96, and in [DL01] N=1024 which corresponds to the size of a
gene, but it is much smaller than the number of genes in a genome). Simulations may provide
quick answers to various questions in particular cases of fitness distribution F . However, a very
interesting and natural question of robustness of the model under variations in F can be tackled
only mathematically.

We would like to warn the reader that we will always assume in this paper that the parameter K
is strictly positive, and that the underlying distribution F is continuous. The NK model for K = 0
or K = N − 1 exhibits special behaviors which were rigorously analysed by many authors (see e.g.
[KL87]). If F were not continuous, ties would be possible and analysis would become cumbersome.

The study of the question our paper is devoted to begins with [We91]. In this paper, Weinberger
gives asymptotic formulae for the number of local fitness maxima (LFM) when N and K are large
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and F is the normal distribution. As noted in [ES02] and [DL01], however, Weinberger’s derivation
is not rigorous. Weinberger’s heuristics are limited to the case where F is the normal distribution,
though he points out that other distributions such as the Cauchy might be more realistic, and that
one could expect the outcome to be independent of the choice of distribution.

Majority of rigorous results that have been obtained assume that K is fixed and N →∞. In this
context, several results were obtained in two recent papers [DL01, ES02]. Among other things, they
both show ([ES02, Theorem 7], [DL01, Theorem 2.1]) that the exponential growth rate number of
local maxima (or, which is equivalent, the exponential decay of the probability of a given genome
being a local fitness maximum) exists as a limit. In other words, the probability of a LFM decays
like expN(λK + o(1)) as N → ∞ with K remaining fixed. For K = 1, they compute this limit
explicitly, when F is the exponential distribution [ES02] or the negative exponential [DL01]. In
the case where F has an exponential moment, Durret and Limic [DL01, Theorem 5.1] make partial
progress towards showing the number of local maxima (for large K, N) to be independent of the
distribution, F : they bound the exponential rate on one side; they conjecture this is correct to within
a constant factor. The value of λK is theoretically possible to compute for certain distributions when
K ≥ 1, but practically impossible. It is biologically reasonable that K be on the order of at least
several dozens, whence our interest in asymptotic formulae for λK with error estimates that are
valid as K, N → ∞ without restriction. For example, in [Ka93, pages 122–142], it is shown that
maturation of the immune response fits the parameters K = 40 and N = 122, which is probably
best described as “N and K large, with N/K remaining bounded”.

The first purpose of this note is to rigorize Weinberger’s computations for the normal case. This
includes sharpening his statements to include error bounds and quantified asymptotic statements,
specifically convergence uniform in N as K →∞. The second purpose is to investigate dependence
on F . Specifically, we prove some asymptotic results that do not depend at all on the distribution of
F , completing and generalizing the conjecture in [DL01], and we show some stronger results for the
“fat-tail” case, which we believe to be the extreme opposite to the case where F has finite second
moment.

The remainder of the paper is organized as follows. The next section sets forth the notation and
states our main results. Section 3 gives proofs for the results in which F is the normal distribution.
Section 4 proves results for general distributions and derives asymptotics for fat tailed distributions
when N/K →∞. Section 5 contains a detailed analysis of the case where F has fat tails and N/K
remains bounded. Finally, Section 6 gives an exact expression for the exponential rate when F is
the fat-tail and K = 1, which, when compared with similar computations for other distributions,
corroborates an extremality conjecture for the fat-tail.

We use notation o(1) to represent a term that converges to 0 as K → ∞, O(1) to represent a
term bounded by a constant, and Θ(expression(K)) to represent a term for which there are positive
finite constants c, C (independent of K) such that cexpression(K) ≤ term ≤ Cexpression(K).

2 Notation and statements of results

The parameters of the model are positive integers N > K and a continuous distribution function F
on the real numbers. Our concern in this paper is with the number of LFM’s for a random fitness
landscape. The expectation of this number is equal to 2N times the probability that any given
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genome is a local fitness maximum. Consequently, our sole focus will be the rigorous estimation
of this probability. Showing that the logarithm of the number of LFM’s is near its expectation is
not hard, but will not concern us here; see for example [DL01, Theorem 7.1], where an asymptotic
normality result is obtained for the logarithm of the number of local fitness maxima.

In the NK model the (unnormalized) fitness of a particular genome η = (η1, η2, . . . , ηN ) ∈ {0, 1}N is
defined to be

N∑
j=1

Y (j; (ηj , ηj+1, . . . , ηj+K)), (2.1)

where the family

{Y (j; (η1, η2, . . . , ηK+1)) : j = 1, . . . , N ; (η1, η2, . . . , ηK+1) ∈ {0, 1}K+1}

is the family of of N · 2K+1 IID random variables with common distribution F . Suppose we are
given such a family on a probability space (Ω,F , P) and abbreviate

Yj := Y (j; (0, 0, . . . , 0)),

to be the fitness of the substring of K + 1 zeros starting in position j; here and throughout,
arithmetic on subscripts is always taken modulo N . With above notation the fitness of the zero
genome is

∑N
j=1 Yj .

The genome consisting of all 0s has N neighbors, namely all binary strings of length N with
exactly one 1. Since in this paper we are only interested in the probability of the event that the
string of all 0s is LFM, the only other relevant random variables from the above family are the
fitnesses Y (j; (η1, η2, . . . , ηK+1)), where j = 1, . . . , N and where

∑
i ηi = 1. We again abbreviate for

1 ≤ j ≤ N, 0 ≤ i ≤ K
Yj, i := Y (j − i; (0, . . . , 1, . . . , 0)),

where 1 is only in the ith position above (here we count positions starting from 0). The quantity Yj,i

is interpreted as the fitness of the substring of length K +1 starting at position j− i that is all zeros
except for a single one in position j. Then the definition (2.1) says that the string ej consisting of
N − 1 0s and a single 1 in the jth position has fitness (in the new notation)

j−K−1∑
i=j+1

Yi + Yj,0 + Yj,1 + . . . + Yj,K .

The zero genome is a LFM if it has greater fitness than that of any genome with exactly one 1. We
denote the event of optimality of the zero string by H. We may write H =

⋂
j Hj where Hj is the

event that all 0s is better than ej . Equivalently,

Hj ⇔
j∑

i=j−K

Yi ≥
K∑

i=0

Yj,i . (2.2)

Define pF (N,K) := P(H). We usually suppress dependence on F and write simply p(N,K). Our
first result makes rigorous and precise what is stated in [We91].
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Theorem 2.1 Suppose that F is the standard normal distribution. Then

log p(N,K) =
N

K
(− log K + RN,K)

with
c log log K ≥ RN,K ≥ −c

√
log K

for some c > 0.

Remarks: (i) Specializing to the case N/K → α, we obtain the estimate p(N,K) = K−1/α+o(1).
(ii) The error terms are independent of N , so the previous estimate is uniform in N > K + 1 as
K → ∞; here and throughout, all asymptotic notation is with respect to K only (unless
otherwise noted). (iii) In contrast to what will be the case with other distributions, there is no
correction when N/K does not go to infinity. (iv) If K = N − 1 then the NK model is essentially
different from the NK model where K < N − 1, but since p(N,N − 1) = 1/N + 1 it is still true that
log p(N,N − 1) = − log(N + 1) ∼ −N log(N − 1)/(N − 1) with error smaller than above bounds on
RN,N−1 for large N .

Next, we state our most general result.

Theorem 2.2 Let F be any distribution and N ≥ 2(K + 1). Then

log p(N,K) ≤ −(1 + o(1))bN
K
− o(1)c log K (2.3)

log p(N,K) ≥ −(3 + o(1))dN
K
e log K . (2.4)

We believe that the upper bound (2.3) is sharp, so we conjecture that:

Conjecture 1 It is possible to replace 3 by 1 in (2.4).

