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Summary: Prediction polling is an increasingly popular form of crowdsourcing in which multiple participants
estimate the probability or magnitude of some future event. These estimates are then aggregated into a single
forecast. Historically, randomness in scientific estimation has been generally assumed to arise from unmeasured
factors which are viewed as measurement noise. However, when combining subjective estimates, heterogeneity
stemming from differences in the participants’ information is often more important than measurement noise. This
paper formalizes information diversity as an alternative source of such heterogeneity and introduces a novel mod-
eling framework that is particularly well-suited for prediction polls. A practical specification of this framework
is proposed and applied to the task of aggregating probability and point estimates from two real-world predic-
tion polls. In both cases our model outperforms standard measurement-error-based aggregators, hence providing
evidence in favor of information diversity being the more important source of heterogeneity.
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1. INTRODUCTION

Past literature has distinguished two types of polling: prediction and opinion polling. In broad terms, an opinion
poll is a survey of public opinion, whereas a prediction poll involves multiple agents collectively predicting the
value of some quantity of interest (Goel et al., 2010; Mellers et al., 2014). For instance, consider a presidential
election poll. An opinion poll typically asks the voters who they will vote for. A prediction poll, on the other
hand, could ask which candidate they think will win in their state. A liberal voter in a dominantly conservative
state is likely to answer differently to these two questions. Even though opinion polls have been the dominant
focus historically, prediction polls have become increasingly popular in the recent years, due to modern social
and computer networks that permit the collection of a large number of responses both from human and machine
agents. This has given rise to crowdsourcing platforms, such as MTurk and Witkey, and many companies, such
as Myriada, Lumenogic, and Inkling, that have managed to successfully capitalize on the benefits of collective
wisdom.

We introduce statistical methodology designed specifically for the rapidly growing practice of prediction
polling. The methods are illustrated on real-world data involving two common types of responses, namely prob-
ability and point forecasts. The probability forecasts were collected by the Good Judgment Project (GJP) (Ungar
et al. 2012; Mellers et al. 2014) as a means to estimate the likelihoods of international political future events
deemed important by the Intelligence Advanced Research Projects Activity (IARPA). Since its initiation in 2011,
the project has recruited thousands of forecasters to make probability estimates and update them whenever they
felt the likelihoods had changed. To illustrate, Figure 1 shows the forecasts for one of these events. This exam-
ple involves 522 forecasters making a total of 1, 669 predictions between 30 July 2012 and 30 December 2012
when the event finally resolved as “No” (represented by the red line at 0.0). The point forecasts for our second
application were collected by Moore and Klein (2008) who recruited 416 undergraduates from Carnegie Mellon
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Fig 1: Probability forecasts of the event “Will Moody’s
issue a new downgrade on the long-term ratings for
any of the eight major French banks between 30 July
2012 and 31 December 2012?” The points have been
jittered slightly to make overlaps visible.
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omitted for the sake of clarity.

University to guess the weights of 20 people based on a series of pictures. The responses are illustrated in Fig-
ure 2 that shows the boxplots of the forecasters’ guesses for each of the 20 people. The red dots represent the
corresponding true weights.

Once the predictions have been collected, they are typically combined into a single consensus forecast for the
sake of decision-making and improved accuracy. Unfortunately, this can be done in many different ways, and the
final combination rule can largely determine the out-of-sample performance. The past literature distinguishes two
broad approaches to forecast aggregation: empirical aggregation and model-based aggregation. Empirical aggre-
gation is by far the more widely studied approach; see, e.g., stacking (Breiman, 1996), Bayes model averaging
(Raftery et al., 1997), linear opinion pools (DeGroot and Mortera, 1991), and extremizing aggregators (Ranjan
and Gneiting, 2010; Satopää et al., 2014a,b). This approach is akin to machine learning in a sense that it first
learns the aggregator based on a training set of past forecasts of known outcomes and then uses that aggregator to
combine future forecasts of unknown outcomes. Unfortunately, constructing such a training set requires a lot of
effort and time on behalf of the forecasters and the polling agent. In practice a typical prediction poll uses a single
questionnaire that simultaneously inquires about the participants’ predictions of one or more unknown outcomes.
The result is a dataset consisting only of forecasts and no outcomes, which means that empirical aggregation
cannot be applied.

Fortunately, model-based aggregation can be performed even when prior knowledge of outcomes is not avail-
able. This approach first proposes a plausible probability model for the source of heterogeneity among the fore-
casts, that is, for how and why the forecasts differ from the target outcome. Under this assumed forecast-outcome
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V. A. Satopää et al./Partial Information Framework 4

link, it is then possible to construct an optimal aggregator that can be applied directly to the forecasts without
learning the aggregator first from a separate training set. Given this broad applicability, the current paper focuses
only on the model-based approach. In particular, outcomes are not assumed available for aggregation at any point
in the paper. Instead, aggregation is performed solely based on forecasts, leaving all empirical techniques well
outside the scope of the paper.

Historically, potentially due to early forms of data collection, model-based aggregation has considered mea-
surement error as the main source of forecast heterogeneity (Hong and Page, 2009; Lobo and Yao, 2010). This
choice motivates aggregators with central tendency such as the (weighted) average, median, and so on. Intuitively,
measurement error may be reasonable in modeling repeated estimates from a single instrument. However, it is un-
likely to hold in prediction polling, where the estimates arise from multiple, often widely different sources. In fact,
a strict convex combination is never the optimal aggregator (in terms of the expected quadratic and many other
loss functions) under any joint distribution of the outcome and its (at least two different) forecasts (Dawid et al.,
1995; Ranjan and Gneiting, 2010; Satopää, 2017). This questions the role of measurement error in model-based
aggregation and highlights the need for a different source of forecast heterogeneity.

Hong and Page (2009) offer an alternative source called “cognitive diversity.” This model assumes that differ-
ent predictions arise from differing interpretation procedures. For example, consider two forecasters who visit a
company and predict its future revenue. Even though the forecasters receive and possibly even use the exact same
information, they may interpret it differently and hence end up reporting different forecasts. Therefore forecast
heterogeneity stems from differences in the forecasters’ information and how they interpret it. Hong and Page
(2009) use this source in theoretical models with known interpretations to illustrate the behavior of cognitively
diverse forecasters. They do not discuss estimation or modeling of real-world predictions. In fact, it is not even
clear how or if the forecasters’ interpretations can be estimated from the predictions.

Therefore, to bring information-driven heterogeneity to real-world applications, we introduce information di-
versity. This differs from cognitive diversity by excluding the interpretation component and hence explaining
variation purely in terms of differences in the information used by the forecasters. It forms the basis of a novel
modeling framework called the partial information framework. Satopää et al. (2016) introduced the theory be-
hind the first version of this framework; though their specification only applies to probability forecasts and makes
structural assumptions that hinder empirical applications. Similarly to Hong and Page (2009), their focus is on
theory instead of practice. Consequently, the framework has remained rather abstract.

The current paper changes that by offering an empirical counterpart to Satopää et al. (2016). In particular, this
paper separates itself from past work with the following contributions:

i) Section 2 introduces a new specification of the framework. This involves fewer assumptions, suits different
types of outcome-forecast pairs (instead of just probability forecasts of binary outcomes as in Satopää et al.
2016), and is more amenable for real-world applications. The new specification allows the decision-maker to
build models that motivate and describe explicit joint distributions for the outcome and forecasts. The optimal
aggregator under each joint distribution then serves as a more principled model-based alternative to the usual
(weighted) average or median.

ii) Section 3 develops a general procedure for estimating partial information models. This requires a significant
amount of innovation for several reasons. First, the forecasters’ information is captured in their covariance
matrix. This matrix, that shows each forecaster’s information and also the information overlap between any
two forecasters, must satisfy some physically inspired constraints. For instance, if two forecasters know 60%
of all information, then their information must overlap by at least 20% of all information. Of course, the final
covariance matrix must represent an arrangement of information that is simultaneously feasible for all the
forecasters. Second, the number of unknown parameters is

(
N+1
2

)
, where N is the number of forecasters.

Standard optimization techniques can then solve this problem for a maximum of about 45 forecasters – a
number that is far too small for many real-world prediction polls. Third, prediction polls often have more
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forecasters than unknown outcomes. This is a high-dimensional setting where covariance matrix estimation
is known to be challenging.

iii) Even though in the past others have modeled variation in the forecasters’ information (see Section 2.3.1), to
the best of our knowledge, no previous work has developed estimation methodology and hence been able to
successfully apply such models to real-world data. This paper, however, applies our specification to two real-
world prediction polls. In particular, Section 5 illustrates how the forecasters’ information can be measured
and used in aggregation. Overall, the resulting partial information aggregators achieve a noticeable perfor-
mance improvement over the common measurement-error-based aggregators, suggesting that information
diversity is the more appropriate model of forecast heterogeneity.

