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ABSTRACT
ASYMPTOTICS OF BIVARIATE GENERATING FUNCTIONS WITH ALGEBRAIC

SINGULARITIES

Torin Greenwood
Robin Pemantle, Advisor

Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of univariate

generating functions with algebraic singularities. These results have been extended to classes

of multivariate generating functions by Gao and Richmond (1992) and Hwang (1996, 1998), in

both cases by reducing the multivariate case to the univariate case. Pemantle and Wilson (2013)

outlined new multivariate analytic techniques and used them to analyze the coefficients of rational

generating functions. In this thesis, we give a brief overview of the new methods Pemantle and

Wilson developed. Then, we use these multivariate analytic techniques to find asymptotic formulae

for the coefficients of a broad class of bivariate generating functions with algebraic singularities.

Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that

it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing

the integrand near these points, leading to explicit asymptotic formulae. Next, we will analyze an

example from current research by using this formula. Included in this discussion is a description

of how to compute the asymptotics in Maple, including how to implement Gröbner bases.

We then apply multivariate analytic techniques to quantum walks. Bressler and Pemantle

(2007) found a (d + 1)-dimensional rational generating function whose coefficients described the

amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical

points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the

amplitude of a particle in a given position, normalized by the number of steps n, as n approaches

infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using

Gröbner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling

window of size
√
n near the peaks, each amplitude is asymptotic to an Airy function.
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Chapter 1

Introduction

Generating functions are a powerful, convenient tool to encode an array of numbers into a single

function. Given that a generating function can be computed with limited information about

the corresponding array, it is often desirable to learn more about the array from the generating

function itself. One particularly useful goal is to approximate the coefficients of a generating

function asymptotically as their indices grow in a prescribed way. In particular, if we have a

multivariate generating function F (z) with d variables, we will look at the coefficients [zr]F (z) as

r approaches infinity along a specified ray in Rd≥0.

In Chapter 2 below, we will give a brief outline of the techniques in [PW13] that Pemantle

and Wilson developed to tackle multivariate asymptotics. The asymptotic approximations start

with the Cauchy integral formula. Pemantle and Wilson describe how to manipulate the cycle of

integration so that it is easily analyzed near a set of critical points. These manipulations depend on

Morse theory, which determines how far the cycles of integration can be deformed without changing

the value of the integral. In the case where the generating function F is rational, Pemantle and

Wilson then use residue computations to find explicit asymptotic formulae for the coefficients of

the generating functions.

Next, in Chapter 3, we will derive asymptotic formulae for a class of generating functions with
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algebraic singularities. While the techniques of Pemantle and Wilson still give the heuristics for

how to derive these formulae, we can no longer rely on residue computations because of the branch

cuts that come with algebraic singularities. Instead, we find an explicit contour deformation for

the domain of integration in the Cauchy integral formula. When this deformation is combined with

a change of variables, we will see that the generating function behaves like a binomial function

in one variable alone. This enables us to break the bivariate Cauchy integral formula into a

product integral near the critical points of the generating function F . After some tedious order-of-

magnitude computations, we show that the rest of the domain of integration does not contribute

to the integral asymptotically, which gives us our final asymptotic formulae.

Later in Chapter 3, we apply this formula to a generating function from the work of Ron

Graham and Fan Chung Graham, based on the Grahams’ research which generalizes the cover

polynomials of digraphs. In order to analyze the generating function here, we will turn to using

Gröbner bases in Maple, which will allow us to find the set of critical points easily. Once the critical

points are found, we still must show that they satisfy the conditions we need for the asymptotic

formulae to hold. To end Chapter 3, we describe potential research projects for the future.

Finally, in Chapter 4, we look at quantum walks. Quantum walks differ from regular random

walks because they allow for destructive interference between different paths connecting the same

two locations. This causes particles to spread faster in quantum walks than in regular random

walks. In [BP07], Bressler and Pemantle found a (d+ 1)-dimensional rational generating function

whose coefficients described the amplitude of a particle at any position in the integer lattice after n

steps in a quantum walk. These generating functions can be analyzed using the formulae in [PW13].

For a quantum walk in d dimensions, we find a family of minimal critical points, all of which lie

on the (d+ 1)-dimensional unit torus. By analyzing these critical points, we can approximate the

amplitude of a particle at any given position as the number of steps, n, approaches infinity. From

here, we can find the location of the peak amplitudes of the quantum walk.

We examine some examples in one dimension, and describe an unusual case where a fake peak
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takes much longer to decay than expected. Then, we turn to analyzing walks in two dimensions.

Here, the computations become so difficult that we turn to using resultants instead of Gröbner

bases, which are too hard to compute in Maple. The chapter ends with a discussion of future

projects related to quantum walks, including looking at some three-dimensional walks.
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Chapter 2

Multivariate Analytic

Combinatorics of Rational

Functions

In their 2013 book, [PW13], Pemantle and Wilson outline a program which greatly extends the

results of previous work on multivariate generating function analysis. Much of the previous research

on multivariate asymptotics relied on reducing to the univariate case, and then applying known

univariate results to approximate the coefficients of multivariate generating functions. However,

in order to reduce to the univariate case, researchers needed to add restrictions to the multivariate

generating functions they studied. Pemantle and Wilson avoid relying on univariate results by

starting with the multivariate version of the Cauchy integral formula. They begin with a rational

function, F (z) = G(z)/H(z), where G and H are polynomials with real coefficients in the variables

z1, . . . , zd, and where F (z) is analytic near the origin. We will write z = (z1, . . . , zd) and zr =
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zr11 · · · zrdd . Then, F (z) has the series representation:

F (z) =
∑

r∈Nd
arz

r

The multivariate Cauchy integral formula tells us:

[zr]F (z) =

(
1

2πi

)d ˆ
T

F (z)z−r−1 dz (2.1)

Here, the torus T is a product of circles in each complex dimension. T encloses zero, but it does

not enclose any singularities of F (z).

In order to approximate the coefficients ar asymptotically as r → ∞, we first need to specify

what this means for multivariate generating functions. Here, we will choose some fixed unit vector

r̂ ∈ Rd≥0, and we will approximate
[
znr̂
]
F (z) as n approaches infinity.

To analyze the Cauchy integral, we will take advantage of the fact that the z−r term dominates

the integrand as r approaches infinity. The idea is to expand the torus T until it nears some

singularities of F (z). Here, in the case of rational generating functions, the singularities of F (z)

are the zero set of H(z). Eventually, the torus will hit some of the singularities of F (z) and become

stuck. Depending on how we expand T , we will have a choice as to which singularities T will hit

first. So, we expand T to some cycle C which gets stuck at a chosen set of the singularities of

F , and which expands beyond these singularities elsewhere. In the locations where C nears the

singularities of F , we will have C hug the singular variety V := VH = {z : H(z) = 0}. Due to

the z−r term in the integrand, we hope that as r → ∞, the integrand will decay exponentially

faster in the regions of C away from the singularities of F , since the magnitude of z is larger in

these regions. If this is true, then we can approximate the integral by analyzing the integrand near

the singularities, since the rest of the integral decays too quickly to contribute to the asymptotics.

Several questions remain unanswered here. First, can we guarantee that the integrand does not

decay near the singularities, so that they contribute to the asymptotics? Second, what will the

cycle C look like near the singularities? And, finally, how can we compute the contribution of these

singularities to the integral overall? In the end, Pemantle and Wilson compute the residues of
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F (z)z−r−1 over cycles near the correct singularities.

To find singularities which contribute to the asymptotics, we aim to minimize the maximum

modulus of z−r along our contour. The reason for this is as follows: we want to find a contour

where the integrand attains its maximum modulus over some small interval, and then decays rapidly

away from this interval. If we could find a contour where the maximum modulus had not been

minimized, then we would get a much larger estimate than we would by finding a contour where

the maximum modulus has been minimized, which would lead to different asymptotic formulae.

Additionally, at a point where the maximum modulus is not minimized, the argument of the z−r

term will oscillate rapidly as r tends to infinity, which leads to cancellation near the singularity.

However, when the maximum modulus is minimized, we will be able to approximate the integral

in this region by using saddle point methods.

To minimize the maximum modulus of z−r, we will consider the height function,

h(z) := hr̂(z) := −r̂ · Re log z.

Although this excludes the contribution from F (z) in the integrand, F (z) is bounded on compact

sets, so h still approximates the log modulus of the integrand as r approaches infinity in the

direction of r̂. Now, knowing that we will expand the torus until it hits a singularity of F so that

h will be minimized, we will consider the values of h on V. On a cycle where the maximum of h

is minimized, the points where the maximum of h is attained are saddle points of h. Thus, the

critical points of h restricted to V will be candidates for the singularities that will contribute to

the asymptotics.