When sums of random variables are concerned, the class of most tightly clustered distributions
is the distributions with finite variance, since these exhibit Gaussian behavior when summed. At
the other extreme, one has distributions with extremely fat tails. In the limit, one might consider
a distribution with the following property: in any collection of n IID picks, the greatest is much
greater than the sum of the magnitudes of the others with probability tending exponentially rapidly
to 1 as n → ∞. For example, if U is uniform on [0, 1], then exp(exp(1/U)) has this property. In
this case, as long as K →∞ at least as fast as log N , one may approximate Hj by the event

H′
j :=

{
max

j−K≤i≤j
Yi ≥ max

i
Yj,i

}
. (2.5)

Heuristically, properties of p(N,K) shared by fat tailed distributions and normal distributions
would be likely to hold for all distributions since all others lie “in between”. One approach to
establishing facts about fat tailed distributions would be to axiomatize how fast the probability
should tend to 1 of the event that the largest of n picks dominates all the others, and then prove
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theorems about distributions satisfying the axiom. We choose a less cumbersome approach, namely
to provide an analysis of the probability of the event H′ :=

⋂N
j=1H′

j . We use the notation pfat(N,K)
to denote P(H′) and sometimes call it “p(N,K) under the fat-tail distribution”. Note that pfat(N,K)
is independent of F , assuming F is continuous.

We conjecture that

Conjecture 2 For any N and K, the infimum over all F of pF (N,K) is equal to pfat(N,K).

Our next result shows that Conjecture 1 holds for the fat-tail, and thus that Conjecture 2 implies
Conjecture 1.

Theorem 2.3
log pfat(N,K) ≥ −(1 + o(1))dN

K
+ o(1)e log K .

Weinberger suggests the Cauchy as a biologically realistic distribution. Those who are bothered
by a mythological distribution called the fat-tail, will perhaps be interested to see that the previous
result for the fat-tail may be proved for the Cauchy. We remark that the criterion we have suggested
for axiomatization of the fat-tail, namely exponential decay of the probability that the largest of n
picks fails to dominate the sum of the others, requires much fatter tails than the Cauchy distribution
possesses. Thus we view the following result as more than adequate to demonstrate that the fat-tail
results hold for typical fat-tailed distributions.

Theorem 2.4 When F is a symmetric Cauchy distribution,

log p(N,K) ≥ −(1 + o(1))dN
K

+ o(1)e log K .

Comparing these last results to Theorem 2.1, we see that for the fat-tail and Cauchy, and
conjecturally for all distributions, F , log pF (N,K) ∼ log pΦ(N,K), where Φ is the normal CDF, as
long as N/K →∞: in this case the difference between N/K and dN/K +o(1)e is irrelevant, and the
formulae agree. Note that, on the other hand, if N/K ≈ α, where α = m− 0.5 for some integer m,
the difference between dN/K +o(1)e and bN/K +o(1)c is 1, which amounts to the difference of 1/K
in the asymptotic lower and upper bounds for p(N,K). It turns out there is in fact an asymptotic
inequivalence between log pΦ(N,K) and log pfat(N,K) when N/K does not go to infinity. Because
of this, we include a more precise description of that asymptotics of log p(N,K) in this regime.

The statement of the following theorem will make more sense if one keeps in mind how H′ is
likely to occur. There will be at least r0 := dN/Ke large fitnesses among the Yj , which is the
minimum number for which it is possible to have a large fitness in every window of size K. The
number of ways of picking r large fitnesses increases with r, but the probability that any specific r
fitness values are all large decreases with r. In this energy-entropy tradeoff, the maximum occurs
at r = r0 as N/K increases to r0 − o(1), at which point the r value that achieves the maximum
switches to r0 + 1.
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Table 1: behavior of p(N,K) across integer values of N/K
N j (1 + o(1))pfat(N,K)

2(K + 1)− j 0 < j ≤ K 1
K ( 1

K+3−j −
1
K + log K

K2 )
(r − y)(K + 1) 0 ≤ y < 1 1

Kr fr(y) + 1
Kr+1 fr+1(1 + y)

Theorem 2.5 As K → ∞ with N/K bounded, there are formulae giving the value of pfat(N,K)
up to a factor of 1 + o(1). The formulae are in terms of functions {fr : r ≥ 3} on R+, defined by
formula (5.7) in Section 5, and summarized in the following table.

Additionally, the functions fr satisfy:

• fr(0) = 0;

• fr(x) ∼ xr−1 as x → 0.

• for r ≥ 4, fr is increasing, continuous and bounded on [0, 1];

• for r = 3, fr is increasing and continuous on [0, 1), with f3(1− t) ∼ 2 log(1/t) as t → 0+.

In other words, there are narrow windows in the parameter N/K in which pfat(N,K) changes from
roughly K−r to K−(r+1). These occur at N/K ≈ r −K−1/(r−1). An exception is when r = 2. In
this case, the change from order K−2 to order K−3 log K is complete at N = 2K − c log K, after
which the order slowly slides down to K−3 as log(N − 2K) increases to log K.

A final result is the analysis for the fat-tail when K = 1. It should be noted that when K = O(1),
maxima are taken over collections of a bounded size, so no actual distribution has tails fat enough
to ensure that the maximum will dwarf the others. Nevertheless, this result is still relevant to
Conjecture 2.

Theorem 2.6
N−1 log pfat(N, 1) → z := − log 1.803 . . . = −0.58947 . . .

where z is the solution of the Bessel equation

0 = π
√

6 BesselI (
2
3
,
2
3

√
2z)

− π
√

3z BesselI (−1
3
,
2
3

√
2z)

+ 3
√

2 BesselK (
2
3
,
2
3

√
2z)

+ 3
√

z BesselK (
1
3
,
2
3

√
2z) .

The published exact values of log p(N, 1) for the exponential and negative exponential are respec-
tively −0.57504 . . . [ES02] and −0.5499934 . . . [DL01]. The published lower bound for the uniform
is −0.55957 . . . [DL01]. All of these are greater than the value for the fat-tail given by Theorem 2.6,
thus providing further corroboration of Conjecture 2.
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Some final notation and methodology common to all the proofs is as follows. We let F = σ(Yj :
1 ≤ j ≤ N) be the σ-field generated by the fitnesses of zero substrings. We let F (K+1) denote the
CDF for the sum of K + 1 independent picks from the distribution F . Conditional on F , the events
Hj are independent, with

P(Hj | F) = F (K+1)(
j+K∑
i=j

Yi) .

Removing the conditioning then gives a formula which appears as [We91, (2.4)]:

p(N,K) =
∫ N∏

j=1

F (K+1)(
j+K∑
i=j

Yi) dF (Y1) · · · dF (YN ) . (2.6)

3 Analysis of normal case

The following facts are well known.

Lemma 3.1 If Φ and φ are the normal cdf and density respectively, then

log Φ(x) = (−1 + o(1))(1− Φ(x)) = φ(x)(x−1 + O(x−2)) , x →∞ (3.1)

(log Φ)′′ =
Φφ′ − φ2

Φ2
< 0 (3.2)

and
The function log Φ is concave. (3.3)

�

Next we define the normalized total fitness

t := N−1/2
N∑

j=1

Yj

and the re-centered window-sums

Xj :=

(∑j+K
i=j Yj

)
− ((K + 1)/

√
N)t

√
K + 1

.

It is immediate to verify that each Xj is a normal with mean 0 and variance 1−(K+1/N). Since the
quantities Yj − t/

√
N are independent normals re-centered to sum to zero, their joint distribution

is independent of the centering constant t. This can be verified explicitly by checking that the
covariance of X and Yj−t/

√
N is 0 for each j. Consequently, since

√
K + 1Xj =

∑j+K
i=j (Yj−t/

√
N)

we see that
{Xj : 1 ≤ j ≤ N} is independent of t . (3.4)
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Plugging this into (2.6) and using the fact that F (K+1) is a normal of variance K + 1 we get

p(N,K) = E
N∏

j=1

Φ

(
Xj +

√
K + 1

N
t

)
, (3.5)

Up to here we have followed Weinberger, arriving at [We91, (3.2)]. Weinberger now asserts
that Xj = O(1) with mean zero, and may therefore be removed from the equation resulting in
p(N,K) ≈ EΦ(t

√
(K + 1)/N)N where t is a standard normal; this is then evaluated by steepest

descent. Our contribution in the rest of this section is to finish this properly, with one inequality
(the upper bound on R) following directly from (3.3) of Lemma 3.1, and not relying on independence
of t and {Xj : 1 ≤ j ≤ N}.