The paper is structured as follows. Section 2 describes the general partial information framework, introduces a
practical specification of the framework, and gives a brief review of previous work on model-based aggregation.
Section 3 derives the estimation procedure. Sections 4 and 5 illustrate specific models on synthetic data and real-
world forecasts from the two prediction polls discussed above. Section 6 concludes with a summary and discussion
of future research.

2. MODEL-BASED AGGREGATION

2.1. Bias and Noise

Consider N forecasters and suppose forecaster j predicts Xj for some quantity of interest Y . For instance, in our
weight estimation example Y is the true weight of a person and Xj is the guess given by the jth undergraduate.
In our probability forecasting application, on the other hand, Y is binary, reflecting whether the event happens or
not, and Xj ∈ [0, 1] is a probability forecast for its occurrence. This section, however, avoids such application
specific choices and instead treats Y and Xj as generic random variables.

The prediction Xj is nothing but an estimator of Y . Therefore, as is the case with all estimators, its deviation
from the truth can be broken down into two components: bias and noise. On the theoretical level, these two compo-
nents can be separated and hence are often addressed by different mechanisms. This suggests a two-step approach
to forecast aggregation: i) eliminate any bias in the forecasts, and ii) combine the unbiased forecasts. In this paper
bias reduction is mentioned occasionally. The main focus, however, is on noise reduction and hence on developing
methodology for the second step in forecast aggregation. Section 2.2 begins this discussion by describing our new
framework for the noise component. Section 2.3 then compares this to previous frameworks. These frameworks
make different assumptions about the way the forecasts relate to the outcome and hence motivate very different
classes of model-based aggregators.

2.2. Partial Information Framework

2.2.1. General Framework

The partial information framework assumes that Y is measurable under some probability space (Ω,F ,P). The
probability measure P provides a non-informative yet proper prior on Y and reflects the basic information known
to all forecasters. Such a prior has been discussed extensively in the economics and game theory literature where
it is usually known as the common prior (see, e.g., Morris 1995). Even though this is a substantive assumption in
the framework, specifying a prior distribution cannot be avoided as long as the model depends on a probability
space. How the prior is incorporated depends on the problem context: it can be chosen by the decision-maker,
computed based on past observations of Y , or estimated from the forecasts.
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V. A. Satopää et al./Partial Information Framework 6

The principal σ-field F can be interpreted as all the possible information that can be known about Y . On top of
the basic information reflected in the prior, the jth forecaster uses some personal partial information set Fj ⊆ F
and predicts Xj = E(Y | Fj). Therefore Fi 6= Fj if Xi 6= Xj , and forecast heterogeneity stems purely from
information diversity. Note, however, that if forecaster j uses a simple rule, Fj may not be the full σ-field of
information available to the forecaster but rather a smaller σ-field corresponding to the information used by the
rule. Furthermore, if two forecasters have access to the same σ-field, they may decide to use different sub-σ-fields,
leading to different predictions. This is particularly salient in our weight estimation example (see Section 5.2),
where each forecaster has access to the exact same information, namely the picture of the person, but can choose
to use different subsets of this information. Therefore, in general, information diversity does not only arise from
differences in the available information, but also from how the forecasters decide to use it.

Satopää et al. (2016) show that Xj = E(Y | Fj) is equivalent to having a calibrated (sometimes also known as
reliable) forecast, that is,Xj = E(Y |Xj). Therefore the formXj = E(Y |Fj) arises directly from the existence of
an underlying probability model and calibration. Overall, calibration Xj = E(Y |Xj) has been widely discussed
in the statistical and meteorological forecasting literature (see, e.g., Dawid et al. 1995; Ranjan and Gneiting
2010; Broecker 2012), with traces at least as far back as Murphy and Winkler (1987). Given that the condition
Xj = E(Y |Xj) depends on the probability measure P, it should be referred to as P-calibration when the choice of
the probability measure needs to be emphasized. This dependency shows the main conceptual difference between
P-calibration and the notion of empirical calibration (Dawid 1982; Foster and Vohra 1998; and many others).
However, as was pointed out by Dawid et al. (1995), these two notions can be expressed in formally identical
terms by letting P represent the limiting joint distribution of the forecast-outcome pairs.

In practice researchers have discovered many calibrated subpopulations of experts, such as meteorologists
(Murphy and Winkler, 1977a,b), experienced tournament bridge players (Keren, 1987), and bookmakers (Dowie,
1976). Generally, calibration can be improved through team collaboration, training, tracking (Mellers et al., 2014),
performance feedback (Murphy and Daan, 1984), representative sampling of target events (Gigerenzer et al., 1991;
Juslin, 1993), or by evaluating performance under a loss function that is minimized by E(Y |Fj) (Banerjee et al.,
2005).

If one is nonetheless left with uncalibrated forecasts, they can be calibrated ex-ante as follows. If X̃j is some
possibly uncalibrated forecast defined on (Ω,F), then the P-calibrated version of X̃j is E(Y |X̃j). Intuitively, this
is equivalent to replacing forecast x by E(Y |X̃j = x) for all possible values x ∈ supp(X̃j). This transformation
can be easily approximated by simulating (Y, X̃j)-pairs from P, binning according to X̃j , and averaging Y within
each bin. Therefore, given that uncalibrated forecasts from “non-experts” can be calibrated as long as one agrees
on some joint distribution for the target outcome and its forecasts, from now on, the forecasts are assumed to
be calibrated. Note, however, that in general the forecasts should satisfy some minimal performance criterion;
simply aggregating entirely arbitrary forecasts is hardly going to lead to improved forecasting accuracy. To this
end, Foster and Vohra (1998) analyze probability forecasts and state that “calibration does seem to be an appealing
minimal property that any probability forecast should satisfy.” They show that one needs to know almost nothing
about the outcomes in order to be calibrated. Thus, in theory, calibration can be achieved very easily and overall
seems like an appropriate base assumption for developing a general theory of forecast aggregation.

Given that the partial information framework generates all forecast variation from information diversity, it is
important to understand the extent to which the forecasters’ partial information sets can be measured in practice.
First, note that, for the purposes of aggregation, any available information discarded by a forecaster may as well
not exist because information comes to the aggregator only through the forecasts. Therefore it is not in any way
restrictive to assume that Fj = σ(Xj), where σ(Xj) is the σ-field generated by Xj . Second, the following
proposition describes observable measures for the amount of information in each forecast and for the amount of
information overlap between any two forecasts.
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Proposition 2.1. If Fj = σ(Xj) such that E(Y |Fj) = E(Y |Xj) = Xj for all j = 1, . . . , N , then the following
holds.

i) Forecasts are marginally consistent: E(Y ) = E(Xj).
ii) Variance increases in information: Var (Xi) ≤ Var (Xj) if Fi ⊆ Fj . Given that Y = E(Y |F), the variances

of the forecasts are upper bounded as Var (Xj) ≤ Var (Y ) for all j = 1, . . . , N .
iii) Covariance shows information overlap: Cov (Xj , Xi) = Var (Xi) if Fi ⊆ Fj . Again, expressing Y =

E(Y |F) implies that Cov (Xj , Y ) = Var (Xj) for all j = 1, . . . , N .

Proof. Given that E(Y |Xj) = Xj , the law of iterated expectation gives E(Xj) = E(E(Y |Xj)) = E(Y ) for all
j = 1, . . . , N . This proves item i). Items ii) and iii) follow directly from Corollaries 2 and 3(a) in Patton and
Timmermann (2012).

This proposition is important for multiple reasons. First, item i) provides guidance in estimating the prior mean
of Y from the observed forecasts. Second, item ii) shows that Var (Xj) quantifies the amount of information used
by forecaster j. In particular, Var (Xj) increases to Var (Y ) as forecaster j learns and becomes more informed.
Therefore increased variance reflects more information and is deemed helpful. This is a clear contrast to the stan-
dard statistical models that often regard higher variance as increased noise and hence harmful. The covariance
Cov (Xi, Xj), on the other hand, can be interpreted as the amount of information overlap between forecasters i
and j. Given that being non-negatively correlated is not generally transitive (Langford et al., 2001), these covari-
ances are not necessarily non-negative even though all forecasts are non-negatively correlated with the outcome.
Such negatively correlated forecasts can arise in a real-world setting. For instance, consider two forecasters who
see voting preferences of two different sub-populations that are politically opposed to each other. Each individ-
ually is a weak predictor of the total vote on any given issue, but they are negatively correlated because of the
likelihood that these two blocks will largely oppose each other.