Before moving on to how to calculate these critical points, we will discuss how to determine the

topology of V near the critical point. This is important, because when we expand T into a contour

C that approaches these singularities, we must know the topology of V to identify our contour C.

To analyze this, we will rely on Morse theory, with h(z) as our “height function.” Let Vc be the

subset {z ∈ V : h(z) ≤ c}. We will consider how the topology of Vc changes as c increases. Every
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algebraic variety has a Whitney stratification, so in particular, V has a Whitney stratification. As

described in Goresky and MacPherson’s book on stratified Morse theory, [GM88], the topology of

Vc only changes at the critical values of h. More explicitly, if the interval [a, b] contains no critical

values of h, then there is a strong deformation retraction of Vb onto Va. In turn, this implies that

any cycle D supported on Vb can be carried by this retraction to a cycle supported on Va. Hence,

when integrating an analytic function over D, we can push D to a cycle supported on Va without

changing the value of the integral. Now, in order to minimize the maximum value of h along a

cycle in V, we can use these retractions to push the cycle “downwards” until the cycle hits a critical

point of h and becomes stuck there. Morse theory can describe the topology of V near the critical

points of h. Thus, when D has been lowered until it becomes stuck around some critical point of

h, Morse theory can be used to describe the portion of the cycle that is in a small neighborhood

of the critical point itself. This portion of the cycle is called a quasi-local cycle.

Unfortunately, we have only discussed cycles within V itself, but our integral begins with a torus

T inM = Cd\V. However, there is a dual version of the Morse theoretic statements discussed above

which states that the homology classes ofM only change at these same critical points of h. Thus,

we will be able to expand T into a cycle C that approaches the critical points of h, and near the

critical point, it looks like the quasi-local cycle described by Morse theory. Now, we can compute

the contribution of each critical point to the integral by using residues. However, these residue

computations depend on the topology of the quasi-local cycle, leading to different asymptotic

formulae for different types of critical points. In Pemantle and Wilson’s book, many different

asymptotic formulae are computed for different classes of quasi-local cycles. Once the contribution

of each critical point is calculated, the results can be summed to find the final asymptotic formulae,

since the critical points are isolated, so that their contributions are independent.

Now, we must return to finding the critical points of h. First, we consider a stratification of

the space VH , and restrict our attention to critical points within a certain stratum S. Given S,

we may write the closure S̄ as the intersection of several other varieties Vf1 , . . . ,Vfd−k , where the
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fj are computable and have non-vanishing gradients at every point of S. Note that while S is the

actual stratum, S̄ is a k-dimensional variety containing the stratum that may be larger than S.

Let z = (z1, . . . , zd). To find the critical points, we look for where dh|S̄ vanishes. dh|S̄ vanishing

at z is equivalent to the vector r̂ being in the span of the d− k vectors {∇logfi(z) : 1 ≤ i ≤ d− k},

where ∇logf(z) := (z1∂f/∂z1, . . . , zd∂f/∂zd) is the gradient of f with respect to log z. If we let

M be the (d − k + 1) × d matrix whose rows are these d − k gradients and r̂, then at all points

of S̄ the submatrix of M consisting of the first d− k rows has rank d− k. The span of the d− k

gradients containing r̂ is equivalent to the vanishing of the k determinants Md−k+i, where Md−k+i

contains the first d − k columns of M together with the (d − k + i)th column. This gives the d

critical point equations:

fi = 0, det(Md−k+i) = 0

Smooth critical points are a simple yet common special case, where the stratum S is of dimen-

sion k := d − 1, and S̄ = V. Thus, in this case, f1 = H = 0, and the other d − 1 equations from

above can be rewritten as follows:

r1z2
∂H

∂z2
= r2z1

∂H

∂z1

...

r1zd
∂H

∂zd
= rdz1

∂H

∂z1

This may be written as H = 0,∇logH||̂r∗. When H is square-free, to check for smoothness at

these critical points, we also require that ∇H does not vanish on V. When H is a polynomial, the

above critical point equations form a system of polynomial equations. In this case, Gröbner bases

can help compute the critical points. In general, it is not necessarily true that all critical points

will contribute to the leading term of the Cauchy integral.
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Chapter 3

Bivariate Analytic Functions with

Algebraic Singularities

This section concerns generating functions with algebraic singularities and smooth critical points.

We will examine functions of the form, H(x, y)−β , where H is an analytic function with real

coefficients and β ∈ R is not a negative integer. Using the procedure outlined in [PW13], one sees

again that the coefficients of H−β are well-approximated by the sum of integrals over quasi-local

cycles around the critical points of the function H. However, instead of computing the residues of

the remaining integrals, we use classical contour deformations and analyze the integrand directly.

Hankel contours historically enabled the analysis of integrals in domains with branch cuts. Here,

we will use a modified version of such a contour, and we will show that H−β is well-approximated

by a one-dimensional binomial function over part of this contour. This one-dimensional function

is easy to integrate, giving us the main result stated in section 3.2 below.
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3.1 Historical Background

Work on asymptotic approximations of generating functions with algebraic singularities began

with univariate generating functions, which encode sequences of numbers. In 1990, Flajolet and

Odlyzko, [FO90], described how to compute the asymptotics of a class of univariate generating

functions with algebraic singularities. In particular, they considered functions of the form,

g(z) = K(1− z)α (log(1− z))γ (log log(1− z))δ , (3.1)

where α, γ, δ, and K are arbitrary real numbers. They also considered related classes of functions,

which were again the products and compositions of power functions and logarithms. Their results

differed from previous results both in the class of generating functions covered, and in their method

of proof. Because we will use similar techniques in our proofs later, we take a moment to summarize

their proof here. Flajolet and Odlyzko relied on the univariate Cauchy integral formula:

[zn] g(z) =
1

2πi

ˆ
C
g(z)

dz

zn+1

Here, [zn] g(z) represents the coefficient of zn in the power series expansion of g, and C is any

positively-oriented contour around the origin which does not enclose any singularities of g(z).

Starting with any function f such that f(z) = O (|1− z|α) as z → 1, and letting C be a small circle

around the origin, the authors expanded C in hopes of finding a contour which is easier to analyze.

As C expands, it must avoid not only the singularity at 1, but also the branch cut emanating from

this point. They expand the contour so it looks like a Hankel contour, C∗, as shown in Figure 3.1.

Flajolet and Odlyzko also require the extra assumption that g is analytic within the contour

C∗, which ensures that the original contour could be expanded to C∗. From here, the contour is

broken up into segments, γ1, γ2, γ3, and γ4. As n approaches infinity, g(z)/zn+1, the integrand in

Cauchy’s integral formula, decays exponentially faster on γ4 than it does on γ1. For this reason, the

integral over γ4 is negligible in the asymptotic expression of [zn] g(z). Likewise, the contribution

along most of γ2 and γ3 is negligible, meaning that the asymptotics of [zn] g(z) are controlled by
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Figure 3.1: The expanded contour, C∗, used in Flajolet and Odlyzko’s proof.

the integrand near z = 1. However, near z = 1, f(z) = O(|z−1|α), which means that f is bounded

along the contours near the critical point, leading to the bound, [zn]f(z) = O(n−α−1). Then, they

expanded their results to functions g(z) with the form in (3.1).

Later in the 1990s, other researchers extended these results to classes of multivariate generating

functions. Bender and Richmond, [BR83], had already considered the asymptotics of multivariate

generating functions with poles in 1983. In 1992, Gao and Richmond, [GR92], considered classes of

bivariate generating functions F (z, x) which are of a form they called algebraico-logrithmic, which

includes some generating functions with algebraic singularities. The convenience of algebraico-

logrithmic functions is that by considering [zn]F (z, x) and temporarily fixing x, the problem is

reduced to a univariate generating function where the results of Flajolet and Odlyzko can be

applied. Then, the asymptotic approximations for [zn]F (z, x) can be broken down further to

approximate the coefficients
[
znxk

]
F (z, x).

In his 1996 and 1998 papers, [Hwa96] and [Hwa98], Hwang expanded upon the multivariate

results, using a probability framework and deriving large deviation theorems. In 1996, Hwang

considered sequences of random variables {Xn}. Assuming that the moment generating functions

11



of the Xn were of a particular form, Hwang proved a central limit theorem for {Xn}. Then, he con-

sidered a class of bivariate generating functions P (w, z) such that after approximating [zn]P (w, z)

with Flajolet and Odlyzko’s univariate results, [zn]P (w, z) satisfied the same conditions he re-

quired previously of the moment generating functions of Ωn. Applying his central limit theorem

from before gave asymptotic results for a new class of bivariate generating functions. In 1998,

Hwang extended his results by using univariate saddle point methods to approximate integrals.