Upper bound on R: By definition, the random variables Xj sum to zero. Using concavity of
log Φ, we have the (deterministic) inequality

N∑
j=1

log Φ

(
Xj + t

√
K + 1

N

)
≤ N log Φ

(
t

√
K + 1

N

)
.

Plugging into (3.5) then gives

P(A) ≤ EΦ

(
t

√
K + 1

N

)N

=
∫

Φ

(
x

√
K + 1

N

)N

φ(x) dx (3.6)

where φ is the normal density. Let I(x) = IN,K(x) denote the integrand in (3.6) and let M denote
the maximum value of log I:

M := max
x

log I(x) = − log
√

2π + max
x

[
N log Φ

(
x

√
K + 1

N

)
− x2

2

]
.

If we can show that
log
∫

IN,K(x) dx ≤ M + O(1) (3.7)

and that
M = −N

K
(log K + O(log log K)) (3.8)

then the first inequality in Theorem 2.1 will be proved. Both computations are routine, and we need
only one inequality of (3.8), but we include the arguments because they clarify matters by indicating
the location of the saddle.

To show (3.8), let x0 :=
√

(2N/(K + 1)) log(K + 1). Of course

M ≥ log IN,K(x0)

= − log
√

2π +
N

K + 1

[
(K + 1) log Φ(

√
2 log(K + 1))− log(K + 1)

]
= −N

K

[
log K +

1 + o(1)√
log K + o(1)

,

]
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(where we have used the estimate (3.1) from Lemma 3.1 on log Φ, and where the last o(1) accounts
for − log

√
2π. This shows one inequality in (3.8). For an upper bound on M , suppose first that

x ≥
√

(2N/(K + 1))(log(K + 1)− 2 log log(K + 1)). Then

log IN,K(x) ≤ −x2

2
= −N

K
(log K + O(log log K))

as needed. On the other hand, when x ≤
√

(2N/(K + 1))(log(K + 1)− 2 log log(K + 1)), then

log IN,K(x) ≤ − log
√

2π + N log Φ
(√

2(log(K + 1)− 2 log log(K + 1))
)

= (−1 + o(1))N
1
K

(log K)2√
2 log K − 4 log log K

≤ −(1 + o(1))
N

K
(log K)3/2 ,

so these values of x need not be considered, and the other inequality in (3.8) is proved.

Proving (3.7) is merely a matter of estimating the second derivative of log I. By log-concavity
of Φ, this is at most the second derivative of log φ, which is equal to −1/2. Let xM := xM (N,K)
be such that IN,K(xM ) = M . Now an easy calculus argument (using log concavity) shows

I(x) ≤ exp{I(xM )} exp{−(x− xM )2/4} = eM exp{−(x− xM )2/4},

so that
∫

e−MIN,K(x) dx is bounded above by a constant 2
∫∞
0

exp(−x2/4)dx independent of N and
K, which shows that log

∫
I(x) dx ≤ M +O(1) and finishes the proof of (3.7) and the first inequality

of Theorem 2.1. �

Lower bound on R: Let G1 be the event that

t ≥ x1 :=
√

(2N/(K + 1))(log(K + 1) + 3
√

log(K + 1)) .

Let G2 be the event that max |Xj | ≤ 1. Due to independence of t from {Xj : 1 ≤ j ≤ N}, we may
write

p(N,K) ≥ P(G1 ∩G2) P(H |G1, G2)
= P(G1) P(G2) P(H |G1, G2)

We estimate this in pieces, the first being the one responsible for pushing R down to −c
√

log K.

Since log φ(x) = −x2/2 + O(1), we may estimate

log P(G1) = log
(

1− Φ
(√

(2N/(K + 1))(log(K + 1) + 3
√

log(K + 1))
))

= log
(

(1 + o(1))
φ

x

[√
(2N/(K + 1))(log(K + 1) + 3

√
log(K + 1))

])
= O(1)− N

(K + 1)
(log(K + 1) + 3

√
log(K + 1))− log x1

= −N

K
(log K + O(

√
log K)) .

9



Next, we estimate P(G2).

Lemma 3.2

log P(G2) ≥ −π2

2
N

K
.

Proof: Let Sj :=
∑j

i=1(Yi−t/
√

N) be the re-centered partial sums. Then Xj = (K+1)−1/2(Sj+K−
Sj−1), with indices still taken modulo N . The event G′

2 defined by

G′
2 :=

{
|Sj | ≤

1
2

√
K for all j ≤ N

}
implies the event G2. Let W0 be Wiener measure on continuous paths ω on [0, N ] starting at 0,
and let W br

0 be the Brownian bridge measure, that is, W0 conditioned on {ω(N) = 0}. The law of
{Sj : 1 ≤ j ≤ N} is the law of partial sums of N IID standard normals conditioned on summing
to zero; this is the same as the conditional law of {ω(j) : 1 ≤ j ≤ N} under W0, conditioned on
{ω(N) = 0}, which is the same as the law of {ω(j) : 1 ≤ j ≤ N} under W br

0 .

Brownian bridge always stays closer to the origin than unconstrained Brownian motion, in the
following sense. In fact, it is not difficult to couple the path of the reflected simple random walk
bridge, (i.e. the absolute value of the random walk path conditioned to visit 0 at time 2n) and the
path of the reflected simple random walk up to step 2n so that the former stays below the later at
all times with probability 1. Taking the diffusion limits in appropriate way constructs one coupling
of the reflected Brownian bridge, and reflected Brownian motion described above.

Letting G′′
2 be the event that |ω(t)| ≤

√
K/2 for all t ≤ N , we then have

P(G2) ≥ P(G′
2) ≥ W br

0 (G′′
2) ≥ W0(G′′

2) .

Let Wµ be Wiener measure started from distribution µ. Clearly Wµ(G′′
2) is maximized when µ = δ0,

i.e., W0(G′′
2) ≥ Wµ(G′′

2) for any µ. Now let µ be the distribution on [−
√

K/2,
√

K/2] with density
C cos(πx/

√
K). This is an eigendensity for Brownian motion killed on exiting [−

√
K/2,

√
K/2]

(see [Kn81, Theorem 4.1.1]). We see that

P(G2) ≥ Wµ(G′′
2) = e−

π2
2

N
K ,

proving the lemma. �

Finally, we estimate the third term. Recall from (3.5) the formula for the probability of LFM:

p(N,K) = E

exp

 N∑
j=1

log Φ(Xj +
√

(k/N)t)

 .

For x > 1, consider the inequality√
2(x + 3

√
x) >

√
2(
√

x + 1)2 −
√

2 + 1 =
√

2x + 1

10



which can easily be checked, for example, by squaring both sides (note that if x > 1 then both sides
of the inequality are strictly positive). Applying this inequality yields on G1 ∩G2,

Xj + t

√
K + 1

N
≥

√
2(log(K + 1) +

√
log(K + 1))− 1

≥
√

2 log(K + 1) .

Therefore, on G1 ∩G2 we then have for all j,

log Φ

(
Xj + t

√
K + 1

N

)
≥ log Φ

(√
2 log(K + 1)

)
and hence, using (3.5),

P(H |G1, G2) ≥
(
Φ(
√

2 log(K + 1))
)N

≥ exp
(
− N

K + 1

)
.