Third and finally, item iii) shows that the covariance matrix ΣX of the Xjs extends to the unknown Y as
follows:

Cov ((Y,X1, . . . , XN )′) =

(
Var (Y ) diag(ΣX)′

diag(ΣX) ΣX

)
, (1)

where diag(ΣX) denotes the diagonal of ΣX . This is the key to regressing Y on the Xjs without a separate
training set of past forecasts of known outcomes. The resulting estimator, called the revealed aggregator, is

X ′′ := E(Y |X1, . . . , XN ) = E (Y | F ′′) ,

where F ′′ := σ(X1, . . . , XN ). The revealed aggregator uses all the information that is available in the forecasts
and hence is the optimal aggregator under the chosen probability measure P.

To make this precise, consider a loss function L(x, y) that represents the distance between the prediction x
and the outcome y. It is called consistent for E(Y ) if E[L(E(Y ), Y )] ≤ E[L(x, Y )] for all x ∈ R. Savage (1971)
showed, subject to weak regularity conditions, that all such loss functions can be written in the form

L(x, y) = φ(y)− φ(x)− φ′(x)(y − x), (2)

where φ is a convex function with subgradient φ′. An important special case is the quadratic loss L(x, y) = (x−
y)2 that arises when φ(x) = x2. Now, if an aggregator is defined as any random variable X ∈ σ(X1, . . . , XN ),
then X ′′ is an aggregator that minimizes expectation of any loss function L of the form (2):

E[L(X,Y )] = EX1,...,XN
{EY |X1,...,XN

[L(X,Y )]}
≥ EX1,...,XN

{EY |X1,...,XN
[L(X ′′, Y )]}

= E[L(X ′′, Y )].
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Ranjan and Gneiting (2010) showed a similar results for probability forecasts. For these reasons,X ′′ is considered
the relevant aggregator under each specific instance of the framework.

Overall, this general framework is convenient for theoretical analysis but it is clearly too abstract for practical
applications. Fortunately, applying the framework in practice only requires one extra assumption, namely the
choice of a parametric distribution for (Y,X1, . . . , XN ). The next subsection motivates a natural choice and
shows how X ′′ can be captured in practice.

2.2.2. Gaussian Partial Information Model

Proposition 2.1 suggests modeling (Y,X1, . . . , XN ) with a distribution that is parametrized in terms of the first
two joint moments. This points at the multivariate Gaussian distribution that is a typical starting point in develop-
ing statistical methodology and often provides the cleanest entry into the issues at hand. The Gaussian distribution
is also the most common choice for modeling measurement error. This is typically motivated by assuming the
terms to represent sums of a large number of independent sources of error. The central limit theorem then gives a
natural motivation for the Gaussian distribution.

A similar argument can be made under the partial information framework. First, consider some pieces of infor-
mation. Each piece either has a positive or negative impact and hence respectively either increases or decreases
Y . The total sum (integral) of these pieces determines the value of Y . Each forecaster, however, only observes
the sum of some subset of them. Based on this sum, the forecaster makes an estimate of Y . If the pieces are
independent and have small tails, then the joint distribution of the forecasters’ observations will be asymptotically
Gaussian. Given that the number of information pieces in a real-world setup is likely to be large, it makes sense
to model the forecasters’ observations as jointly Gaussian. Of course, other distributions, such as the multivariate
t-distribution, are possible. At this point, however, such alternative specifications are best left for future work.

The model variables (Y,X1, . . . , XN ) can be modeled directly with a Gaussian distribution as long as they
are all real-valued. In many applications, however, Y and Xj may not be supported on the whole real line. For
instance, the aforementioned Good Judgment Project collected probability forecasts of binary events. In this case,
Xj ∈ [0, 1] and Y ∈ {0, 1}. Fortunately, different types of outcome-forecast pairs can be easily addressed by
mimicking the theory behind generalized linear models (McCullagh and Nelder, 1989). The result is a close yet
widely applicable specification called the Gaussian partial information model. This model begins by introducing
N + 1 information variables that follow a multivariate Gaussian distribution with the covariance pattern (1):


Z0

Z1

...
ZN

 ∼ NN+1

0,

(
1 diag(Σ)′

diag(Σ) Σ

)
:=


1 δ1 δ2 . . . δN
δ1 δ1 ρ1,2 . . . ρ1,N
δ2 ρ2,1 δ2 . . . ρ2,N
...

...
...

. . .
...

δN ρN,1 ρN,2 . . . δN



 . (3)

This distribution supports the Gaussian model similarly to the way the ordinary linear regression supports the
class of generalized linear models.

In particular, the information variables transform into the outcome and forecasts via an application-specific
link function g(·); that is, Y = g(Z0) and Xj = E(Y |Zj) = E(g(Z0)|Zj). Given that Z0 fully determines Y ,
it is sufficient for all information that can be known about Y . The remaining variables Z1, . . . , ZN , on the other
hand, summarize the forecasters’ partial information. To make this more concrete, consider our two real-world
applications. For probability forecasts of a binary event a reasonable link function g(·) is the indicator function 1A,
where A = {Z0 > t} for some threshold value t ∈ R. For real-valued Xj and Y , on the other hand, a reasonable
choice is the reverse standardizing function g(Z0) = σ0Z0 +µ0, where µ0 and σ0 are the prior mean and standard
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deviation of Y , respectively. In general, it makes sense to have g(·) map from the real-numbers to the support of
Y such that Y has the correct prior P(Y ). Furthermore, in real-world applications, where the covariance structure
is learned over multiple predictions problems (see Section 3), the link function can vary across problems.

Overall, the Gaussian model can be considered as a close yet practical specification of the general framework.
After all, it only adds on the assumption of Gaussianity. This extra assumption, however, is enough to allow the
construction of the revealed aggregator X ′′ = E(Y |Z1, . . . , ZN ). For X ′′ and also Xj , the conditional expecta-
tions can be often computed via the following conditional distributions:

Z0|Zj ∼ N (Zj , 1− δj) and

Z0|Z ∼ N
(
diag(Σ)′Σ−1Z, 1− diag(Σ)′Σ−1diag(Σ)

)
,

where Z = (Z1, . . . , ZN )′. For instance, if both Xj and Y are real-valued, then Xj = σ0Zj + µ0 and X ′′ =
diag(Σ)′Σ−1(X− µ01N ) + µ0, where X = (X1, . . . , XN )′. These conditional distributions arise directly from
the well-known conditional distributions of the multivariate Gaussian distribution (see, e.g., Ravishanker and
Dey 2001). Such an easy access to the conditional distributions is our final reason for choosing the Gaussian
distribution.

Sometimes forecasters report quantiles or even full distributions of Y instead of conditional expectations.
Such predictions can be modeled with the appropriate function of g(Z0)|Zj . For instance, if the predictions are
αth quantiles, let the jth forecaster’s prediction Xj be the αth quantile of g(Z0)|Zj . Note that such predictions
would not be calibrated in the sense discussed earlier. Instead, they would be α-quantile calibrated: if qα(X)
denotes the αth quantile of X , then these predictions would satisfy qα(Y |Xj) = Xj . In general, as long as
the predictions Xj can be traced back to their information variables Zj , partial information aggregation can
be performed. In short, this is possible because calibration links Zj to the unobservable Z0, providing a specific
distribution for g(Z0)|Z1, . . . , ZN . The final aggregate is then some appropriate function, such as the αth quantile,
of this distribution. This is, however, all that we will say about such potential applications because we believe that
the core ideas of the Gaussian framework are best explained by focusing only on conditional expectation. Thus,
from now on, consider all predictions to be conditional expectations.

2.3. Previous Work on Model-Based Aggregation

2.3.1. Interpreted Signal Framework

Hong and Page (2009) introduce the interpreted signal framework that assumes forecast heterogeneity to stem
from “cognitive diversity” (see Section 1). Overall, this is a very reasonable model that has been used in various
forms to simulate and illustrate theory about expert behavior. For instance, Dawid et al. (1995) construct simple
models of two forecasts to support their discussion on coherent forecast aggregation. Ranjan and Gneiting (2010)
use one of these models to simulate calibrated forecasts. They later on generalize this into a framework known
as prediction space (Gneiting et al., 2013). A prediction space is a common probability space for N CDF-valued
predictions and the outcome. Therefore, similarly to the general version of the partial information framework,
it is too general for practical applications. The authors, however, do not attempt to specify the framework for
applications but instead use it as an abstract tool for analyzing empirical combination formulas such as the weighed
average. Di Bacco et al. (2003) introduce a model for two forecasters whose log-odds predictions follow a joint
Gaussian distribution. Unfortunately, their model is very narrow due to its detailed assumptions and extensive
computations. Furthermore, it is not clear how the model can be used in practice or extended to N forecasters.
Therefore successful applications of the interpreted signal framework have so far illustrated theory instead of
modeling real-world forecasts. In this respect, the framework has remained relatively abstract.
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Our partial information framework now formalizes the intuition behind interpreted signals, allows quantitative
predictions, and provides a flexible construction for modeling many different forecasting setups. Even though
the general partial information framework, as described in Section 2.2, does not allow the forecasters to inter-
pret information differently and hence does not capture all aspects of the interpreted signal framework, personal
interpretations can be easily introduced by associating forecaster j with a probability measure Pj that describes
that forecaster’s interpretation of information. If Ej denotes the expectation under Pj , then it is possible that
Xi = Ei(Y |Fi) 6= Xj = Ej(Y |Fj) even if Fi = Fj . In practice, however, eliciting the details of each Pj
is hardly possible. Therefore, to keep the model tractable, it is convenient to assume a common interpretation
Pj = P for all j = 1, . . . , N .