3.2 New Result

Let us summarize notation in a bivariate setting. Let V be the zero set of the analytic function,

H(x, y), where H(0, 0) 6= 0. We will approximate the coefficients [xrys]H(x, y)−β for a fixed β ∈ R

as r and s approach infinity with their ratio approaching the constant, λ. Critical points in the

direction of λ = r+O(1)
s (as r and s approach infinity) are defined to be the points (pi, qi) where

the following equations hold:

H = 0

ry
∂H

∂y
= sx

∂H

∂x

We call the critical points smooth if ∇H does not vanish on V at the critical points. Let D be the

domain of convergence of the power series of H−β that converges around the origin, (0, 0). Then,

a critical point (p, q) is called minimal if (p, q) ∈ ∂D. We will apply heuristics from Chapter 2 to

prove the following result about bivariate generating functions with algebraic singularities:

Theorem 3.2.1. Let H be an analytic function with exactly n strictly minimal critical points

{(pi, qi)}ni=1, all of which are smooth and lie on the same torus T ∗. (Hence, |pi| = |pj | and

|qi| = |qj | for all 1 ≤ i, j ≤ n.) Let β ∈ R with β 6∈ Z≤0, and let λ = r+O(1)
s as r, s → ∞. Define
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χ1, χ2, and Mi as follows:

χ1 =
Hy(pi, qi)

Hx(pi, qi)
=

p

λq

χ2 =
1

2Hx
(χ2

1Hxx − 2χ1Hxy +Hyy)

∣∣∣∣
(x,y)=(pi,qi)

Mi = −2χ2

pi
− χ2

1

p2
i

− 1

λq2
i

For all i, assume pi, qi, Hx(pi, qi), and Mi are nonzero, and assume that the real part of −q2M

is strictly positive. Define
{
x−β

}
P

as the value of x−β defined by using a ray from the origin of C

as the branch cut of the logarithm. In this definition, choose any ray such that
{
H(x, y)−β

}
P

=

H(x, y)−β in a neighborhood of the origin in C2 (as defined by the power series of H−β), and such

that this ray does not pass through −piHx(pi, qi) for any i. Let ωi be the signed number of times the

curve H(tpi, tqi) crosses this branch cut in a counterclockwise direction as t increases, 0 ≤ t < 1.

Then, the following expression holds as r, s→∞:

[xrys]H(x, y)−β =

n∑

i=1

rβ−
3
2 p−ri q−si

{
(−Hx(pi, qi)pi)

−β}
P
e−β(2πiωi)

Γ(β)
√
−2πq2

iMi

+ o
(
rβ−

3
2 p−r1 q−s1

)

Here, the square root in the denominator is taken to be the principal root.

To prove this result, we analyze the multivariate Cauchy integral formula, (2.1). The dominat-

ing contributions to this integral come over quasi-local cycles centered at each critical point, since

the height function h decays exponentially away from these points. Because the critical points are

discrete, we can analyze them individually. An outline of the analysis is as follows: we will show

that H(x, y) behaves essentially as a linear function in one variable, with some minor error terms

in the second variable. In order to do this, we will need to introduce a change of variables, (u, v),

which will give us a particularly nice power series expansion of H in u and v. This change of

variables is what determines χ1 and χ2. Next, we will justify approximating the resulting integral

by an iterated integral, relying on the fact that H is nearly linear. This step is by far the most

tedious, and will take many lemmas to justify. Finally, we will analyze this iterated integral.

Note that it is possible to use Morse theory to show that any zeroes of H on ∂D must be critical
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points. Additionally, when all the minimal critical points are smooth, they must contribute to the

leading term asymptotics of the coefficients of H, which forces each pair (pi, qi) to contribute a

term of equal order in r and s to the asymptotics in the theorem.

3.3 Proof Set-Up

3.3.1 A Convenient Change of Variables

In order to approximate H(x, y) as a univariate linear function near the critical point (p, q), we

will need the power series expansion of H to have no constant term, linear term, nor quadratic

term in one of its two input variables. (We will prove that this condition allows us to approximate

H as a univariate linear function later.) With this goal in mind, we define the following change of

variables:

u = x+ χ1(y − q) + χ2(y − q)2

v = y

Here, χ1 and χ2 are as defined in Theorem 3.6.1 above. Write H as a power series in u and v:

H(x, y) =
∑

m,n≥0

dmn(u− p)m(v − q)n =: H̃(u, v)

Since H(p, q) = 0, we have that d00 = 0. Notice that when (x, y) = (p, q), we also have that

(u, v) = (p, q). We can check that d01 = d02 = 0:

∂H

∂v

∣∣∣∣
(u,v)=(p,q)

=

(
∂H

∂x
· ∂x
∂v

+
∂H

∂y
· ∂y
∂v

)∣∣∣∣
(x,y)=(p,q)

= Hx · (−χ1 − 2χ2(v − q)) +Hy

∣∣
(u,v)=(p,q)

= −χ1Hx +Hy

∣∣
(u,v)=(p,q)

= 0

14



∂2H

∂v2

∣∣∣∣
(u,v)=(p,q)

= −2χ2Hx + (−χ1 − 2χ2(v − q))
[
Hxx

∂x

∂v
+Hxy

∂y

∂v

]

+Hxy
∂x

∂v
+Hyy

∂y

∂v

∣∣∣∣
(u,v)=(p,q)

= −2χ2Hx + χ2
1Hxx − 2χ1Hxy +Hyy

∣∣
(u,v)=(p,q)

= 0

Thus, H̃(u, v) =
∑
m,n≥0 dmn(u− p)m(v − q)n with d00 = d01 = d02 = 0.

3.3.2 Determining the Quasi-Local Cycle

For now, assume that there is a unique critical point, (p, q). Recall that the original domain of

integration in (2.1) is a torus T around the origin which encloses no singularities of H−β(x, y). To

decrease the magnitude of the integrand exponentially as r and s approach infinity, we will expand

the torus T towards the minimal critical point, (p, q). Because (p, q) is a strict minimal critical

point, there cannot be any zeroes between the origin and (p, q) that would otherwise obstruct

the deformation. Hence, we can expand the domain of integration through a homotopy until it

is near the critical point. Previous work on generating functions with poles relied on computing

residues, but the branch point created by algebraic singularities forces us to use explicit contour

deformations through homotopies here. In order to expand the domain of integration past the

critical points of a generating function with algebraic singularities, we must view the contours

as on the Riemann surface of the generating function. However, we will provide explicit contour

deformations, as in Figures 3.2 and 4.8, so it is not necessary to understand the general method

here.

Before expanding the torus, T is the product of a small x circle and a small y circle. To begin

deforming the torus, expand the y circle until it becomes the circle, |y| = |q|. The y portion of the

quasi-local cycle, Cy, will be the part of this circle where y = qeiθ for |θ| ≤ θy for some constant

θy > 0 that will be restricted further later. It is pictured in Figure 3.2.

Now, for each y ∈ Cy, we will expand the x circle until it approaches the zero set of H near p.
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|q|

q

Re y

Im y

θy

Figure 3.2: The y portion of the quasi-local contour

When y is close to q, we will wrap the x contour around the zero set of H. However, when y is

further away from q, we will expand the x contour less, so that it does not come into contact with

the zero set of H.

More explicitly, since Hx(p, q) 6= 0 and H is analytic, the implicit function theorem guarantees

that we can parameterize the variety V = {(x, y)|H(x, y) = 0} by a smooth function G(y), so that

H(p + G(y), y) = 0 for all y ∈ Cy with θy sufficiently small. So, for y = qeiθ with |θ| ≤ θy
2 , we

choose the x contour in Figure 4.8.

The equations for the pieces of the contour are as follows:

γ1(y) :=

{
x : |x− p−G(y)| = 1

r
, arg(p) ≤ arg(x− p−G(y)) ≤ arg(p) + 2π

}

γ2(y) :=

{
x :

1

r
≤ |x− p−G(y)| ≤ εx, arg(x− p−G(y)) = arg(p) + 2π

}

γ3(y) :=

{
x :

1

r
≤ |x− p−G(y)| ≤ εx, arg(x− p−G(y)) = arg(p)

}

γ4(y) := {x : |x−G(y)| = |p|+ εx, arg(p)− θx ≤ arg(x−G(y)) ≤ arg(p)}

γ5(y) := {x : |x−G(y)| = |p|+ εx, arg(p) ≤ arg(x−G(y)) ≤ arg(p) + θx}

Here, εx and θx > 0 are positive real numbers that are small enough that the contour hits no

other zeroes of H and so that G(y) is a valid parameterization of the zero set of H around this
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|p| + εx

Re x

Im x

p + G(y)

p + G(y)

1/r

γ

γ

γ

γ

γ

1

2

3

4

5

Figure 3.3: The x contour on the left, and a close up of the contour on the right.

contour. (This is possible by the implicit function theorem. We will add more restrictions to both

εx and θx later.) In the contour above, the inner and outer rays γ2 and γ3 are directly on top

of each other, but they have differing arguments. These segments should be viewed as different

segments on the Riemann surface of H−β . However, the magnitude of the integrand will be the

same on γ2 and γ3, and hence the difference in argument has no impact in the order-of-magnitude

computations below. Thus, we will not talk about the impact of the differing arguments until the

end of the proof, in Section 3.5 below. Before this discussion, we treat the argument as a value

modulo 2π.