Plugging in the estimates for P(G1) and P(G2) then yields

log p(N,K) ≥ −N

K

(
π2

2
+ log K + O(

√
log K)

)
which finishes the proof of the theorem. �

4 Proof of universality results

Proof of Theorem 2.2:

First inequality: For the moment let the small positive real parameter y be unspecified. Break
the interval from 1 to N into L := bN/(1 + y)(K + 1)c intervals of length b(1 + y)(K + 1)c,
discarding any unused positions at the end. Denote these intervals I1, . . . , IL and let I ′j denote the
first dy(K + 1)e positions in Ij . Let sj denote the index s ∈ I ′j maximizing S :=

∑K
i=0 Ys,i. The

maximum is a maximum of y(K + 1) independent draws from F (K+1), so Bj := F (K+1)(
∑K

i=0 Ysj ,i)
has distribution β(1, y(K + 1)). The mean of Bj is 1− (y(K + 1) + 1)−1. In order for the event Hsj

to occur, the sum
∑sj+K

i=sj
Yi must exceed S. Let F ′ = σ(Yj,i : 1 ≤ j ≤ N, 0 ≤ i ≤ K) be the σ-field

generated by the fitnesses of substrings with exactly one 1. Then

P (Hsj | F ′) = 1−Bj .

Since |sj − sk| > K when j 6= k, the events Hsj
are conditionally independent given F ′, and Bjs are

mutually independent random variables. Therefore,

P(H) ≤ P
(
∩L

j=1Hsj

)
11



= EP
(
∩L

j=1Hsj | F ′)
= E

L∏
j=1

(1−Bj)

=
(

1
1 + y(K + 1)

)L

.

When K = o(N), we choose y = y(K) = o(1) to optimize this bound. For example, taking
y = 1/ log K gives an upper bound of exp(−(1 + o(1))(N/K) log K), as is required to prove (2.3).

When K = Θ(N), the same choice of y leads to the same conclusion, except that one has
bN/y(K + 1)c in place of N/K. Since y(K) = o(1), this is again sufficient to prove (2.3). �

Second inequality: To prove (2.4), begin with the observation that the events Hj are increasing
events with respect to the variables {Yj : 1 ≤ j ≤ N} and {−Yj,i : 1 ≤ j ≤ N, 0 ≤ i ≤ K}. By
Harris’s inequality, these are positively associated. Let L = dN/(K + 1)e, and for 1 ≤ j ≤ L, let

Gj :=
j(K+1)⋂

i=(j−1)(K+1)+1

Hi .

Positive association implies that

P(H) = P(
L⋂

j=1

Gj) ≥ P(G1)L .

Thus it suffices to establish
log P(G1) ≥ −(3 + o(1)) log K . (4.1)

Let al := F (K+1)(
∑l+K

i=l Yi) for each l ∈ [1,K + 1]. Then

P(G1) = EP(G1 | F) = E
K+1∏
l=1

al .

If al ≥ 1− 1/K for each l ∈ [1,K + 1] then
∏K

l=0 al ≥ e−1 + o(1), so (4.1) would follow from

P
(

min{al : 1 ≤ l ≤ K + 1} ≥ 1− 1
K

)
≥ cK−3 . (4.2)

Let F∗ be the σ-field generated by the unordered pair of sets {Y1, . . . , YK+1} and {YK+2, . . . , Y2K+2}.
Then min{a1, aK+2} ∈ F∗. Furthermore, conditional on F∗ the collection {Sl :=

∑l
i=1(Yi+K+1 −

Yi) : 1 ≤ l ≤ K + 1} has exchangeable increments (generated by continuous distribution i.i.d. picks
so ties in S· happen with probability 0) that are symmetric about 0. Now note the following conse-
quence of exchangeability: conditioned on all the increments, if their total sum is positive, then the
probability that the minimum occurs at the beginning, i.e. all the intermediate sums are positive, is

12



at least 1/K. Namely, all cyclic permutations of the increments are equally distributed, and almost
surely there is at least 1 such permutation for which the minimum is achieved at step 0.

Therefore,

P(min{Sl : 1 ≤ l ≤ K + 1} > 0) ≥=
1
2
K−1 .

When {min{Sl : 1 ≤ l ≤ K + 1} > 0} occurs, we have min{al : 1 ≤ l ≤ K + 1} = a1. Hence, by
conditioning on F∗ first, the probability on the LHS of (4.2) is at least

1
2
K−1P(min{a1, aK+2} ≥ 1− 1/K)

and by independence of a1 and aK+2 (recall that N > 2K + 1) this is equal to

(
1
2

+ o(1))K−1K−2 ,

proving (2.4). �

The proofs of Theorems 2.3 and 2.4 are similar to the argument used to prove the second in-
equality of Theorem 2.2. Having specific distributions to work with makes the arguments simpler
and the results sharper (cf. Conjecture 1).

Proof of Theorem 2.3: Cover the interval [N ] := {1, . . . , N} with L := dN/((1 − y)(1 + K)e
intervals of size d(1 − y)(K + 1)e. Denote these intervals by I1, . . . , IL. Positive association again
implies that

P(H′) ≥ P(H′
j ∀j ∈ I1)L .

Let I ′ denote the interval of length by(K + 1)c adjacent to and just preceding I1. If the maximum
of the collection {Yj , Yl,i : j ∈ I ′, l ∈ I1, 0 ≤ i ≤ K} is Yj0 for some j0 ∈ I ′, it follows that H′

j

occurs for each j ∈ I1. The last claim follows directly from definition (2.5) since for such j0 we have
Yj0 ≤ maxj

i=j−K Yj whenever j ∈ I1.

The probability of
{max

j∈I′
Yj > max

l∈I1,0≤i≤K
Yl,i},

up to corrections for integer roundoff, is clearly equal to y(K + 1)/[(1 − y)(K + 1)2 + y(K + 1)].
Thus

P(H′) ≥
[
(1 + o(1))

y(K + 1)
(1− y)(K + 1)2 + y(K + 1)

]L

.

Choosing y = y(K) = 1/ log K as before suffices to prove the theorem. �

Proof of Theorem 2.4: Keeping the notation from the previous proof, we need to estimate
P(Hj ∀j ∈ I1) when F is the Cauchy distribution. Define events

(i) A := {maxj∈I′ Yj ≥ 2(K + 1)2};

(ii) B := {
∑

j∈I1∪I0
0 ∨ (−Yj) < (K + 1)2};

(iii) C := {maxj∈I1

∑K
i=0 Yj,i ≤ (K + 1)2}.

13



Here I0 is the interval of length K preceeding I1 so that for y(K) < 1 (which will be the case)
I ′ ⊂ I0. Note that A ∩B ∩ C ⊂ ∩j∈I1Hj since on A ∩B ∩ C we have, if j ∈ I1, both

{
j−K∑
i=j

Yi ≥ max
j∈I′

Yj +
∑

j∈I1∪I0

(0 ∨ (−Yj)) > (K + 1)2}

and

{
K∑

i=0

Yj,i ≤ (K + 1)2}.

It is not difficult to check that

(i) P (A) = ((2π)−1 + o(1))yK−1;

(ii) P (B) ≥ e−(2−y)2/π + o(1);

(iii) P (C) = e−(1−y)/π + o(1).

Indeed,

P (A) = 1− P (max
j∈I′

Yj ≤ 2(K + 1)2) = 1−
(

1−
( 1

π + o(1))
2(K + 1)2

)y(K+1)

= − y

K + 1
(

1
2π

+ o(1)),

P (B) ≥ P ( max
j∈I1∪I0

0 ∨ (−Yj) <
K + 1
2− y

) =
(

1− 2− y

π(K + 1)

)(K+1)(2−y)

≥ e−
(2−y)2

π + o(1),

and

P (C) = P (
K∑

i=0

Y1,i ≤ (K + 1)2)(1−y)(K+1) =

(∫ K+1

−∞

1
π(1 + y2)

dy

)(1−y)(K+1)

= (1−
( 1

π + o(1))
K + 1

)(1−y)(K+1) = e−
1
π (1−y) + o(1).