2.3.2. Measurement Error Framework

In the absence of a quantitative interpreted signal model, prior applications have typically explained forecast
heterogeneity with standard statistical models (see, e.g., jury models in Ladha 1992 or decision theoretic method-
ology and discussion in Lobo and Yao 2010). Hong and Page (2009) call these “generated signal” models. They
are, however, nothing but different formalizations of the measurement error framework that generates forecast
heterogeneity purely from a probability distribution. More specifically, this framework assumes a “true” (possibly
transformed) forecast θ, which can be interpreted as the prediction made by an ideal forecaster. The forecasters
then somehow measure θ with mean-zero idiosyncratic error. For instance, in our probability forecasting applica-
tion one possible measurement error model is

Y ∼ Bernoulli(θ),
logit(Xj) = logit(θ) + ej , and (4)

ej
i.i.d.∼ N (0, σ2) for all j = 1, . . . , N,

where logit(x) = log(x/(1− x)) is the log-odds operator.
Given that the errors are generally assumed to have mean zero, (possibly transformed) measurement error fore-

casts are unbiased estimates of (similarly transformed) θ. For instance, E[logit(Xj)|θ] = logit(θ) in model (4).
Observe that such unbiasedness is not the same as calibration E(Y |Xj) = Xj . Therefore an unbiased estimation
model is very different from a calibrated model. This distinction is further emphasized by the fact that X ′′ never
reduces to a (non-trivial) strict convex combination of the forecasts (Satopää, 2017). Given that measurement-
error aggregators are often weighted averages or other types of convex combinations, measurement error and
information diversity are not only philosophically different but also (as the sole drivers of forecast heterogeneity)
require very different aggregators.

Example (4) illustrates the main advantages of the measurement error framework: simplicity and familiarity.
Satopää et al. (2016), however, discuss a number of disadvantages. In short and perhaps most importantly, the
interpreted signal framework proposes a plausible micro-level explanation, whereas the measurement error model
does not; at best, it forces us to imagine a group of forecasters who apply the same procedures to the same data
but with numerous small mistakes.

3. MODEL ESTIMATION

This section describes methodology for estimating the information structure Σ. Even though Σ is mostly used for
aggregation, it also describes the information among the forecasters (see end of Section 2.2.1) and hence should
be of interest to decision analysts, psychologists, and the broader community studying collective problem solving.
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Unfortunately, estimating Σ in full generality based on a single prediction per forecaster is difficult. Therefore,
to facilitate model estimation, the forecasters are assumed to predict K ≥ 2 related events. For instance, in our
second application 416 undergraduates guessed the weights of 20 people. This yielded a 20× 416 matrix that was
then used to estimate Σ.

3.1. General Estimation Problem

Denote the outcome of the kth event with Yk and the jth forecaster’s prediction for this outcome withXjk. For the
sake of generality, this section does not assume any particular link function but instead operates directly with the
corresponding information variables, denoted with Zjk. In practice, the forecasts Xjk can be often transformed
into Zjk at least approximately. This is illustrated in Section 5. Recall that aggregation cannot access to the
outcomes {Y1, . . . , YK} or their corresponding information variables {Z01, . . . , Z0K}. Instead, Σ is estimated
only based on {Z1, . . . ,ZK}, where the vector Zk = (Z1k, . . . , ZNk)′ collects the forecasters’ information about
the kth event.

This estimation must respect the covariance pattern (3). More specifically, if SN+ denotes the set of N × N
symmetric positive semidefinite matrices and

h(M) :=

(
1 diag(M)′

diag(M) M

)
for some symmetric matrix M, then the final estimate must satisfy the condition h(Σ) ∈ SN+1

+ . Intuitively,
this is satisfied if there exists a random variable Y for which the forecasts Xj are jointly calibrated. In terms of
information, this means that it is physically possible to allocate information about Y among the N forecasters in
the manner described by Σ. Therefore the condition is named information coherence.

Unfortunately, simply finding an accurate estimate of Σ does not guarantee precise aggregation. To see this, re-
call from Section 2.2.2 that E(Z0k|Zk) = diag(Σ)′Σ−1Zk. This term is generally found in the revealed aggrega-
tor and hence deserves careful treatment. Re-express the term as v′Zk, where v is the solution to diag(Σ) = Σv.
The rate at which the solution changes with respect to a change in diag(Σ) depends on the condition number
cond(Σ) := λmax(Σ)/λmin(Σ), i.e., the ratio between the maximum and minimum eigenvalues of Σ. If the
condition number is very large, a small error in diag(Σ) can cause a large error in v. If the condition number
is small, Σ is called well-conditioned and error in v will not be much larger than the error in diag(Σ). Thus,
to prevent estimation error from being amplified during aggregation, the estimation procedure should require
cond(Σ) ≤ κ for a given threshold κ ≥ 1.

This all gives the following general estimation problem:

minimize f0 (Σ, {Z1, . . . ,Zk})
subject to h(Σ) ∈ SN+1

+ , and
cond(Σ) ≤ κ,

(5)

where f0 is some objective function. The feasible region defined by the two constraints is convex. Therefore,
if f0 is convex in Σ, expression (5) is a convex optimization problem. Typically the global optimum to such a
problem can be found very efficiently. Problem (5), however, involves

(
N+1
2

)
variables. Therefore it can be solved

efficiently with standard optimization techniques, such as the interior point methods, as long as the number of
variables is not too large, say, not more than 1,000. Unfortunately, this means that the procedure cannot be applied
to prediction polls with more than about N = 45 forecasters. This is very limiting as many prediction polls
involve hundreds of forecasters. For instance, our two real-world applications involve 100 and 416 forecasters.
Fortunately, by choosing the loss function carefully one can perform dimension reduction and estimate Σ under a
much larger N . This is illustrated in the following subsections.
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3.2. Maximum Likelihood Estimator

Under the Gaussian model the information structure Σ is a parameter of an explicit likelihood. Therefore estima-
tion naturally begins with the maximum likelihood approach (MLE). Unfortunately, the Gaussian likelihood is not
convex in Σ. Consequently, only a locally optimal solution is guaranteed with standard optimization techniques.
Furthermore, it is not clear whether the dimension of this form can be reduced. Won and Kim (2006) discuss the
MLE under a condition number constraint. They are able to transform the original problem with

(
N+1
2

)
variables

to an equivalent problem with only N variables, namely the eigenvalues of Σ. This transformation, however, re-
quires an orthogonally invariant problem. Given that the constraint h(Σ) ∈ SN+1

+ is not orthogonally invariant,
the same dimension-reduction technique cannot be applied. Instead, the MLE must be computed with the

(
N+1
2

)
variables, making estimation slow for small N and undoable even for moderately large N . For these reasons the
MLE is not discussed further in this paper.

3.3. Least Squares Estimator

Many articles have been written about covariance matrix estimation in high and low dimensional settings (see,
e.g., Daniels and Kass 2001 or Johnson et al. 2014). Probably the most common estimator is the sample covariance
matrix 1

K

∑K
k=1 ZkZ

′
k. Unfortunately, these estimators are not guaranteed to satisfy the conditions in (5). This

section introduces a correctional procedure that inputs any covariance estimator S and modifies it minimally such
that the end result satisfies the conditions in (5). More specifically, S is projected onto the feasible region. This
approach, sometimes known as the least squares approach (LSE), motivates a convex loss function that guarantees
a globally optimal solution and facilitates dimension reduction. Most importantly, however, it provides a general
tool for estimating Σ, regardless whether one is working with a Gaussian model or possibly some future non-
Gaussian model.

From the computational perspective, it is more convenient to project h(S) instead of S. Even though this could
be done under many different norms, for the sake of simplicity, this paper only considers the squared Frobenius
norm ||M||2F = tr(M′M), where tr(·) is the trace operator. The LSE is then given by h−1(Ω), i.e., Ω without the
first row and column, where Ω is the solution to

minimize ||Ω− h(S)||2F
subject to Ω ∈ SN+1

+ ,

cond(Ω) ≤ κ, and
tr(AjΩ) = bj , (j = 1, . . . , N + 1).