Consider the case where |θ| ≥ θy
2 . As θ increases, we must extricate the x contours from V. To

do this, we will gradually shrink the outer radius of the x contours – that is, the radius |p|+ εx in

γ4(y) and γ5(y) will shrink until the contour no longer wraps around V.

To do this, notice that when y = qeiθyt for t ∈
[
−1,− 1

2

]
∪
[

1
2 , 1
]
, |p + G(y)| > |p| uniformly,

since (p, q) is a strictly minimal critical point of H. Therefore, we can find a δ > 0 so that

|p+G(y)| > |p|+ δ for every t ∈
[
−1,− 1

2

]
∪
[

1
2 , 1
]
.

We will linearly interpolate the radius |x−G(y)| in γ4 and γ5 from |p|+ εx to |p|+ δ, knowing
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that reducing the radius to |p| + δ will completely remove the contour from the zero set of H.

Writing y = qeiθyt with t ∈
[
−1,− 1

2

]
∪
[

1
2 , 1
]
, we define the following radial interpolation with

respect to t:

R(t) := (2− 2|t|) · [|p|+ εx] + (2|t| − 1) · [|p|+ δ]

Then, for y with θ ≥ θy
2 , we define γ4 and γ5 as follows:

γ4(q + tc) := {x : |x−G(y)| = R(t), arg(p)− θx ≤ arg(x−G(y)) ≤ arg(p)}

γ5(q + tc) := {x : |x−G(y)| = R(t), arg(p) ≤ arg(x−G(y)) ≤ arg(p) + θx}

As R(t) shrinks, γ2 and γ3 will shorten until they no longer are part of the contour. When this

happens, γ1 will partially intersect γ4 and γ5 until it moves completely out of the contour as well,

leaving behind just an arc. We will show that the integrand is small along all parts of this contour,

so the details of these intersections are not important.

This completes the description of a possible quasi-local contour near (p, q), but we will morph

it slightly so that it is more convenient. Consider applying the change of variables given in Section

3.3.1. Since v = y, the v portion of the contour is identical to the y portion of the contour. Then,

since u = x + χ1(v − q) + χ2(v − q)2, each contour γi(y) is translated by χ1(v − q) + χ2(v − q)2,

so that it retains its overall shape but is centered at a new location.

Using the chain rule, we compute the following:

∂H̃

∂u

∣∣∣∣∣
(u,v)=(p,q)

=
∂H

∂x
· ∂x
∂u

+
∂H

∂y
· ∂y
∂u

∣∣∣∣
(x,y)=(p,q)

= Hx(p, q) (3.2)

Since Hx(p, q) 6= 0 by assumption, and since H̃ is analytic, the implicit function theorem guarantees

that there exists a smooth parameterization κ(v) of the zero set of H̃, so that H̃(p+ κ(v), v) = 0

for v sufficiently close to q. Investigating κ(v) a little further, we use the power series expansion
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of H̃ about (p, q) to obtain the following:

0 = H̃(p+ κ(v), v) = d10κ(v) +O(κ(v))2 +O(v − q)3

Thus, κ(v) = O(v − q)3. Additionally, the definitions of G(y), κ(v), and the change of variables

give us the following relation:

0 = H(p+G(y), y) = H̃(p+G(v) + χ1(v − q) + χ2(v − 2)2, v)

However, we know already that κ(v) is the parameterization of the zero set of H̃. This forces the

following relation:

G(y) = κ(y)− χ1(y − q)− χ2(y − q)2

Hence, G(y) = −χ1(y − q)− χ2(y − q)2 + O(v − q)3. This provides more insight into this change

of variables: in addition to allowing us to write H as a nice power series with some vanishing

coefficients, the change of variables also describes V near (p, q). By converting the contour into

(u, v)-coordinates, we are able to stabilize the u contours, slowing down the movement of the zero

set of H when it is parameterized by v. We take advantage of this slow-down by morphing our

contour slightly, as described in the following paragraph.

In order to break the 2-dimensional Cauchy integral into two one-dimensional integrals, we

need the quasi-local contour to be a product contour near the critical point, (p, q). To achieve this

goal, we will need to break into two cases: when |θ| ≤ r−
2
5 and when |θ| > r−

2
5 , for v = qeiθ. Let

us first analyze |v − q| in these cases.

v − q = qeiθ − q

= q(eiθ − 1)

= q(1 + iθ − θ2 +O(θ)3 − 1)

= qiθ − qθ2

2
+O(θ)3 (3.3)

In the third line, we use the power series expansion for ex, which holds uniformly as θ → 0. Now,

if |θ| ≤ r−
2
5 , then |(v − q)3| = O

(
r−

6
5

)
< 1

r for r sufficiently large. Hence, when |θ| ≤ r−
2
5 ,
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|κ(v)| = O
(
r−

6
5

)
. Therefore, for r sufficiently large, the point p+ κ(v) is always within the circle

of radius 1
r about the point p, and we can morph our u-contour so that it is centered exactly around

the point p instead of the point p + κ(v). Thus, we will drop κ(v) from the definitions of all the

γi when θ ≤ r−
2
5 , which means that the u contour no longer depends on v when θ ≤ r−

2
5 . (Note

that this corresponds to a similar shift in the original (x, y)-coordinates, which can be computed

explicitly to justify that the original torus T can be morphed locally to this new contour.) The

portion of the contour where θ ≤ r−
2
5 will yield the dominating contribution to the integral

asymptotically.

In the other regime, when θ ≥ r−
2
5 , we cannot simply eliminate κ(v). Instead, let κ̃(v) be 0

when θ ≤ r−
2
5 , let it be κ(v) when θ ≥ r−

7
20 , and let it linearly interpolate between 0 and κ(v)

when r−
2
5 ≤ θ ≤ r−

7
20 . We replace κ(v) with κ̃(v) in the definition of the quasi-local cycle. Note

that κ̃(v) = O(v − q)3 as v tends to q. This condition will be used much later in the proof.

In summary, the final quasi-local cycle C(p, q) (in (u, v)-coordinates) near the critical point

(p, q) has three regimes. The contour is an arc in v, and wraps around the zero set of H̃ in u.

When θ ≤ r−
2
5 , the u-contour wraps exactly around the point, p, and this portion of the contour

is a product contour. When r−
2
5 ≤ θ ≤ θy

2 , the contour instead wraps around the point, p+ κ̃(v).

Finally, if θ ≥ θy
2 , then the u-contour gradually shrinks as θ increases, until it no longer intersects

the zero set of H̃ at all.

3.3.3 Away from the Quasi-Local Cycle

Let us justify that the integral over the quasi-local cycle provides the main contribution to the

asymptotics of the coefficients. In order to do so, we will find a way to expand the torus T away

from the quasi-local cycle so that the integrand decays exponentially faster here when compared to

the quasi-local cycle. To begin, consider the case where there is only one strictly minimal critical
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point, (p, q). Formally, by strictly minimal, we mean the following:

{|x| ≤ |p|} ∩ {|y| ≤ |q|} ∩ VH = (p, q)

Here again, VH = {(x, y)|H(x, y) = 0}.

Consider the torus, T(p,q) := {x : |x| = |p|} × {y : |y| = |q|}. From this torus, remove an open

neighborhood N of the point (p, q), where N is so small that the angular sectors of the torus that

it covers in x and y are smaller than the angular sectors of the torus that C covers in x and y. That

is, the y component of N should only consist of y values whose arguments | arg(y) − q| < c < θy

for some constant c > 0. Similarly, for each y ∈ C, the arguments of the x values in N should

not vary from p + G(y) more than the arguments of the x values in C. Now, T(p,q)\N is a closed

set which does not intersect the closed set, VH . Thus, there are open sets dividing these two sets.

This implies that there is a neighborhood of T(p,q)\N which does not intersect VH . There is some

δ∗ > 0 such that the x arc of T(p,q)\N can be expanded by δ∗ without hitting VH .

Then, at every point of this new cycle away from the critical point (p, q), we have that |x| ≥

|p|+ δ∗. This forces the Cauchy integral to decay exponentially faster away from the critical point

than it does near (p, q), proving that the asymptotic contribution to the integral cannot come from

T(p+δ∗,q).