Another application of positive association shows that

P (A ∩B ∩ C) ≥
(

e−5/π

2π
+ o(1)

)
y

K

so that

P(H) ≥
[(

e−5/π

2π
+ o(1)

)
y

K

]L

,

and taking the logarithm, with y(K) = log(K)−1, completes the proof. �
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5 The fat-tail when N/K remains bounded

This section provides a proof of Theorem 2.5. In particular, in this section we derive asymptotic
formulae for pfat(N,K) that are valid as N,K → ∞, uniformly as long as N/K remains bounded.
Probability estimates come from the following algorithm for checking whether H′ has occurred.

(i) Initialize r = 1 and C to be the collection of variables {Yj , Yj,i : 1 ≤ j ≤ N, 0 ≤ i ≤ K}.

(ii) Find the maximum of the variables in C.

(iii) (a) If this maximum is one of the variables Yj,i then output FALSE and stop.

(b) Else, let jr be the index such that the maximum occurred at Yjr
.

(iv) Remove from C the variables Yj,i for j1 ≤ j ≤ j1 + K, 0 ≤ i ≤ K (these are no longer relevant
since no matter what their value is, we know that ∩j1+K

j=j1
H′

j has occurred, and other H′
ls do

not depend on the values of Yj,i, j1 ≤ j ≤ j1 + K, 0 ≤ i ≤ K, anyhow), and also remove the
variable Yjr .

(v) (a) If the collection C contains no more variables Yj,i then output TRUE and stop.

(b) Else, set r to r + 1 and go to Step ii.

Clearly H′ = {algorithm stops at TRUE}. We may think of the output as containing all values
of jr found before stopping, so that in addition to the indicator function of the event H′, the
algorithm outputs the random variables R, j1, . . . , jR, where R is the maximum value for which the
first Step (iii)b (the Else statement) is executed. Recall that r0 := dN/(K + 1)e is a lower bound
for R, provided output is TRUE. The possible values for the sequence j when of length R = r are
precisely the set S(r) of sequences satisfying:

(*) for every i ∈ [N ] there is an s ≤ r for which 0 ≤ i− js ≤ K, and

(**) no initial segment of j satisfies property (*).

Letting H(j) denote the event that H′ occurs and the algorithm outputs the witnessing sequence j,
we may decompose H′ into a disjoint union by setting H(r) :=

⋃
j∈S(r)H(j) and

H′ =
⋃
r

H(r) =
⋃
r

⋃
j∈S(r)

H(j) .

Given 1 ≤ s ≤ r + 1 and any sequence j of length r containing distinct elements of [N ], define

missed(s, j) := {j ∈ [N ] : j − jt /∈ {0, . . . ,K} ∀t < s}

M(s, j) := |missed(s, j)| .

Vacuously, M(1, j) = N for all j. The following figure illustrates this definition when r0 = 4. In the
illustration, the intervals [js, . . . , js+K] are shaded in, j1 is equal to K+1, one interval overlaps with
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1 K + 1

[1,K + 1] modulo N , and the other two intervals also overlap. This also illustrates a general fact,
namely that the set missed(s, j) (the white space between the shaded intervals) is always composed
of no more than s intervals (i.e. the unshaded set has at most s connected pieces), where adjacent
white intervals are separated by a distance of at least K + 1.

One further observation is that for all s and j,

N ≥ M(s, j) ≥ N − (s− 1)(K + 1) . (5.1)

Conditional on the event R ≥ r + 1 and on j1, . . . , jr, the values of the variables remaining in C at
stage r are IID, so the conditional probability of jr+1 = j for any j /∈ {j1, . . . , jr} is equal to the
reciprocal of the number of variables remaining in C, that is 1/(N − r + (K + 1)M(r, j)). Applying
this inductively yields

P(H(j)) =
r∏

s=1

1
N − (s− 1) + (K + 1)M(s, j)

. (5.2)

The (K + 1)M(s, j) contribution above comes from the number of Yl,i variables that are still in
C. The above computation can be generalized in the following useful way. Define the event H∗(j)
by

H∗(j) := H′ ∩ {j is an initial segment of the output of the algorithm}.

When j of length r is an element of S(r), H(j) = H∗(j). Otherwise H(j) is empty and the RHS
in (5.2) computes the probability of outputting j as an initial segment. To obtain P(H∗(j)) from
this, one must multiply the RHS in (5.2) by the probability Q(j) that, conditional on the initial
segment being j, the algorithm eventually outputs TRUE. We compute an upper bound on Q(j),
for j of length r, as follows. For each interval I = [a, b] ⊆ missed(r, j), in order for the H∗(j) to
happen, it is necessary that maxa−K≤j≤b Yj is greater than maxj∈I,0≤i≤K Yj,i. This probability of
{maxa−K≤j≤b Yj > maxj∈I,0≤i≤K Yj,i}. maxa−K≤j≤b Yj equals

b + K + 1− a

b + K + 1− a + (b + 1− a)K
=

(b + 1− a) + K

b + 1− a + (b + 2− a)K
≤ 1

K + 1
+

1
b + 2− a

.

If missed(r, j) is composed of more than one interval, the probabilities for each interval are multiplied
(since they are at least K+1 units apart everything is independent), and therefore, for a given M(r, j),
the upper bound on Q(j) is greatest when missed has only one interval and we may take as an upper
bound

Q(j) ≤ 1
M(r, j)

+
1
K

. (5.3)

We now bound the number of sequences j producing a given value of M(r, j).
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Lemma 5.1 Let N = (r−y)(K+1). Then the number of sequences j of length r with M(r+1, j) = ι
is at most

NC(r)(yK + ι)r−2 .

Proof: By symmetry, it suffices to consider only sequences for which j1 < · · · < jr in cyclic order
modulo N and then multiply by (r−1)!. By convention we let j0 := jr−N . For 1 ≤ s ≤ r, consider
the quantities As := js−1 + K + 1− js unknown the following two nice properties:

(a)
∑r

s=1 As = j0 − jr + r(K + 1) = −N + r(K + 1) = y(K + 1) ,

(b)
∑r

s=1(−As) ∨ 0 =
∑r

s=1[(js − js−1)− (K + 1)] ∧ 0 = ι.

Property (b) is a consequence of the fact that the length of the unique (white) interval contribut-
ing to missed(r +1, j), that is contained in [js−1, js], equals [(js− js−1)− (K +1)]∧0. The sequence
(A1, . . . , Ar) and the value j1 together determine j. The number of possible sequences (A1, . . . , Ar)
above may be bounded as follows. Let S+ be the set of indices i for which Ai ≥ 0. Given S+, the
subsequence (Ai : i ∈ S+) is a sequence of nonnegative integers summing to y(K + 1) + ι. These
sequences are called compositions of y(K + 1) + ι into |S+| parts, and the number of such compo-

sitions is
(

y(K + 1) + ι + |S+| − 1
|S+| − 1

)
[St86, page 14]. Similarly, (Ai : i /∈ S+) is a composition of ι

into r−|S+| parts, and the number of these is
(

ι + r − |S+| − 1
r − |S+| − 1

)
. We claim that the product of the

above two binomial coefficients is bounded above by C0(r)(y(K + 1) + ι)r−2. Indeed, the product
equals

(y(K + 1) + ι + |S+| − 1)!
(|S+| − 1)!(y(K + 1) + ι)!

· (ι + r − |S+| − 1)!
(ι)!(r − |S+| − 1)!

Clearly |S+| ≤ y(K + 1) + ι and r − |S+| ≤ ι, which implies

(y(K + 1) + ι + |S+| − 1)!
(y(K + 1) + ι)!

≤ [2(y(K + 1) + ι)]|S+|−1,

and
(ι + r − |S+| − 1)!

(ι)!
≤ [2(y(K + 1) + ι)]r−|S+|−1.