(6)

Both Aj and bj are constants defined to maintain the covariance pattern (3). More specifically, if ej denotes the
jth standard basis vector of length N + 1, then

b1 = 1, A1 = e1e
′
1 and bj = 0, Aj = eje

′
j − 0.5(e1e

′
j + eje

′
1)

for j = 2, . . . , N + 1. If Ω satisfies the other two conditions, namely Ω ∈ SN+1
+ and cond(Ω) ≤ κ, then

Σ = h−1(Ω) also satisfies them. This follows from the fact that Σ is a principal sub-matrix of Ω. Therefore
Ω ∈ SN+1

+ implies Σ ∈ SN+ . Furthermore, Cauchy’s interlace theorem (see, e.g., Hwang 2004) states that
λmin(Ω) ≤ λmin(Σ) and λmax(Σ) ≤ λmax(Ω) such that cond(Σ) ≤ cond(Ω) ≤ κ. Of course, requiring
cond(Ω) ≤ κ instead of cond(Σ) ≤ κ shrinks the region of feasible Σs. At this point, however, the exact value of
κ is arbitrary and merely serves to control cond(Σ). Section 3.4 introduces a procedure for choosing κ from the
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data. Under such an adaptive procedure, problem (6) can be considered equivalent to directly projecting S onto
the feasible region.

The first step towards solving (6) is to express the feasible region as an intersection of

Csd =
{
Ω : Ω ∈ SN+1

+ , cond(Ω) ≤ κ
}

and Clin = {Ω : tr(AjΩ) = bj , j = 1, . . . , N + 1} .

Given that both of these sets are convex, projecting onto their intersection can be computed with the Directional
Alternating Projection Algorithm (Gubin et al., 1967). This method makes progress by repeatedly projecting
onto the sets Csd and Clin. Consequently, it is efficient only if projecting onto each of the individual sets is fast.
Fortunately, as will be shown next, this turns out to be the case.

First, projecting an (N + 1)× (N + 1) symmetric matrix M = {mij} onto Clin is a linear map. To make this
more specific, let m = vec(M) be a column-wise vectorization of M. If A is a matrix with the jth row equal to
vec(Aj), the linear constraints in (6) can be expressed as Am = e1. Then, the projection of M onto Clin is given
by vec−1(m + A′(AA′)−1(e1−Am)). This expression simplifies significantly by close inspection. In fact, it is
equivalent to settingm11 = 1 and for j ≥ 2 replacingmj1,m1j , andmjj by their average (mjj +mj1 +m1j)/3.
Denote this projection with the operator Plin(·).

Second, Tanaka and Nakata (2014) describe a univariate optimization problem that is almost equivalent to
projecting M onto Csd. The only difference is that their solution set also includes the zero-matrix 0. Assuming
that such a limiting case can be safely handled in the implementation, their approach offers a fast projection
onto Csd even for a moderately large N . To describe this approach, consider the spectral decomposition M =
QDiag(l1, . . . , lN+1)Q′ and the univariate function

π(µ) =

N+1∑
i=1

[
(µ− li)2+ + (li − κµ)

2
+

]
,

where Diag(x) is a diagonal matrix with diagonal x and (·)+ is the positive part operator. The function π(µ) can
be minimized very efficiently by solving a series of smaller convex problems, each with a closed form solution.
The result is a binary-search-like procedure described by Algorithm 2 in Appendix A. If µ∗ = arg minµ≥0 π(µ)
and

λ∗j :=


µ∗ if lj ≤ µ∗

κµ∗ if κµ∗ ≤ lj
lj otherwise

for j = 1, . . . , N + 1, then QDiag(λ∗1, . . . , λ
∗
N+1)Q is the projection of M onto Csd. Call this projection Psd(· :

κ).
Algorithm 1 uses these projections to solve (6). Each iteration projects twice on one set and once on the other

set. The general form of the algorithm does not specify which projection should be called twice. Therefore, given
that Psd(· : κ) takes longer to run than Plin(·), it is beneficial to choose to call Plin(·) twice. The complexity
of each iteration is determined largely by the spectral decomposition which is fairly fast for moderately large N .
Overall time to convergence, of course, depends on the choice of the stopping criterion. Many intuitive criteria are
possible. Given that ΩD ∈ Clin and ΩC ∈ Csd, the stopping criterion max{(ΩD −ΩC)2ij} < ε suggests that the
return value is in Csd and close to Clin in every direction. Based on our experience, the algorithm converges quite
quickly. For instance, our implementation in C++ generally solves (6) for ε = 10−5 and N = 100 in less than a
second on a 1.7 GHz Intel Core i5 computer. This code will be made available online upon publication. For the
remainder of the paper, projecting S onto the feasible region is denoted with the operator PLSE(S : κ).
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V. A. Satopää et al./Partial Information Framework 14

Require: Unconstrained covariance matrix estimator S, stopping criterion ε > 0, and an upper bound on the condition number κ ≥ 1.
1: procedure DIRECTIONAL ALTERNATING PROJECTION ALGORITHM
2: ΩA ← h(S)
3: repeat
4: ΩB ← Plin(ΩA)
5: ΩC ← Psd(ΩB : κ)
6: ΩD ← Plin(ΩC)
7: ∆ ← ||ΩB −ΩC ||2F /tr [(ΩB −ΩD)′(ΩB −ΩC)]
8: ΩA ← ΩB + ∆(ΩD −ΩB)

9: until max
{

(ΩD −ΩC)2ij

}
< ε

10: return h−1(ΩC)
11: end procedure

Algorithm 1: This procedure projects h(S) onto the intersection Csd ∩Clin. Denote the projection with PLSE(S :
κ). Throughout the paper, the stopping criterion is fixed at ε = 10−5.

3.4. Conditional Validation

The estimation procedure described in the previous section has one tuning parameter, namely the condition num-
ber threshold κ. This subsection develops a new in-sample approach, called conditional validation, that can be
used for choosing any tuning parameter, such as κ, under the partial information framework. To motivate, recall
that the revealed aggregatorX ′′ uses Σ to regress Z0 on the rest of the Zjs. Of course, the accuracy of this predic-
tion cannot be known until the actual outcome is observed. However, apart from being unobserved, the variable
Z0 is theoretically no different to the other Zjs. This suggests the following algorithm: for some value ν compute
PLSE(S : ν), let each of the Zjs in turn play the role of Z0, predict its value based on Zi for i 6= j, and choose
the value of ν that yields the best overall accuracy.

Even though many accuracy measures could be chosen, this paper uses the conditional log-likelihood. There-
fore the chosen value of κ is

κcov = arg max
ν≥1

N∑
j=1

K∑
k=1

`
(
Zjk,PLSE(S : ν)

∣∣Zik for i 6= j, i ≥ 1
)
, (7)

where S is computed based on all the forecasts Z1, . . . ,ZN and `
(
Zjk,PLSE(S : ν)

∣∣Zik for i 6= j, i ≥ 1
)

is
the log-likelihood of Zjk conditional on Zik for i 6= j and i ≥ 1. For instance, under the Gaussian partial
information model, Zk follows a centered multivariate Gaussian distribution with covariance matrix PLSE(S :
ν). The function `

(
Zjk,PLSE(S : ν)

∣∣Zik for i 6= j, i ≥ 1
)

is then nothing but the log-likelihood of a univariate
Gaussian distribution of Zjk obtained by conditioning on Zik for i 6= j and i ≥ 1. Plugging this all into the
projection algorithm gives the final estimate Σcov := PLSE(S : κcov).

Unfortunately, the optimization problem (7) is non-convex in ν. However, as was mentioned before, Algorithm
1 is fast for moderately sized N . Therefore κ can be chosen efficiently (possibly in parallel on multicore ma-
chines) over a grid of candidate values. Overall, the idea in conditional validation is similar to cross-validation
but, instead of predicting across rows (observations), the prediction is performed across columns (variables). This
not only mimics the actual process of revealed aggregation but is also likely to be more appropriate for predic-
tion polling that typically involves a large number of forecasters (large N ) predicting relatively few events (small
K). Furthermore, it has no tuning parameters and remains rather stable even when K is small. The next section
illustrates this under synthetic data.
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Fig 3: The accuracy to predict Yk under different values of N and K. Each line represents a different choice of κ
in X ′′ = diag(Σ̂)′Σ̂−1Xk with Σ̂ = PLSE(SX : κ).

4. SYNTHETIC DATA ANALYSIS

This section briefly evaluates different aggregators under synthetic data generated from the multivariate Gaussian
distribution (3). The analysis provides insight into the behavior of the estimation procedure and also introduces
the simplest instance of the Gaussian model.