After expanding T(p,q) to T(p+δ∗,q) := {x : |x| = |p|+δ∗}×{y : |y| = |q|}, notice that T(p+δ∗,q)\N

can be connected to the quasi-local cycle C by adding two short lines at the ends of the x contours

connecting the circle of radius δ∗ to the ends of γ4 and γ5. Because these lines are contained

entirely within the region near (p, q) where the implicit function theorem holds for G(y), the lines

cannot hit any zeroes of H. Also, the magnitude of
∣∣∣xy 1

λ

∣∣∣ along these lines is always greater than

the magnitude of
∣∣∣pq 1

λ

∣∣∣ because |x| > |p|, which means that these lines also do not contribute to

the asymptotics of the integral, and may be ignored.
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3.4 A Product Integral

After applying the change of variables to the Cauchy integral formula (2.1) restricted to the quasi-

local cycle near (p, q), we obtain the following integral:

(
1

2πi

)2¨
C(p,q)

H̃(u, v)−β
(
u− χ1(v − q)− χ2(v − q)2

)−r−1
v−s−1 dudv

Here, the Jacobian of the transformation is just 1:

∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 −χ1 − 2χ2(v − q)

0 1

∣∣∣∣∣∣∣∣
= 1

As mentioned above, our goal is to show that this integral is essentially a product integral. The

following lemma describes this precisely.

Lemma 1.

(
1

2πi

)2¨
C(p,q)

H̃(u, v)−β(u− χ1(v − q)− χ2(v − q)2)−r−1v−s−1 dudv

∼
(

1

2πi

)2¨
C`(p,q)

[Hx(p, q) · (u− p)]−βu−r−1v−s−1

[
1− χ1(v − q) + χ2(v − q)2

p

]−r−1

dudv

The above estimate holds as r, s → ∞ with λ = r+O(1)
s . Here, C`(p, q) is the portion of C(p, q)

where |θ| ≤ r− 2
5 . Hence, C`(p, q) is a product contour.

The proof of this lemma will involve two types of statements: near the critical point, where

|u− p| and |v− q| are both sufficiently small, we will argue that the integrands are asymptotically

the same. Away from the critical point, where at least one of |u− p| or |v− q| is sufficiently large,

we will show that both integrands are small, and hence do not contribute asymptotically to either

integral. (In the second integral, we need only show that the integrand is small when |u − p| is

large, since |v − q| is always small in C`(p, q).)
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3.4.1 (u− p) and (v − q) are Small

In order to match the two integrands when |v − q| and |u − p| are small, we rewrite the original

integrand first:

H̃(u, v)−β
(
u− χ1(v − q)− χ2(v − q)2

)−r−1
v−s−1

= [Hx(p, q) · (u− p)]−βu−r−1v−s−1

[
1− χ1(v − q) + χ2(v − q)2

p

]−r−1

K(u, v)L(u, v)

Here, K and L are correction factors with the following definitions:

K(u, v) :=

(
1− χ1(v−q)+χ2(v−q)2

u

1− χ1(v−q)+χ2(v−q)2
p

)r−1

L(u, v) :=

[
H̃(u, v)

Hx(p, q)(u− p)

]−β

Thus, showing that the integrands in Lemma 1 are asymptotically equivalent is the same as showing

that K and L are asymptotically equal to 1. We will show this for u in γ1, and for the parts of γ2

and γ3 sufficiently close to the critical point.

Lemma 2. Assume v ∈ Cy with |θ| ≤ r−
2
5 . Also, assume that either u ∈ γ1, or that u ∈ γ2 ∪ γ3

with u = p+ ωt
r and t ≤ r 3

10 . Then, the following holds uniformly as r, s→∞ with λ = r+O(1)
s :

K(u, v) = 1 + o(1)

Proof. We pull aside the numerator of K(u, v):

1− χ1(v − q) + χ2(v − q)2

u
= 1− χ1(v − q) + χ2(v − q)2

p− (p− u)

= 1− χ1(v − q) + χ2(v − q)2

p
· 1

1−
(

1− u
p

)

For u ∈ γ1, |u − p| = 1
r . Thus, we have

(
1− u

p

)
= O

(
r−1
)
, and

∣∣∣1− u
p

∣∣∣ < 1 for r sufficiently

large. Hence, we can expand 1

1−(1−up )
as a uniformly convergent geometric series for all u ∈ γ1.

This yields the following:

1−χ1(v − q) + χ2(v − q)2

u
= 1−χ1(v − q) + χ2(v − q)2

p

[
1 +

(
1− u

p

)
+

(
1− u

p

)2

+ · · ·
]

(3.4)
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Now, we can replace the numerator in the base of K by the expression in (3.4) to obtain the

following:

1− χ1(v−q)+χ2(v−q)2
u

1− χ1(v−q)+χ2(v−q)2
p

= 1−
χ1(v−q)+χ2(v−q)2

p

1− χ1(v−q)+χ2(v−q)2
p

[(
1− u

p

)
+O

(
1− u

p

)2
]

(3.5)

Equation (3.5) holds uniformly for |θ| ≤ r− 2
5 and u in the region of the lemma, as r →∞. Between

γ1 and the regions of γ2 and γ3 described in the lemma,
(

1− u
p

)
= O

(
r−

7
10

)
. Also, from (3.3),

|v − q| = O
(
r−

2
5

)
. Plugging these facts into (3.5) yields the following:

1− χ1(v−q)+χ2(v−q)2
u

1− χ1(v−q)+χ2(v−q)2
p

= 1 +O
(
r−

11
10

)

We replace the base of K with this new expression:

K(u, v) =
(

1 +O
(
r−

7
5

))−r−1

= e
(−r−1) ln

(
1+O

(
r−

11
10

))

The Taylor series for the natural logarithm gives us the following estimate:

ln
(

1 +O
(
r−

11
10

))
= O

(
r−

11
10

)

Thus, we may complete the lemma:

K(u, v) = e
(−r−1)·O

(
r−

11
10

)
= e

O
(
r−

1
10

)
= 1 + o(1)

Next, we prove the corresponding statement for L(u, v) on γ1 or the parts of γ2 and γ3 suffi-

ciently close to p.

Lemma 3. Assume v ∈ Cy with |θ| ≤ r−
2
5 . Also, assume either that u ∈ γ1, or that u ∈ γ2 ∪ γ3

with u = p+ ωt
r and t ≤ r 3

10 . Then, the following holds uniformly as r, s→∞ with λ = r+O(1)
s :

L(u, v) = 1 + o(1)

Proof. Recall that H̃(u, v) has a particularly nice power series:

H̃(u, v) =
∑

m,n≥0

dmn(u− p)m(v − q)n
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In this series, we have the restrictions, d00 = d01 = d02 = 0. Hence, we can express H̃ in the

following manner:

H̃ = d10(u− p) + f(u, v) + g(u, v) + h(u, v) (3.6)

Here, we define f, g, and h by f(u, v) = O(u−p)2, g(u, v) = O ((u− p)(v − q)) , and h(u, v) = O(v−

q)3, each uniformly as (u, v) approaches (p, q). Also, we note from (3.2) above that d10 = Hx(p, q).

We now plug (3.6) into the definition of L:

L(u, v) :=

[
H̃(u, v)

Hx(p, q)(u− p)

]−β

=

[
1 +

f + g + h

Hx(p, q)(u− p)

]−β
(3.7)

In the region described in this Lemma, we have the restrictions, 1
r ≤ |u− p| ≤ r−

7
10 , and |v− q| =

O
(
r−

2
5

)
. Thus, we obtain the following expressions:

f

Hx(p, q)(u− p) = O(u− p) = O
(
r−

7
10

)

g

Hx(p, q)(u− p) = O(v − q) = O
(
r−

2
5

)

h

Hx(p, q)(u− p) = O

(
(v − q)3

u− p

)
= O

(
r ·
(
r−

2
5

)3
)

= O
(
r−

1
5

)

Each of these statements holds uniformly over the region in the lemma as r →∞. Plugging these

into (3.7) above yields the desired result:

L(u, v) =
[
1 +O

(
r−

1
5

)]−β
= 1 + o(1)

This completes the proof that our integrand is essentially a product integrand near the critical

point. It remains to show that the contributions away from the critical point are negligible.