Thus, for a given S+, there are at most NC0(r)(y(K + 1) + ι)r−2 such j sequences (N comes from
the choice of j1). Summing over at most 2r − 2 values of S+ proves the lemma. �

As mentioned prior to the statement of Theorem 2.6, the complexity in the behavior of pfat(N,K)
is due to transitions in the number of Yj variables with large values from one integer to the next
higher. We separate the argument into several cases, the first three being restricted to r0 = dN/Ke ≥
3:

I r0 − 1 + ε ≤ N

K + 1
≤ r0 − ε

II r0 − ε ≤ N

K + 1
≤ r0

III r0 − 1 ≤ N

K + 1
≤ r0 − 1 + ε

IV r0 = 2
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The analyses of Cases II and III actually cover Case I since one could take ε = 1/2, but since the
argument is easier for values of N/(K + 1) not too close to an integer, we prefer to present this as
the first case.

Case I. We first compute P(H(r0)). For each j ∈ S(r0) and each s ≤ r0, the expression (5.2) and
the bounds (5.1) imply

c(ε) ≤ K2r0P(H(j)) ≤ C(ε) (recallN ∼ r0K).

Together with the fact that S(r0) has cardinality Θ(Kr0) (see below for details), this immediately
implies that

P(H(r0)) = Θ(K−r0).

In this case, we claim that P(H(r)) is maximized at r = r0; with P(H(r − 1)) trivially being zero,
this statement and the theorem will follow from a more precise estimate of P(H(r0)) and a bound
on P(H∗(r0 + 1)).

Let T be the r0-dimensional torus of r0-tuples in R/Z, with addition modulo 1 and unit Lebesgue
measure, λ. For y ∈ [0, r0], define a subset T(y) = T(y, r0) ⊆ T, to be the set of x = (x1, . . . , xr0)
such that for all z there is a j ≤ r0 with xj − 1

r0−y ≤ z ≤ xj . Consider the mapping of S(r0) into T

by
j 7→ j/N, (5.4)

the set S(r0) then maps into the set T(y) for y = r0 − (N/(K + 1)). In fact, for any U ⊆ T(y),
the cardinality of the subset of S(r0) that maps into U under (5.4) is equal to (1 + o(1))Nr0λ(U)
uniformly in N/K as N →∞. Furthermore, for j ∈ S(r0),

P(H(j)) = (1 + o(1))N−r0K−r0η

(
j
N

)
(5.5)

where

η(x) =
r0∏

s=1

1
M̃(s,x)

, (5.6)

and M̃(s,x) is the measure of [0, 1] \
⋃s

t=1[xt −K/N, xt]. Let y = r0 −N/(K + 1), and note that y
equals j/(K + 1) when N = r0(K + 1)− j for j > 0. By bounded convergence, we then have

Kr0P(H(r0)) → fr0(y) :=
∫
T(y∧1;r0)

η(x) dλ(x) (5.7)

(note here that since y ∈ [ε, 1 − ε] y ∧ 1 = y) as N → ∞, uniformly in N/K, with fr0(·) bounded,
continuous and non-decreasing. This is the fr term in the last line Table 1.

Next, we compute an upper bound for the event H∗(r0 + 1) :=
⋃
{H∗(j) : j /∈ S(r0), |j| = r0}

that an output of TRUE requires at least r0 + 1 covering intervals. Multiplying the RHS of (5.2) by
Q(r0, j) = Q(j), using (5.3) with r = r0, and using the fact that M(s, j) ≥ C(ε)K for s ≤ r0, we see
that

P(H∗(r0 + 1)) ≤
∑

j/∈S(r0)

Q(j)
r0∏

s=1

1
N − (s− 1) + (K + 1)M(s, j)

≤
N∑

s=1

∑
M(r0+1,j)=s

C
1
s

1
K2r0

.
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where C represents a constant depending only on r0 and ε and the sum is over sequences j of length
r0. By Lemma 5.1, we may further bound this from above by

P(H∗(r0 + 1)) ≤
N∑

s=1

C(yK + s)r0−2 1
s

N

K2r0
(N?K ≤ r0 + 1)

≤ C ′ 1
Kr0+1

N∑
s=1

1
s
(y +

s

K
)r0−1(

N∑
s=1

1/s ∼ log(N) ∼ log(K) + c)

≤ C ′′ log K

Kr0+1
. (5.8)

Together with (5.7), this establishes that

Kr0P(H′) → fr0(y) . (5.9)

When ε < y < 1 − ε, the term containing fr in the last line of the Table 1 dominates the term
containing fr+1 since fr(ε) > 0, so this proves the theorem in the case ε < y < 1−ε and N/(K+1) ≥
3.

Case II. This is quite similar to the previous case. The part where we estimated (5.7) goes through
unchanged, only now fr0 tends to zero as N/(K + 1) → r−0 and we need to find the asymptotic rate
in order to compare to the fr0+1 term.

Lemma 5.2 The measure λ(T(y, r0) of T(y, r0) is asymptotically yr0−1/(r0 − y)r0−1 near y = 0.

Proof: The set T(y) is invariant under translation of each coordinate by a constant, so by symmetry
the measure is the same as the (r0 − 1)-dimensional measure of the fiber of T(y) where x1 = 0. By
permutation invariance, this is equal to (r0 − 1)! times the measure of the subset of T(y) where
0 = x1 < x2 · · · < xr0 . Such a point is in T(y) if and only if the quantities xi + 1/(r0 − y) − xi+1,
for 1 ≤ i ≤ r0 − 1, are positive numbers summing to at most y/(r0 − y); in fact the mapping that
maps each x in the fiber to the sequence (x1 + K/N − x2, . . . , xr0−1 + K/N − xr0) is an isometry.
The (r0 − 1)-dimensional simplex of positive numbers summing to at most y/(r0 − y) has volume
yr0−1/((r0 − y)r0−1(r0 − 1)!), which proves the lemma. �

As y → 0, the factors 1/M̃(s,x) converge to r0/(r0 − (s− 1)), since the only way for a vector to
be in T(y) is for it to have r0 approximately evenly spaced coordinates. Therefore, the function η
defined in (5.6) converges to the constant rr0

0 /r0! on T(y), and we have

fr0(y) =
∫
T(y)

η(x)dλ(x) ∼ rr0

r0!
λ(T(y)) ∼ yr0−1

r0!
.

Since the contribution of P(H(r0 + 1)) to P(H′) is no longer negligible, we must compute it a
little more precisely as well. If we write it as an integral analogous to (5.7), we find, for r0 ≥ 3, that
the integral

∫
T(1)

η(x) dλ(x) exists as an improper integral, but the integral over T(y) diverges for
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y > 1. We have shown that Kr0P(H(r0)) ∼ yr0−1/(r0−1)! as y → 0, and have an upper bound (5.8)
on P(H∗(r0 + 1)). When y ≥ K−1/r0 , these two together show that still

Kr0P(H′) ∼ fr0(y) .

Assume therefore that
y ≤ K−1/r0 . (5.10)

We cannot immediately conclude for 0 ≤ y ≤ K−1/r0 that

Kr0+1P(H∗(r0 + 1)) → fr0+1(1),

and it is our remaining task to verify the above statement. One part of this is easy. For any positive
L, the function η1η>L is bounded, and as L → ∞, these functions converge in L1 to η as long as
η ∈ L1, which is the case since we have assumed that r0 ≥ 3. Equivalently, the function

g(L) :=
∫
T(1;r0+1)

η(x)1η(x)≥L dλ(x)

converges to 0 as L →∞ and by bounded convergence, we may approximate the truncated sum of
the terms in (5.5) by a truncated integral as K →∞:

Kr0+1P(H(r0 + 1) ∩ {η(j/N) ≤ L}) → (1− g(L))fr0+1(1) . (5.11)

The theorem, in Case II, will follow if we can show that

P(η(j/N) ≤ L,H∗(r0 + 2)) ≤ C(L)
1

Kr0+2
(5.12)

P(η(j/N) ≥ L,H∗(r0 + 1)) ≤ c(L)
1

Kr0+1
(5.13)

for c(L) → 0 as L →∞, uniformly in K. Indeed if these two hold, then for L large enough so that
c(L) < δ/2 and K then chosen large enough so that C(L)/K < δ/2, we have

P [H′ \ (H(r0 + 1) ∩ {η(j/N) ≤ L})] ≤ δ

Kr0+1

which together with (5.11) will finish Case II.