Model Instance. The link function g(·) is the identity. Thus, the target quantity is Yk = g(Z0k) =
Z0k, and the forecasts are Xjk = E(Yk|Zjk) = Zjk for all j and k. The revealed aggregator for event
k is X ′′k = diag(Σ)′Σ−1Xk, where Xk = (X1k, . . . , XNk)′.

Simulating forecasts from (3) requires a Σ such that h(Σ) ∈ SN+1
+ . One approach is to draw a N × N

matrix from a Wishart distribution, scale it such that all diagonal entries are within [0, 1], and then accept it as
Σ if this implies h(Σ) ∈ SN+1

+ . However, it is easy to show via simulation that the rate at which the randomly
generated matrix is accepted decreases in N and is very close to zero already for N = 5. Therefore this section
adopts a different approach that samples Σ with full acceptance rate but only within a subset of all information
structures: first pick δj

i.i.d.∼ U(0.1, 0.9) and then set ρij = δiδj for all i 6= j. This way Σ− diag(Σ)diag(Σ)′ =
Diag((δ1 − δ21 , . . . , δN − δ2N )′) ∈ SN+ , which, by the Schur complement, satisfies h(Σ) ∈ SN+1

+ . Finally, the

outcome and forecasts for the kth event are drawn from (Yk,Xk) = (Z0k, Z1k, . . . , ZNk)′
i.i.d.∼ NN+1(0, h(Σ)).

These forecasts are aggregated in the following ways:

1. X ′′S(SX) = diag(SX)′S−1X Xk, where SX is the sample covariance matrix. Given that SX is singular when
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Fig 4: The accuracy to predict Yk under different values of N and K. The aggregator X ′′true assumes knowledge
of the true information structure and hence represents optimal accuracy.

K < N , its inverse is computed with the generalized inverse.
2. X ′′ = diag(Σ̂)′Σ̂−1Xk for Σ̂ = PLSE(SX : κ) and fixed κ = 10, 100, 1000, or 10000.
3. X ′′cov = diag(Σcov)

′Σ−1covXk with Σcov = PLSE(SX : κcov). The condition number constraint κcov is
found over a grid of 100 values between 10 and 1000.

4. X ′′true = diag(Σ)′Σ−1Xk. This aggregator assumes the knowledge of the true Σ and hence represents
optimal performance.

5. The average forecast
6. The median forecast

The overall process is repeated 5, 000 times under different values of K and N , each ranging from 5 to 35 with
constant increments of 5. Performance is then measured with the average root-mean-squared-error (RMSE) in
predicting Yk across all 5, 000 iterations.

To begin, Figure 3 compares the average RMSEs of X ′′ = diag(Σ̂)′Σ̂−1Xk with Σ̂ = PLSE(SX : κ) and
fixed κ = 10, 100, 1000, or 10000 against the average RMSE of X ′′cov . Figure 3a varies K but fixes N = 20.
Figure 3b, on the other hand, varies N but fixes K = 20. Overall, X ′′cov achieves the lowest RMSE in all cases
except when N = 5 and K = 20. Thus, even though the performance of X ′′ is clearly sensitive to the value of κ,
a good choice can be found with the conditional validation procedure described in Section 3.4.
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Figure 4 shows the average RMSEs of the competing aggregators enumerated above. Similarly to Figure 3,
either N or K is held fixed while the other varies. Given that Yk = Z0k ∼ N (0, 1), the RMSE of the prior
mean E(

√
(Yk − 0)2) = E(|Yk|) =

√
2/π ≈ 0.8 can be considered as the upper bound in prediction error. The

lower bound, on the other hand, is given by X ′′true. The revealed aggregator X ′′S typically received a loss much
larger than 0.8 and is therefore not included in the figure. Overall, the two measurement-error aggregators, namely
average and median perform very similarly, with RMSE around 0.5. They both show slight improvement as N
increases. In all cases, however, their RMSE is uniformly well above that of X ′′true and X ′′cov , suggesting that
measurement-error aggregators are a poor choice when forecasts truly arise from a partial information model. The
revealed aggregator X ′′cov collects information and appears to improve at the optimal rate as N increases. This can
be seen in the way the performance gap from Xtrue to X ′′cov remains approximately constant in Figure 4b. As K
grows larger, however, X ′′cov approaches X ′′true.

5. APPLICATIONS

This section applies the partial information framework to different types of real world forecasts. For each type
there may be different ways to adopt the Gaussian model. The main point, however, is not to find the optimal way
to do this but rather to illustrate the framework and show how partial information aggregators can outperform the
common measurement error aggregators.

5.1. Probability Forecasts of Binary Outcomes

5.1.1. Dataset

During the second year of the Good Judgment Project (GJP) the forecasters made probability estimates for 78
events, each with two possible outcomes. One of these events was illustrated in Figure 1. Each prediction problem
had a timeframe, defined as the number of days between the first day of forecasting and the anticipated resolution
day. These timeframes varied largely among problems, ranging from 12 days to 519 days with a mean of 185.4
days. During each timeframe the forecasters were allowed to update their predictions as frequently as they liked.
The forecasters knew that their estimates would be assessed for accuracy using the quadratic loss (often known
as the Brier score; see Brier 1950 for more details). This is a proper loss function that incentivized the forecasters
to report their true beliefs instead of attempting to game the system. In addition to receiving $150 for meeting
minimum participation requirements that did not depend on prediction accuracy, the forecasters received status
rewards for their performance via leader-boards displaying the losses for the best 20 forecasters. Depending on the
details of the reward structure, such a competition for rank may eliminate the truth-revelation property of proper
loss functions (see, e.g., Lichtendahl Jr and Winkler 2007).

This data collection raises several issues. First, given that the current paper does not focus on modeling dynamic
data, only forecasts made within some common time interval should be considered. Second, not all forecasters
made predictions for all the events. Furthermore, the forecasters generally updated their forecasts infrequently, re-
sulting into a very sparse dataset. To somewhat alleviate the effect of missing values, only the hundred most active
forecasters are considered. This makes sufficient overlap highly likely but, unfortunately, still not guaranteed.

All these considerations lead to a parallel analysis of three scenarios: High Uncertainty (HU), Medium Un-
certainty (MU), and Low Uncertainty (LU). Important differences are summarized in Table 1. Each scenario
considers the forecasters’ most recent prediction within a different time interval. For instance, LU only includes
each forecaster’s most recent forecast during 30 − 60 days before the anticipated resolution day. The resulting
dataset has 60 events of which 13 occurred. In the corresponding 60× 100 table of forecasts, around 42 % of the
values are missing. The other two scenarios are defined similarly.
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TABLE 1
Summary of the three time intervals analyzed. Each scenario considers the forecasters’ most recent forecasts within the given time interval.

The value in the parentheses represent the number of events occurred. The final column shows the percent of missing forecasts.

Scenario Time Interval # of Events Missing (%)
High Uncertainty (HU) 90− 120 49 (10) 51
Medium Uncertainty (MU) 60− 90 56 (14) 46
Low Uncertainty (LU) 30− 60 60 (13) 42

5.1.2. Model Specification and Aggregation

The first step is to pick a link function and derive a Gaussian model for probability forecasts of binary events.
Overall, this construction resembles in many ways the latent variable version of a standard probit model.

Model Instance. Identify the kth event with Yk ∈ {0, 1}. These outcomes link to the information
variables via the following function:

Yk = g(Z0k) =

{
1 if Z0k > tk

0 otherwise,

where tk ∈ R is some threshold value. Therefore the link function g(·) is simply the indicator function
1Ak

of the event Ak = {Z0k > tk}. This threshold is defined by the prior probability of the kth event
P(Yk = 1) = Φ(−tk), where Φ(·) is the CDF of a standard Gaussian distribution. Given that the
thresholds are allowed to vary among the events, each event has its own prior. The corresponding
probability forecasts Xjk ∈ [0, 1] are

Xjk = E(Yk|Zjk) = Φ

(
Zjk − tk√

1− δj

)
.

In a similar manner, the revealed aggregator X ′′k ∈ [0, 1] for event k is

X ′′k = E(Yk|Zk) = Φ

(
diag(Σ)′Σ−1Zk − tk√

1− diag(Σ)′Σ−1diag(Σ)

)
. (8)

All the parameters of this model can be estimated from the data. The first step is to specify a version of
the unconstrained estimate S. If the tks do not change much, a reasonable and simple estimate is obtained by
transforming the sample covariance matrix SP of the probit scores Pjk := Φ−1(Xjk). More specifically, if
D := Diag(d)Diag(1 + d)−1, where d = diag(SP ), then an unconstrained estimator of Σ is given by S =
(IN − D)1/2SP (IN − D)1/2. Recall that the GJP data holds many missing values. This is easily handled by
estimating each pairwise covariance in SP based on all the events for which both forecasters made predictions.
Next, compute Σcov , where κcov is chosen over a grid of 100 candidate values between 10 and 1, 000. Finally,
the threshold tk can be estimated by letting Pk = (P1k, . . . , PNk)′, observing that −Diag(1− diag(Σ))1/2Pk ∼
NN (tk1N ,Σ), and computing the precision-weighted average:

t̂k = −P′kDiag(1− diag(Σcov))
1/2Σ−1cov1

1′Σ−1cov1
.