3.4.2 (v − q) or (u− p) is Big

Here, we justify that the away from the critical point, the contribution to the integral decays

exponentially faster than the contribution near the critical point.
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Lemma 4. Let C̄(p, q) represent the portion of C(p, q) where at least one of the following conditions

holds: |θ| > r−
2
5 or |u − q| ≥ r−

7
10 . Then, the following holds uniformly as r, s → ∞ with

λ = r+O(1)
s :

(
1

2πi

)2¨
C̄(p,q)

H̃(u, v)−β
(
u− χ1(v − q)− χ2(v − q)2

)−r−1
v−s−1 dudv

= O

(
p−rq−sr|β|e−

d
2 r

1
5

)

Proof. We bound the terms of the integrand separately. First, recall the nice power series,

H̃(u, v) =
∑
m,n≥0 dmn(u − p)m(v − q)n, with the relations, d00 = d01 = d02 = 0 and H̃(p +

κ(v), v) = 0. Define ū by ū = u− p− κ̃(v) and v̄ by v̄ = v − q. H̃(p+ κ(v), v) can be represented

as follows:

0 = H̃(p+ κ(v), v) = d10κ(v) + d11κ(v)v̄ + d20κ(v)2 + d03v̄
3 + · · ·

With this in mind, we expand the power series of H̃(p+ κ̃(v) + ū, v) to extract H̃(p+ κ(v), v):

H̃(p+ κ̃(v) + ū, v) = d10

(
κ(v) + [κ̃− κ](v) + ū

)
+ d20

(
κ(v) + [κ̃− κ](v) + ū

)2

+d11

(
κ(v) + [κ̃− κ](v) + ū

)
·
(
v̄
)

+ d03v̄
3 + · · ·

= H̃(p+ κ(v), v) + d10

(
[κ̃− κ](v) + ū

)

+O
(
[κ̃− κ](v)

)2
+O(ū)2 +O

(
[κ̃− κ](v)ū

)

+O
(
κ(v)[κ̃− κ](v)

)
+O

(
κ(v)ū

)

+O
(
[κ̃− κ](v)v̄

)
+O

(
ūv̄
)

To see that these seven big-O terms cover every possible term after the d03 term in the expansion

of H̃, notice that every term past the d03 term must have a power of (κ(v) + [κ̃− κ](v) + ū) of at

least two, or a power of v̄ of at least one and a power of (κ(v) + [κ̃ − κ](v) + ū) of at least one.

Listing all of the terms of (κ(v) + [κ̃− κ](v) + ū)2 and (κ(v) + [κ̃− κ](v) + ū) · v̄ and omitting the

overlapping terms from H̃(p+ κ(v), v) gives the seven big-O terms above.

Recall that [κ̃− κ](v) = O
(
v̄3
)

and κ(v) = O
(
v̄3
)
. For |θ| ≤ r−

7
20 , v̄ = O

(
r−

7
20

)
by (3.3), so

that [κ̃− κ](v) = O
(
r−

21
20

)
. However, for |θ| ≥ r− 7

20 , κ̃ is exactly κ. Thus, κ̃− κ = O
(
r−

21
20

)
for
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all |θ| ≤ θy. Additionally, |ū| ≥ 1
r on all parts of C̄. Therefore, for εx, εy, and θx sufficiently small,

all terms in the expansion of H̃ are negligible except d10ū. Since |ū| ≥ 1
r , we have the following

bound uniformly on C̄ when β > 0:

H̃−β = O
(
rβ
)

(3.8)

When β < 0, notice that H is bounded on compact sets, so H−β is bounded by a constant. Thus,

regardless of the sign of β, we have the following bound:

H̃−β = O
(
r|β|
)

Now, we turn to the remaining part of the integrand. Using the relation, s = r
λ + O(1) as

r, s→∞, we break down v−s−1:

v−s−1 = v−1+O(1)v−
r
λ

Now, we take a factor of p−r out of
(
u− χq(v − q)− χ2(v − q)2

)−r
and a factor of q−

r
λ out of v−

r
λ

to obtain the following decomposition:

(
u− χ1(v − q)− χ2(v − q)2

)−r−1
v−s−1

= p−rq−
r
λ

(
u− χ1(v − q)− χ2(v − q)2

)−1
v−1+O(1)e−rϕ(u,v) (3.9)

Here, ϕ is defined by ϕ(u, v) = ln
(

1
p

[
u− χ1(v − q)− χ2(v − q)2

])
+ λ−1 ln

[
v
q

]
. We can expand

ϕ as a bivariate power series and obtain the following:

ϕ(u, v) =
1

p
(u− p) +

M

2
(v − q)2 +O

(
(u− p)(v − q)

)
+O(u− p)2 +O(v − q)3 (3.10)

This equation holds uniformly as (u, v) approaches (p, q). M has the following definition:

M :=
∂2ϕ

∂v2

∣∣∣∣
(u,v)=(p,q)

= −2χ2

p
− χ2

1

p2
− 1

λq2

Rewriting ϕ(u, v) in terms of κ̃, ū, and v̄ gives the following:

ϕ(u, v) = ϕ(p+ κ̃(v) + ū, q + cv̄)

=
1

p
(κ̃(v) + ū) +

M

2
(v̄)

2
+O

(
(κ̃(v) + ū)(v̄)

)
+O(κ̃(v) + ū)2 +O(v̄)3

=
1

p
ū+

M

2
(v̄)

2
+O(ūv̄) +O(ū)2 +O(v̄)3
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The last line holds uniformly as ū, v̄ → 0, and we used the fact that κ̃(v) = O(v̄)3 here. Using that

v̄ = qiθ +O(θ)2, we rewrite ϕ(u, v) one more time:

ϕ(u, v) =
1

p
ū− q2M

2
θ2 +O(θū) +O(ū)2 +O(θ)3

From here, our goal is to bound e−rϕ in magnitude. To do so, we will investigate the real part

of ϕ. Let d = Re
(
− q2M2

)
, which is a strictly positive number by assumption. We break into cases

now.

Case 1: When u ∈ γ1 and |θ| ≥ r− 2
5 , we have that |ū| = 1

r , which is much smaller than θ2.

Re (ϕ(u, v)) = Re

(
−q

2M

2
θ2 + o(θ)2

)
≥ dr−

4
5

2

The above inequality holds for r sufficiently large and for εx and θy small enough. Thus, we

obtain the following for r sufficiently large:

∣∣∣e−rϕ(u,v)
∣∣∣ ≤ e− d2 r

1
5

Case 2: Consider the case where u ∈ γ2 or γ3 and |ū| ≤ r− 7
10 , but |θ| ≥ r− 2

5 . (This case only applies

when |θ| is sufficiently small, since γ2 and γ3 are not part of the contour if |v−q| is too large.)

Here, we have that 1
p ū = 1

p (u− p− κ(v)) is a strictly positive real number, and it dominates

all ū terms in ϕ(u, v). Thus, ū only contributes to the decay, and our bound is even more

favorable than in Case 1. The following holds for sufficiently large r and sufficiently small

εx and θy:

Re (ϕ(u, v)) = Re

(
−q

2M

2
θ2 + o(θ)2

)
≥ dr−

4
5

2

So, once again, we obtain this bound:

∣∣∣e−rϕ(u,v)
∣∣∣ ≤ e− d2 r

1
5

Case 3: Consider the case where u ∈ γ2 or γ3 and |ū| ≥ r− 3
10 . (Once again, this case is only relevant

when |θ| is small enough for γ2 and γ3 to be part of the contour.) For sufficiently small εx

and θy, the O(ūθ) term is dominated by the ū term. The remaining θ terms are dominated
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by the θ2 term, so these θ terms can only increase the real part of ϕ. Thus, the real part of

ϕ is at least half the 1
p ū term, and we have the following for r sufficiently large:

Re (ϕ(u, v)) ≥ 1

2|p|r
− 3

10

Plugging this into the exponential yields the following:

∣∣∣e−rϕ(u,v)
∣∣∣ ≤ e−

1
2|p| r

7
10

Case 4: Now, consider the case where u ∈ γ4 or γ5 and |θ| ≤ 1
2εy. Then, |u− κ̃(v)| = |p|+ εx. Thus,

we have the following information about the leading term of ϕ:

∣∣∣∣
1

p
ū

∣∣∣∣ =

∣∣∣∣
1

p

∣∣∣∣ |u− p− κ̃(v)|

≥
∣∣∣∣
1

p

∣∣∣∣ [|u− κ̃(v)| − |p|]

=
εx
|p| (3.11)

Also, for θx sufficiently small (depending on εx and |p|), the following holds:

|arg(u− p− κ̃(v))− arg(p)| ≤ π

3
(3.12)

Equivalently:
∣∣∣∣arg

(
u

p
− 1− κ̃(v)

p

)∣∣∣∣ ≤
π

3

This statement should be clear graphically: let α = arg
(
u
p − 1− κ̃(v)

p

)
, and consider Figure

3.4. Clearly, as θx tends to zero, α approaches zero as well. Combining (3.11) and (3.12),

we have the following:

Re

[
1

p
ū

]
≥ εx
|p| cos (arg(u− p− κ̃(v))− arg(p)) ≥ 1

2

εx
|p|

Just like in Case 3, in the expansion of ϕ, the O(ūθ) term is dominated by the ū term, and

the remaining θ terms are dominated by the θ2 term, which only adds to the real part of ϕ.
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Figure 3.4: α must be small when θx is small.