To prove (5.12), we may use the same argument that proved (5.8), but with r0 replaced by r0 +1.
We sum over sequences j of length r0 + 1 to get

P(η(j/N) ≤ L,H∗(r0 + 2)) ≤
∑

j/∈S(r0+1)

Q(j)
r0+1∏
s=1

1
N − (s− 1) + (K + 1)M(s, j)

≤
N∑

s=1

∑
M(r0+1,j)=s

C(L)
1
s

1
K2r0+2

.

Here we have used the fact that η(j/N) ≤ L to bound the product in the first line by C(L)K−2r0−2;
equation (5.3) is valid for any r so there is no trouble replacing r0 by r0 + 1 here. At the next step,
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instead of requiring Lemma 5.1, we require only the trivial bound on the number of sequences j
of length r0 + 1 with M(r0 + 2, j) = j, namely CKr0 . Following the path to (5.8) leads this time
to (5.12).

To prove (5.13), observe first that η(j/N) ≥ L implies M(r0 + 1, j) ≤ ε(L)K for some function
ε(L) going to zero as L → ∞. This follows from the expression (5.2), according to which all the
factors 1/M̃(s, j) in the definition of η are bounded from below except for the factor with s = r0 +1,
which is of order K/M(r0 + 1, j). Hence,

P(η(j/N) ≥ L,H∗(r0 + 1)) ≤
ε(L)K∑
s=1

∑
j:M(r0+1,j)=s

Q(r0, j)
r0∏

t=1

1
N − (t− 1) + (K + 1)M(t, j)

≤
ε(L)K∑
s=1

C(r0, ε)(N − r0K + 2s)r0−1 1
s

K−2r0

≤ C(r0, ε)
Kr0+1

ε(L)K∑
s=1

(
N

K
− r0 + 2

s

K

)r0−1 1
s

.

This sum is at most twice the integral for which it is an upper Riemann. To be precise, we consider
the sum as a step function, change variables to x = (s + 1)/K, and compare the upper and lower
Riemann sums to integrals, concluding that

Kr0+1P (η(j/N) ≥ L,H∗(r0 + 1)) ≤ 2C(r0, ε)
∫ ε(L)

0

(
N

K
− r0 + 2x

)r0 1
x + K−1

dx .

As a family of functions on [0, 1], the integrands form a uniformly integrable family as long as
N/K− r0 ≤ K−α for some K. By assumption (5.10), this inequality is indeed satisfied, and we may
conclude that the integral from 0 to ε(L) tends to zero uniformly in K as ε(L) → 0. This finishes
the proof of (5.13) and therefore of Case II. We go onto Case IV, coming back to Case III later since
it uses some of the computations from Case IV.

Case IV: When r0 = 2 the computation is particularly simple without using the continuous ap-
proximation. The first term in the product in (5.2) is always 1/(N(K + 2)). By symmetry,

P(H(2)) = N
∑

j∈S(2),j1=1

P(H(j)) .

For j1 = 1, in order for j to satisfy property (*) it is necessary to choose N −K ≤ j2 ≤ K +2. Also,
if j1 = 1 then missed(j, 2) = {K + 2, . . . , N}, and the second factor in (5.2) is always 1/(N − 1 +
(K + 1)(N −K − 1)). Thus, letting j = 2(K + 1)−N ∈ {0, . . . ,K}, we have

p(H(2)) =
N

N(K + 2)
2K + 3−N

N − 1 + (K + 1)(N −K − 1)

=
1

K + 2
j + 1

N − 1 + (N −K − 1)(K + 1)

= (1 + o(1))
1

K2

j + 1
N − (K + 1) + N−1

K+1
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= (1 + o(1))
1

K2

j + 1
K + 3− j

. (5.14)

For P(H(3)), a similarly direct argument ensues. If H(3) occurs via H(j) for some j ∈ S(3) with
j1 = 1, then since H(2) does not occur, either j2 ∈ [2, N − (K +1)] or j2 ∈ [K +3, N ]. In the former
case, j3 ∈ [N −K, j2 + K + 1], while in the latter case, j3 ∈ [j2 −K − 1,K + 2]. For the first of the
two cases, we then have a contribution to p(H(3)) of

1
K + 2

N−K−1∑
j2=2

j2+K+1∑
j3=N−K

1
N − 1 + (K + 1− j)(K + 1)

1
(N − 2) + (N − j2 −K)(K + 1)

=
1

K + 2
1

N − 1 + (K + 1− j)(K + 1)

N−K−1∑
j2=2

j + j2
N − 2 + (K + 1)(N −K − j2)

(5.15)

= (1 + o(1))
1

K3(1− j/K)

N−K−2∑
s=1

1− s/K

s

= (1 + o(1))
log K

K3(1− j/K)
.

Here the third equation comes from the substitution s = N − K − j2 and the definition of j as
2(K + 1) − N , while the (1 + o(1)) term comes from factors of order (1 + O(1/K)) that remain
once one removes three factors of K from the top and bottom of the fraction preceding the sum and
one factor of K from the top and bottom of the summand. The computation for the second case is
symmetric with this, leading to

p(H(3)) = (2 + o(1))
log K

K3(1− j/K)
. (5.16)

Comparing (5.16 to (5.14), we see that the former is dominant when j = o(log K), the latter
when log K = o(j), and both contribute when j � log K. In particular, (5.14) contributes only
when j → ∞, in which case the contribution is (1 + o(1)) 1

K ( 1
K+3−j −

1
K ), while (5.16) contributes

only when j = o(K), in which case the contribution is (2 + o(1)) log K
K3 . From these the first line in

the Table 1 follows as a lower bound, with an identical upper bound yet to follow if we show that
changing H(3) to H∗(4) produces no change to the asymptotics.

The difference between H(3) and H∗(4) is that in the latter case, j3 can be element of
missed(3, (j1, j2)). These are all j′ not in the interval [1, j2], so the numerator j + j2 of (5.15)
becomes N − j2. This changes the 1 − s/K in the numerator of the subsequent line to 1 + s/K,
which does not affect the sum asymptotically since all the contribution come from s = o(K).

Case III: The analysis of the P(H(r0 + 1)) term in Case II works just as well for N slightly greater
than r0(K + 1), and this becomes the fr term in the last line of the table for r = r0 + 1. Since
r0 ≥ 3, Case II handles the fr terms for r ≥ 4. It remains only to analyze the f3 term appearing in
line 2 of the table.
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We borrow the analysis from Case IV. Now the event H(2) cannot happen, so we need to evaluate
P(H(3)), show it gives the asymptotics stated in the Theorem, and then show that adding P(H∗(4))
does not alter the asymptotics. Let N = 2(K + 1) + j. Assume j1 = 1, so the first interval thrown
out of C is [1,K+1]. In order to cover in three intervals, the second interval thrown out must overlap
the first or be contiguous to it: otherwise C will be two disjoint intervals and will have diameter
more than K, whence one more step will not suffice to cover it. Again we may consider only the case
where the second interval is contiguous to the right of the first and then double to count the case
where the second is contiguous to the left of the first. The value of j2 cannot be j or less, since this
would leave C with cardinality greater than K +1, which is too large a set to cover in one additional
step. Thus, before doubling, the allowable range for j2 is [j + 1,K + 2]. The corresponding range
for j3 is [N −K, j2 + K + 1]. Equation (5.15) now becomes

P(H(3))
2

=
1

K + 2
1

N − 1 + (K + 1)(K + 1 + j)

K+2∑
j2=j+1

j2 − j

N − 2 + (K + 1)(K + 2− j2 + j)

=
1 + o(1)

K3(1 + j/K)

K+2−j∑
s=1

1− j/K − s/K

j + 1 + j/K + s
(5.17)

which is bounded when j/K ∈ [ε, 1/2] and as t := j/K → 0+, due to
K+2−j∑

s=1

1− j/K − s/K

j + 1 + j/K + s
≤

K+2−j∑
s=1

1
j + 1 + j/K + s

≈ log(K(1−t)+2+Kt)−log(Kt) = log((K+2)/(Kt)),

by
1 + o(1)

K3
log(1/t) .