If Pk has missing values, the corresponding rows and columns of Σcov are dropped. Intuitively, this estimator
gives more weight to the forecasters with very little information. These estimates are then plugged in to (8) to get
the revealed aggregator X ′′cov .
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Fig 5: Average prediction accuracy over the 1,000 sub-samplings of the forecasters. See Table 1 for descriptions
of the different scenarios.

This aggregator is benchmarked against popular measurement-error aggregators, namely the average proba-
bility, median probability, average probit-score, and average log-odds. Unequally weighted averages were not
considered because it is unclear how the weights would be determined based on forecasts alone, and even if
this could be done somehow (perhaps based on self-assessment or organizational status), using unequal weights
often leads to no or very small performance gains (Rowse et al., 1974; Ashton and Ashton, 1985; Flores and
White, 1989). To avoid infinite log-odds and probit scores, extreme forecasts Xjk = 0 and 1 were censored to
Xjk = 0.001 and 0.999, respectively. The results remain insensitive to the exact choice of censoring as long as
this is done in a reasonable manner to keep the extreme probabilities from becoming highly influential in the logit-
or probit-space.

The accuracy of the aggregates is measured with the average RMSE. Note that this is nothing but the square root
of the commonly used Brier score. Instead of considering all the forecasts at once, the aggregators are evaluated
under different N via repeated subsampling of the 100 most active forecasters; that is, choose N forecasters
uniformly at random, aggregate their forecasts, and compute the RMSE. This is repeated 1,000 times with N =
5, 10, . . . , 65 forecasters. Due to high computational cost, the simulation was stopped after N = 65.

Figure 5 shows the average RMSEs under the three scenarios described in Table 1. Here a reasonable upper
bound is given by 0.5 as this is the RMSE one would receive by constantly predicting 0.5. All presented scores,
however, are well below it and improve uniformly from left to right, that is, from HU to LU. This reflects the
decreasing level of uncertainty. In all the figures the measurement-error aggregators rank in the typical order
(from worst to best): average probability, median probability, average probit, and average log-odds. Regardless of
the level of uncertainty, the revealed aggregator X ′′cov outperforms the averaging aggregators as long as K ≥ 10.

The relative advantage, however, increases from HU to LU. More specifically, the improvement from Log-odds
to X ′′cov is about 2%, 17%, and 21% in HU, MU, and LU, respectively. This trend can be explained by several
reasons. First, as can be seen in Table 1, the amount of data increases from HU to LU. This yields a better estimate
of Σ and hence more accurate revealed aggregation. Second, the forecasters are more likely to be well-calibrated
under MU and LU than under HU (see, e.g., Braun and Yaniv 1992). Third, under HU the events are still inherently
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very uncertain. Consequently, the forecasters are unlikely to hold much useful information as a group. Instead,
forecast variation is likely to be dominated by noise. In such settings measurement-error aggregators generally
perform relatively well (Satopää et al. 2016). In the contrary, under MU the events have lost a part of their inherent
uncertainty, allowing some forecasters to possess useful private information. These individuals are then prioritized
by X ′′cov while the averaging-aggregators continue to treat all forecasts equally. Consequently, the performance of
the measurement error aggregators plateaus after N = 30 or so. Therefore having more than about 30 forecasters
does not make a large difference if one is determined to aggregate their predictions using the measurement error
techniques; a similar results was reported by Satopää et al. (2014a). In contrast, however, the RMSE of X ′′cov
continues to improve almost linearly in N , suggesting that X ′′cov is able to find some residual information in each
additional forecaster and use this to increase its performance advantage.

5.1.3. Information Diversity

The GJP assigned the forecasters to make predictions either in isolation or in teams. Furthermore, after the first
year of the tournament, the top 2% forecasters were elected to the elite group of “super-forecasters.” These super-
forecasters then worked in exclusive teams to make highly accurate predictions on the same events as the rest of the
forecasters. Overall, these assignments directly suggest a level of information overlap. In particular, recalling the
interpretation of Σ from Section 2.2.1, super-forecasters can be expected to have the highest δjs and forecasters
in the same team should have a relatively high ρij . This subsection shows that Σcov aligns well with this prior
knowledge about the forecasters’ information structure.

For the sake of brevity, only the LU scenario is analyzed as this is where X ′′cov presented the highest rela-
tive improvement. The associated 100 forecasters involve 36 individuals predicting in isolation, 33 forecasting
team-members (across 24 teams), and 31 super-forecasters (across 5 teams). Figure 6a displays Σcov for the five
most active forecasters. This group involves two forecasters working in isolation (Iso. A and B) and three super-
forecasters (Sup. A, B, and C), of whom the super-forecasters A and B are in the same team. Overall, Σcov agrees
with this classification: the only two team members, namely Sup. A and B have a relatively high information
overlap. In addition, the three super-forecasters are more informed than the non-super-forecasters. Such a high
level of information unavoidably leads to higher information overlap with the rest of the forecasters.

By and large, this agreement generalizes to the entire group of forecasters. To illustrate, Figure 6b displays
Σcov for all the 100 forecasters. The information structure has been ordered with respect to the diagonal such that
the more informed forecasters appear on the right. Furthermore, a colored rug has been appended on the top. This
rug shows whether each forecaster worked in isolation, in a non-super-forecaster team, or in a super-forecaster
team. These results agree with our prior knowledge: the super-forecasters are mostly situated on the right among
the most informed forecasters. The average estimated δj among the super-forecaster is 0.80. On the other hand,
the average estimated δj among the individuals working in isolation or in non-super-forecaster teams are 0.47
and 0.50, respectively. Therefore working in a team makes the forecasters’ predictions, on average, slightly more
informed.

5.2. Point Forecasts of Continuous Outcomes

5.2.1. Dataset

Moore and Klein (2008) hired 415 undergraduates from Carnegie Mellon University to guess the weights of 20
people based on a series of pictures. These forecasts were illustrated in Figure 2. The target people were between
7 and 62 years old and had weights ranging from 61 to 230 pounds, with a mean of 157.6 pounds. All the students
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V. A. Satopää et al./Partial Information Framework 21

Iso. A Iso. B Sup. A Sup. B Sup. C

0.4

0.5

0.6

0.7

0.8

(a) Σcov for the five most active forecasters
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(b) Σcov for all 100 forecasters shows high information diver-
sity.

Fig 6: The estimated information structure Σ under the LU scenario. Each forecaster worked either in isolation, in
a non-super-forecaster team, or in a super-forecaster team. The super-forecasters generally have more information
than the forecasters working in isolation.

were shown the same pictures and hence given the exact same information. Therefore any information diversity
arises purely from the participants’ decisions to use different subsets of the same information. Consequently, the
least and most informed forecasters are likely to more similar than in Section 5.1, where diversity also stemmed
from differences in the information available to the forecasters.

Unlike in Section 5.1, the Gaussian model can be applied almost directly to the data. Only the effect of extreme
values was reduced via a 90% Winsorization (Hastings et al., 1947). This handled some obvious outliers. For
instance, the original dataset contained a few estimates above 1000 pounds and as low as 10 pounds. Winsorization
generally improved the performance of all the competing aggregators.
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V. A. Satopää et al./Partial Information Framework 22

Average
Median

AMA
Xcov

''

20 40 60 80 10020
.4

20
.6

20
.8

21
.0

21
.2

21
.4

R
M

S
E

Number of Forecasters, N

Fig 7: Average prediction accuracy Fig 8: Σcov for all 416 forecasters shows low informa-
tion diversity.