Hence, for εx, θx, and θy sufficiently small we have:

Re(ϕ(u, v)) ≥ 1

4

εx
|p|

This yields:

∣∣∣e−rϕ(u,v)
∣∣∣ ≤ e−

1
4
εx
|p| r

This decay is much greater than in the other cases so far: this is because here, (u, v) is

bounded away from (p, q) by a constant amount.

Case 5: Finally, consider the case where u ∈ γ4 or γ5, but |θ| ≥ εy
2 . Here, both u and v are away

from the critical point, (p, q). So, we expect the integrand to have the most decay here.

Once again, the dominant terms in the expansion of ϕ are the ū and θ2 terms. We check the

real component of ū
p :

Re
( ū
c

)
= Re

(
u

p
− 1− κ̃(v)

p

)

= Re

(
u− κ̃(v)

p

)
− 1 (3.13)

Let us examine the remaining real part above. First, by the definitions of γ4 and γ5, the

following is true:

arg(p)− θx ≤ arg(u− κ̃(v)) ≤ arg(p) + θx

Equivalently, we have the following:

−θx ≤ arg(u− κ̃(v))− arg(p) = arg

(
u− κ̃(v)

p

)
≤ θx
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Therefore, we can bound the remaining real part in (3.13) as follows:

Re

[
u− κ̃(v)

p

]
≥

∣∣∣∣
u− κ̃(v)

p

∣∣∣∣ cos θx

≥
(

1 +
δ

|p|

)
cos θx

In the last line, we used the fact that on γ4 and γ5, |u− κ̃(v)| ≥ |p|+ δ. For θx sufficiently

small, dependent on εy, δ, and |p|, we can force this condition (assuming δ < |p|):

cos θx ≥ 1−
δ
2

|p|+ δ
=
|p|+ δ

2

|p|+ δ

Rearranging, this gives us the following:

(
1 +

δ

|p|

)
cos θx ≥ 1 +

δ

2|p|

Plugging this into (3.13) yields:

Re

(
ū

p

)
≥ δ

2|p|

The θ2 term in the expansion of ϕ again only contributes to the real part of ϕ, giving us:

Re(ϕ(u, v)) ≥ δ

2|p|

Thus, we obtain exponential decay:

∣∣∣e−rϕ(u,v)
∣∣∣ ≤ e−

δ
4|p| r

In every case, we have the following bound for εx, θx, θy, and δ sufficiently small and r sufficiently

large:

∣∣∣e−rϕ(u,v)
∣∣∣ ≤ e− d2 r

1
5 (3.14)

Finally, notice that for εx, εy, θx, and δ sufficiently small,

∣∣∣
(
u− χ1(v − q)− χ2(v − q)2

)−1
v−1+O(1)

∣∣∣ ≤ 2
∣∣∣p−1q−1+O(1)

∣∣∣ (3.15)

Plugging (3.14) and (3.15) back into (3.9) gives the following:

∣∣(u− χ1(v − q)− χ2(v − q)2)−r−1v−s−1
∣∣ ≤ 2p−r−1q−s−1+O(1)e−

d
2 r

1
5 (3.16)
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Recognizing that the entire domain of integration has size bounded by a constant, we combine

(3.8) and (3.16) to get the desired result:

(
1

2πi

)2¨
C̄(p,q)

H̃(u, v)−β(u− χ1(v − q)− χ2(v − q)2)−r−1v−s−1 dudv = O

(
p−rq−sr|β|e−

d
2 r

1
5

)

Now we prove the corresponding statement for the product integral.

Lemma 5. Let C∗` represent the portion of C` where |u − q| ≥ r−
7
10 . Then, the following holds

uniformly as r, s→∞ with limr,s→∞
r
s = λ:

(
1

2πi

)2¨
C∗` (p,q)

[Hx(p, q) · (u− p)]−βu−r−1v−s−1

[
1− χ1(v − q) + χ2(v − q)2

p

]−r−1

dudv

= O

(
p−rq−sr|β|e−

d
2 r

1
5

)

Proof. This proof is a simplified version of the proof for Lemma 4.

First, notice that |u− p| ≥ 1
r on C∗` . Hence, we have the following bound:

[Hx(p, q) · (u− p)]−β = O
(
r|β|
)

(3.17)

We manipulate the rest of the integrand:

u−r−1v−s−1

[
1− χ1(v − q) + χ2(v − q)2

p

]−r−1

= p−rq−
r
λu−1v−1+O(1)

[
1− χ1(v − q) + χ2(v − q)2

p

]−1

e−rϕ
∗(u,v) (3.18)

Here, ϕ∗(u, v) is defined by ϕ∗(u, v) = ln
(
u
p

)
+ λ−1 ln

(
v
q

)
+ ln

[
1− χ1(v−q)+χ2(v−q)2

p

]
. Ex-

panding ϕ∗(u, v) yields a power series very similar to the series for ϕ(u, v):

ϕ∗(u, v) =
1

p
(u− p) +

M

2
(v − q)2 +O

(
(u− p)(v − q)

)
+O(u− p)2 +O(v − q)3

This equation holds uniformly as (u, v) approaches (p, q), and M has the same definition as in

Lemma 4. Notice that the first few terms of the power series of ϕ∗ match the terms of the power

series of ϕ, (3.10), from Lemma 3.17. κ̃(v) is not present in C∗` , but we can substitute 0 for κ̃(v)
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in the computations leading up to (3.14) in Lemma 4 (excluding the irrelevant cases where v − q

is large), which shows that (3.14) still holds here:

∣∣∣e−rϕ∗(u,v)
∣∣∣ ≤ e− d2 r

1
5 (3.19)

Finally, for εx, θx, θy, and δ sufficiently small, we have the following bound:

∣∣∣∣u−1v−1+O(1)

[
1− χ1(v − q) + χ2(v − q)2

p

]
−1

∣∣∣∣ ≤ 2
∣∣∣p−1q−1+O(1)

∣∣∣ (3.20)

Since the domain of integration has size bounded by a constant, combining (3.17), (3.19), and

(3.20) finishes the proof.

We have nearly completed the proof of Lemma 1. However, it is not yet clear that the bounds

we have found away from the critical point are small compared to the value of the whole integral.

It turns out that the exponential term in these bounds, e−
d
2 r

1
5 , will ensure that these bounds

are small compared to the integral overall. To show this, it remains to evaluate the asymptotic

contribution of the product integral, which will simultaneously show that the contributions to the

integral away from the critical point are negligible.

3.5 Proof of Theorem

Lemma 1 has reduced our work to computing the following:

(
1

2πi

)2¨
C`(p,q)

[Hx(p, q) · (u− p)]−βu−r−1v−s−1

[
1− χ1(v − q) + χ2(v − q)2

p

]−r−1

dudv

We break it up into a product integral:

(
1

2πi

)2(ˆ
U

[Hx(p, q) · (u− p)]−βu−r−1 du

)(ˆ
V

v−s−1

[
1− χ1(v − q) + χ2(v − q)2

p

]−r−1

dv

)

(3.21)
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Above, U is the u-projection of the contour, C`, which resembles the x contour in Figure 4.8, but

with G(y) = 0. V is likewise the v-projection, which is the set,
{
v : v = qeiθ, |θ| ≤ r− 2

5

}
. We

analyze each of these two integrals separately.

Lemma 6. The following holds uniformly as r, s→∞ with λ = r+O(1)
s :

ˆ
U

[Hx(p, q) · (u− p)]−βu−r−1 du =
2πi

Γ(β)
rβ−1p−r

{
(−Hx(p, q)p)−β

}
P
e−β(2πiω) + o

(
rβ−1p−r

)

Here, ω is defined to be the signed number of times the curve H(tp, tq) crosses the branch cut in

the definition of the function
{
x−β

}
P

, as described in the statement of the Theorem.

Proof. The contour U is comprised of the segments γi for 1 ≤ i ≤ 5 in the case where |v − q| ≤

r−
2
5 . The endpoints of the contour, at the beginning of γ4 and end of γ5, both have magnitude

|u| = |p|+ εx. We can attach these endpoints to a portion of the circle {u : |u| = |p|+ εx} to form a

closed cycle Cu that wraps around the origin and contains no singularities of [Hx(p, q) · (u− p)]−β .

Because u−r−1 is exponentially smaller on the circle {u : |u| = |p|+ εx} than it is near the critical

point p, we have:

ˆ
U

[Hx(p, q) · (u− p)]−βu−r−1 du = (1 + o(1))

ˆ
Cu

[Hx(p, q) · (u− p)]−βu−r−1 du

Now, we can use the Cauchy integral formula to evaluate this integral. However, we finally must

worry about how the analytic continuation of H−β is defined. H(0, 0) is nonzero by assumption,

and the values of H−β are defined near the origin of C2 by the generating function itself. Separately

from the analytic continuation of H−β that we have used up to this point, we choose a branch

of the logarithm with the following properties: the branch must agree with H−β on some small

neighborhood of the origin, and its branch cut must be a line from the origin that is not the line

`(t) = −tHx(p, q)p for t ≥ 0, for any of the critical points (p, q). Define
{
x−β

}
P

as the value of

x−β obtained by using this branch of the logarithm.