Doubling yields, as a lower bound, the expression in the second line of the Table 1 for r = 3; for the
upper bound, it remains to get an upper bound on P(H∗(4)).

We must sum this time over two types of sequences (1, j2, j3). The first are those with j + 2 /∈
[j + 1,K + 2]; these do not appear in H(3) because it is not possible to cover [N ] in three intervals
starting this way. The second are sequences where j2 ∈ [j + 1,K + 2] but (1, j2, j3) /∈ S(3); these do
not appear in H(3) because the third interval did not complete the cover of [N ], where a different
choice of j3 could have completed the cover. Analyzing the second of these two types repeats the
analysis from the last paragraph of Case IV. That is, allowing these values of j3 replaces 1−j/K−s/K
in the numerator of (5.17) by 1+ j/K + s/K, which does not affect the leading term when j = o(K)
and otherwise multiplies by a bounded factor, which we absorb into the definition of f3.

The first of the two types splits into sub-types: −j ≤ j2 ≤ j (in which case you don’t cover
enough new ground to be able to complete coverage in three steps) or K + 3 ≤ j2 ≤ K + 1 + j (in
which case the set missed(2, j) splits into two intervals and cannot be covered by one more interval).
For the first sub-type M(3, j) is always at least K, so the sum over sequences of this sub-type is
O(K−3). For the second sub-type, M(3, j) = j. For each t there is exactly one value of j2 for which
missed(2, j) is composed of disjoint intervals sizes t and j − t in that order. Given that this occurs
for some t, one may reason as in (5.3) to see that Q(j) ≤ 2/(t(j − t)). Thus the total probability of
the second sub-type is bounded above by

CK−3

j−1∑
t=1

2
t(j − t)

= O(K−3 log j

j
)
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and since this is negligible compared to K−3 log(K/j), the proof in Case III is complete.

6 The fat-tail when K = 1

In this section, we prove Theorem 2.6. For convenience we add a variable Y0 to get an IID collection
C := {Y0, Yj , Yj,i : 1 ≤ j ≤ N, 0 ≤ i ≤ 1} and define the event H̃0 to hold when Y0 ∨Y1 ≥ Y1,0 ∨Y1,1.
Letting H∗ = H̃0 ∩

⋂N
j=1H′

j , it is evident that

P(H∗) ≥ pfat(N + 1, 1)

by monotonicity of probability, and from Harris’ (positive association) inequality that

pfat(N + 2, 1) ≥ P(H′
N+2 ∩H′

N+1 ∩ . . . ∩H′
2) · P(H′

1) = P(H∗) · P(H′
1),

and since P(H′
1) = c > 0 independently of N , it suffices to prove Theorem 2.6 for pN := P(H∗) in

places of pfat(N, 1).

Having sliced open the circle, it is possible to derive a recursion for pN . Observe that the order
of the variables in C, namely {Yj , Yj,i, Y0 : 1 ≤ j ≤ N, 0 ≤ i ≤ 1}, is uniform among the (3N + 1)!
permutations, and that the permutation determines whether H∗ has occurred. In order for H∗ to
occur, it is necessary that the maximum M of variables in C to be Yj for some j. Thus

pN =
N∑

j=0

1
3N + 1

P(H∗ |Yj = M) .

These conditional probabilities may be evaluated recursively. If Y0 = M then further information
about Y1,0 and Y1,1 is irrelevant and the ordering of the remaining 3N−2 variables is uniform, leading
to

P(H∗ |Y0 = M) = pN−1 .

To ensure this holds for N = 1, we set p0 := 1. Similarly,

P(H∗ |YN = M) = pN−1 .

Now suppose N ≥ 2 and Yj = M for some 1 < j < N − 1. Then H′
j and H′

j+1 are known to occur.
Removing from consideration the variables Yj , Yj,i and Yj+1,i for i = 0, 1, the remaining variables
are broken into two subsets of size 3(j − 1) + 1 and 3(N − j − 1) + 1; the ordering on the union of
these is still jointly uniform, leading to

P(H∗ |Yj = M) = pj−1pN−j−1 .

This equation is readily verified for N ≥ 2 and j = 1 or j = N − 1 as well. Putting these together
gives the recursion

pN = δ0,N +
1

3N + 1

2pN−1 +
N−1∑
j=1

pj−1pN−j−1

 =
1

3N + 1

2pN−1 +
N∑

j=2

pj−2pN−j

 (6.1)
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which holds for all N due to the inclusion of the delta function.

Let f(z) :=
∑∞

N=0 pNzN . Since we know (by submultiplicativity) that log pN/N → log(λ) for
some λ ∈ (0, 1), the radius of convergence for the power series defining f above will be 1/λ. The
generating function for (3N + 1)pN is equal to f + 3zf ′. The generating function for δ0,N is 1,
the generating function for 2pN−1 is 2zf , and the generating function for

∑N
j=2 pj−2pN−j is z2f2.

Equation (6.1) then becomes a Riccati equation:

f + 3zf ′ = 1 + 2zf + z2f2 . (6.2)

From the derivation it is apparent that this functional equation has a unique formal power series
solution, f , and since |pN | ≤ 1 for all N , the series represents a function, also denoted f , that is
analytic in a neighborhood of the origin. Only one locally analytic function can satisfy (6.2). To see
this, write g(z) = zf(z3) so that g′ = 1+2z2g+z4g2 := F (z, g) with boundary value g(0) = 0. Since
F is bounded and Lipschitz in a neighborhood of the origin, Gronwall’s lemma ([HS74] or implicit
in the classical uniqueness result [CL55, Theorem 2.2]) says there is at most one such g in the set of
functions differentiable near 0.

Thus f is the unique locally analytic solution to (6.2), whence we may use Maple’s ODE solver to
find solutions to (6.2) and be rigorously assured that any such solution we can verify by differentiation
must equal f . One finds that for any real constant A, there is a solution fA which is a ratio of Bessel
functions. Its numerator is equal to

num :=
(

A BesselI (−1
3
,
2
3

√
2z) + BesselK (

1
3
,
2
3

√
2z)
)

and its denominator is equal to

den :=
√

z

(
−A

√
2 BesselI (

2
3
,
2
3

√
2z) + A

√
z BesselI (−1

3
,
2
3

√
2z)

+
√

2 BesselK (
2
3
,
2
3

√
2z) +

√
z BesselK (

1
3
,
2
3

√
2z)
)

;

here BesselI and BesselK denote modified Bessel functions of the first and second kinds, respectively.
It is not yet clear whether one of these solutions is f .

As a fractional power series, fA has a leading term of z−1/3, so certainly if fA = f , then A
must be chosen to make this term vanish. Solving for A yields A = −π

√
3/3, and plugging this

into the expression for num and den leads to a function with a power series, a priori fractional,
beginning with 1 + z/2 + · · ·. The series converges in a neighborhood of the origin, so it defines a
function that is 1 + O(z) near z = 0. Any function that is 1 + O(z) near the origin and satisfies
the differential equation (6.2) must be analytic in a neighborhood of the origin. We have therefore
found the function f .

Since f has positive coefficients, its minimal modulus singularities lie on the positive real axis.
Its functional form dictates that f has positive real singularities precisely at the zeros of den. We
may approximate these as closely as we wish. Maple’s numeric solver gives z0 := 1.803034611 . . .
(the constant is not recognized by Plouffe’s inverse symbolic calculator). Thus

log pN

N
→ − log z0 = −0.58947114 . . .
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which finishes the proof of Theorem 2.6. �
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