5.2.2. Model Specification and Aggregation

Model Instance. Suppose Yk andXjk are real-valued. If the proper non-informative prior distribution
of Yk isN (µ0k, σ

2
0), then Yk = g(Z0k) = Z0kσ0 +µ0k. Consequently,Xjk = E(Y |Zjk) = Zjkσ0 +

µ0k for all j = 1, . . . , N . Therefore Xj ∼ N (µ0k, σ
2
j ) for some σ2

j ≤ σ2
0 . If Zk = (Z1k, . . . , ZNk)

′,
then the revealed aggregator for the kth event is

X ′′k = E (Yk|Zk) = diag(Σ)′Σ−1Zkσ0 + µ0k. (9)

Under this model the prior distribution of Yk is specified by µ0k and σ2
0 . Given that E(Xjk) = µ0k for all

j = 1, . . . , N , the sample average µ̂0k =
∑N
j=1Xjk/N provides an initial estimate of µ0k. The value of σ2

0 can be
estimated by assuming a distribution for the σ2

j s. More specifically, let σ2
j be i.i.d. on the interval [0, σ2

0 ] and use the

resulting likelihood to estimate σ2
0 . For instance, a non-informative choice is to assume σ2

j
i.i.d.∼ U(0, σ2

0), which
leads to the maximum likelihood estimator max{σ2

j }. This has a downward bias that can be corrected by a multi-
plicative factor of (N+1)/N . Therefore, replacing σ2

j with the sample variance sj =
∑K
k=1(Xjk−µ̂0k)2/(K−1)

gives the final estimate σ̂2
0 = (N + 1)/N max{sj}. Using these estimates, the Xjks can be transformed into the

Zjks whose sample covariance matrix SZ provides the unconstrained estimator for the projection algorithm. The
value of κcov is chosen over a grid of 10 values between 10 and 10, 000. Once Σcov has been computed, the prior
means are updated with the precision-weighted averages µ̂0k = (X′kΣ

−1
cov1N )/(1′NΣ−1cov1N ). In the end, all these

estimates are plugged in (9) to get the revealed aggregator X ′′cov .
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This aggregator is compared against the average, median, and average of the median and average (AMA). The
last competitor, namely AMA is a heuristic aggregator that Lobo and Yao (2010) showed to work particularly well
on many different real-world forecasting datasets. These competitors are compared in terms of the average RMSE
over 10, 000 sub-samplings of the 416 participants. That is, each iteration chooses N participants uniformly at
random, aggregates their forecasts, and computes the RMSE. The size of the sub-samples is varied between 10
and 100 with increments of 10. These scores are presented in Figure 7. The average outperforms the median across
all N . The performance of AMA falls between that of average and median, reflecting its nature as a compromise
of the two. The revealed aggregator X ′′cov is the most accurate once N > 10. The relatively worse performance at
N = 10 suggests that 10 observations is not enough to estimate µ̂0k accurately. As N approaches 100, however,
X ′′cov collects information efficiently and increases the performance advantage against the other aggregators.

Figure 8 shows Σcov for all the 416 forecasters. Similarly to before, the matrix has been ordered such that the
most knowledgeable forecasters are on the right. Compared to Figure 6b, this plot is much more symmetric and
does not show as dramatic differences between the most informed (bottom right) and the least informed (top left).
This aligns with the expectations laid out earlier in Section 5.2.1.

6. DISCUSSION

This paper introduced the partial information framework for modeling forecasts from different types of prediction
polls. Even though the framework can be used for theoretical analysis and studying information among groups of
experts, the main focus was on model-based aggregation of forecasts. Such aggregators do not require a training
set. Instead, they operate under a model of forecast heterogeneity and hence can be applied to forecasts alone.
Under the partial information framework, all forecast heterogeneity stems from differences in the way the fore-
casters use information. Intuitively, this is more plausible at the micro-level than the historical measurement error.
To facilitate practical applications, the partial information framework motivates and describes the forecasters’ in-
formation with a patterned covariance matrix (Equation 1). A correctional procedure was proposed (Algorithm 1)
as a general tool for estimating these information structures. This procedure inputs any covariance estimator and
modifies it minimally such that the final output represents a physically feasible allocation of information. Even
though the general partial information framework describes an optimal aggregator, it is generally too abstract to be
directly applied in practice. As a solution, this paper discusses a close yet practical specification within the frame-
work, known as the Gaussian model (Section 2.2.2). The Gaussian model permits a closed-form solution for the
optimal aggregator and extends to different types of forecast-outcome pairs via a link function. These partial infor-
mation aggregators were evaluated against the common measurement error aggregators on two different real-world
(Section 5) prediction polls. In each case the Gaussian model outperformed the typical measurement-error-based
aggregators, suggesting that information diversity is more important for modeling forecast heterogeneity.

Generally speaking, partial information aggregation works well because it downweights pairs or sets of fore-
casters that share more information and upweights ones that have unique information (or choose to attend to
unique information as is the case, e.g., in Section 5.2, where forecasters made judgments based on the same pic-
tures). This is very different from measurement-error aggregators that assume all forecasters to have the same
information and hence consider them equally important. While simple measurement-error techniques, such as the
average or median, can work well when the forecasters truly operate on the same information set, in real-world
prediction polls participants are more likely to have unequal skill and information sets. Therefore prioritizing is
almost certainly called for. Intuitively, the more asymmetric the forecasters are in terms of their information, the
better the partial information aggregators can be expected to perform relative to the measurement error aggre-
gators. To illustrate this result, compare the relative performances in Section 5.1 (asymmetric) against those in
Section 5.2 (symmetric).

In terms of future research, the partial information framework offers both theoretical and empirical directions.
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Require: Condition number threshold κ ≥ 1 and sample eigenvalues in ascending order l1 ≤ l2 ≤ · · · ≤ lN+1.
1: procedure BINARY-SEARCH OPTIMIZATION
2: Initialize D ← max{l1, 0} and U ← lN+1/κ.
3: µ0 ← (D + U)/2
4: for n = 0, 1, . . . do
5: Compute µ∗n, dn, and un.
6: if µ∗n < 0 and dn < 0 then
7: return 0
8: else if µ∗n < dn then
9: U ← dn

10: else if µ∗n > un then
11: D ← un
12: else
13: return µ∗n
14: end if
15: µn+1 ← (D + U)/2
16: end for
17: return µ∗n
18: end procedure

Algorithm 2: This procedure solves (10) efficiently using the structure of the problem and binary-search.

One theoretical avenue involves estimation of information overlap. In some cases the higher order overlaps have
been found to be irrelevant to aggregation. For instance, DeGroot and Mortera (1991) show that the pairwise
conditional (on the truth) distributions of the forecasts are sufficient for computing the optimal weights of a
weighted average. Theoretical results on the significance or insignificance of higher order overlaps under the
partial information framework would be desirable. Given that the Gaussian model can only accommodate pairwise
information overlap, such a result would reveal the need of a specification that is more complex than the Gaussian
model.

A promising empirical direction is the Bayesian approach. These techniques are very natural for fitting hierar-
chical models such as the ones discussed in this paper. Furthermore, in many applications with small or moderately
sized datasets, Bayesian methods have been found to be more stable than the likelihood-based alternatives. There-
fore, given that the number of forecasts in a prediction poll is typically quite small, a Bayesian approach is likely
to improve the quality of the final aggregate. This would involve developing a prior distribution for the informa-
tion structure – a problem that seems interesting in itself. Overall, this avenue should certainly be pursued, and
the results tested against other high performing aggregators.

Appendix A: Finding µ∗ for Psd(· : κ)

This section describes a binary-search-like algorithm to solve

µ∗ = arg min
µ≥0

π(µ) = arg min
µ≥0

N∑
i=1

(
(µ− li)2+ + (li − κµ)

2
+

)
. (10)

First, it can be assumed that cond(h(SZ)) /∈ [1, κ]; otherwise, the projection can simply return h(SZ). Second,
max{0, l1} ≤ µ ≤ lN+1/κ because otherwise moving µ closer to the nearest sample eigenvalue decreases π(µ).
Now, consider some value µn ≥ 0 and two index sets Dn = {i : li ≤ µn} and Un = {i : µnκ ≤ li}. Then,

π(µn) =
∑
i∈Dn

(µn − li)2 +
∑
i∈Un

(li − κµn)
2
,
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which has a global minimum at

µ∗n =

∑
i∈Dn

li + κ
∑
i∈Un

li

|Dn|+ κ2|Un|
.

The operator |A| denotes the number of elements in the set A. Let dn and un denote the minimum and maximum,
respectively, of the interval where any value of µ gives the index sets Dn and Un. To make this specific, define
two operators:

d(µ) = max{li : li ≤ µ} and u(µ) = min{li : li ≥ µ}.

If no value is found, then d(µ) = 0 and u(µ) = +∞. Then,

dn = max{d(µn), d(µnκ)/κ} and un = min{u(µn), u(µnκ)/κ}.

Of course, µ∗n is the solution to (10) as long as µ∗n ∈ (dn, un]. If, on the other hand, µ∗n is less than dn (or greater
than un), the global minimum µ∗ must be smaller than dn (or greater than un). If µ∗n is, say, less than dn, then a
natural approach is to update µn to µn+1 that is somewhere between dn and some known lower bound of µ. This
gives rise to a binary-search-like algorithm described in Algorithm 2.
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