Consider the curve H(tp, tq) in C, with t ∈ [0, 1). This curve may wrap around the origin

several times, and in particular, may cross the branch cut described above. Recall the bivariate
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power series for H(x, y):

H(x, y) =
∑

m,n≥0

hmn(x− p)m(y − q)n

Plugging in our parameterization yields:

H(tp, tq) = h10(tp− p) + h01(tq − q) + · · ·

= −(1− t)ph10 − (1− t)qh01 +O(1− t)2

= (1− t)(−ph10 − qh01) +O(1− t)2

The above equations are true as t → 1. Recall the following conditions: Hx(p, q) 6= 0, and

Hy(p, q) = p
λqHx(p, q). Plugging this into our computations above yields:

H(tp, tq) = (1− t)(−p(1 + λ)Hx(p, q)) +O(1− t)2

Thus, as t tends to 1, the curve H(tq, tq) is essentially linear, with quadratic error. As long as

the branch cut chosen above is not the line `(t) mentioned above, the curve will only cross the

branch cut finitely many times. Let ω be the signed number of times the curve H(tp, tq) crosses

the branch cut in the counter-clockwise direction for t ∈ [0, 1). That is, every time the curve

crosses the branch cut in the counter-clockwise direction, add 1 to ω, and every time it crosses

in the clockwise direction, subtract 1 from ω. If the curve only touches the branch cut without

crossing it, leave ω unchanged.

As t approaches 1, we have shown that H behaves essentially like Hx(p, q)(u− p), and we have

traced how the argument changes as we expand the two-dimensional torus towards the critical

point. Now, in order to revert the integral over Cu back to the appropriate coefficient of Hx(p, q)(u−

p) by using the Cauchy integral formula, we must follow the image of Hx(p, q)(u− p) from u = p

back to the origin u = 0. As u follows the line from p to 0, the Hx(p, q)(u−p) will follow the line in

C from 0 to −pHx(p, q), the point whose power we are trying to determine. Because this straight

line is `(t), it will not cross the branch cut we chose above. Thus, ω already accounts for the total

number of times the branch cut is crossed. Figure 3.5 shows an example of this setup. In this
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Figure 3.5: An example with ω = 1.

example, ω = 1, because H(tp, tq) crosses the branch cut once in the counter-clockwise direction.

In conclusion, we have the following:

ˆ
Cu

[Hx(p, q) · (u− p)]−βu−r−1 du = (1 + o(1))2πi [ur] (Hx(p, q) · (u− p))−β

= (1 + o(1))2πi(Hx(p, q))r
(−β
r

)

·
{

(−Hx(p, q)p)−β−r
}
P
e−β(2πiω) (3.22)

From Stirling’s approximation, we have the following:

(−β
r

)
∼ rβ−1

Γ(β)
(−1)r

Additionally, we can separate the integer portion of the power of −Hx(p, q)p:

{
(−Hx(p, q)p)−β−r

}
P

=
{

(−Hx(p, q)p)−β
}
P

(−Hx(p, q)p)−r

Plugging these two expressions into (3.22) and simplifying yields the result:

ˆ
Cu

[Hx(p, q) · (u− p)]−βu−r−1 du =
2πi

Γ(β)
rβ−1p−r

{
(−Hx(p, q)p)−β

}
P
e−β(2πiω) + o

(
rβ−1p−r

)
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We turn our attention to the other integral, and find its asymptotic contribution.

Lemma 7. The following holds uniformly as r, s→∞ with λ = r+O(1)
s :

ˆ
V

v−s−1

[
1− χ1(v − q) + χ2(v − q)2

p

]−r−1

dv = iq−s
√

2π

−q2Mr
+ o

(
q−sr−

1
2

)

Here, the square root is taken to be the principal root.

Proof. Note that λ = r+O(1)
s implies that s = − r

λ +O(1). We rewrite the integrand:

v−s−1

[
1− χ1(v − q) + χ2(v − q)2

p

]−r−1

= q−s−1

(
v

q

)−s−1 [
1− χ1(v − q) + χ2(v − q)2

p

]

= q−s−1

(
v

q

)O(1)

e−rψ(v)

In the last line, we define ψ as:

ψ(v) := log

[
1− χ1(v − q) + χ2(v − q)2

p

]
+

1

λ
log

(
v

q

)

We expand ψ(v) as a Taylor series about v = q:

ψ(v) =
M

2
(v − q)2 +O(v − q)3

Also, since v = qeiθ and |θ| ≤ r− 2
5 , we have the following:

(
v

q

)O(1)

= 1 + o(1)

Plugging these expressions into the integral and rewriting it in terms of θ gives us the following:

ˆ
V

v−s−1

[
1− χ1(v − q) + χ2(v − q)2

p

]−r−1

dv

= q−s−1

ˆ
V

e−r[
M
2 (v−q)2+O(v−q)3](1 + o(1)) dv

= q−s−1[1 + o(1)]

ˆ r
2
5

−r−
2
5

e
−r
[
− q

2M
2 θ2+O(θ)3

]
iqeiθ dθ

= iq−s[1 + o(1)]

ˆ r
2
5

−r−
2
5

e
−r
[
− q

2M
2 θ2+O(θ)3

]
eiθ dθ

= iq−s[1 + o(1)]

ˆ r
2
5

−r−
2
5

e
−r
[
− q

2M
2 θ2

]
eiθ dθ (3.23)
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The last line is true because O(θ)3 = O
(
r−

6
5

)
implies that e−rO(θ)3 = 1 + o(1). The remaining

integral is nearly a Fourier-Laplace integral, but it has a shrinking domain of integration. We

justify that this can be replaced by a domain of integration of constant size. Specifically, we aim

to show that for some ε > 0 small enough, the following holds:

ˆ r
2
5

−r−
2
5

e
−r
[
− q

2M
2 θ2

]
eiθ dθ =

ˆ ε

−ε
e
−r
[
− q

2M
2 θ2

]
eiθ dθ +O

(
e−

d
2 r

1
5

)
(3.24)

To see this, notice that if |θ| ≥ r− 2
5 , then we have:

Re

(
−q

2M

2
θ2

)
≥ d

2
r−

4
5

This implies the following:
∣∣∣∣e
−r
[
− q

2M
2 θ2

]∣∣∣∣ ≤ e− d2 r 1
5

In turn, this implies: ˆ
r−

2
5≤|θ|≤ε

e
−r
[
− q

2M
2 θ2

]
eiθdθ = O

(
e−

d
2 r

1
5

)

This completes the proof of (3.24). To analyze the remaining integral, we use the standard saddle

point approximation, which is proved in Theorem 4.1.1 in [PW13]. The amplitude A(θ) = eiθ and

the phase φ(θ) = − q2M2 θ2 are both analytic functions near θ = 0, and Re(φ) ≥ 0 on the interval

[−ε, ε], with equality only at θ = 0. Thus, we have:

ˆ ε

−ε
e
−r
[
− q

2M
2 θ2

]
eiθ dθ = (1 + o(1))A(0)

√
2π

φ′′(0)r
e−rφ(0) = (1 + o(1))

√
2π

−q2Mr
(3.25)

In the above expression, the square root is the principal root. Plugging (3.25) into the remaining

integral in (3.23) finishes the proof.

Plugging the results of Lemma 6 and Lemma 3.23 into (3.21) gives us the final result:

(
1

2πi

)2 ˆ
U

[Hx(p, q) · (u− p)]−βu−r−1 du

ˆ
V

v−s−1

[
1− χ1

p
(v − q)− χ2

p
(v − q)2

]−r−1

dv

= [1 + o(1)]
rβ−

3
2 p−rq−s

{
(−Hx(p, q)p)−β

}
P
e−β(2πiω)

Γ(β)
√
−2πq2M
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3.6 Corollary

Unfortunately, for general H, the formula in the Theorem becomes quite messy, as we must find

how many times the image of H wraps around the origin along the path connecting (0, 0) to each

critical point (p, q). Additionally, the sign of the square root in the formula can cause headaches.

Luckily, in the case where H has only real coefficients and there is a single smooth strictly minimal

critical point, we can simplify the formula.

Corollary 3.6.1. Let H be an analytic function with a single smooth strictly minimal critical point

(p, q), where p and q are real and positive. Let H have only real coefficients in its power series

expansion about the origin. Assume H(0, 0) > 0, and consider H−β for β ∈ R with β 6∈ Z≤0. Also,

define H−β here with the standard branch chosen along the negative real axis, so that H(0, 0)−β > 0.

Let λ = r+O(1)
s as r, s→∞. Define the following quantities:

χ1 =
Hy(p, q)

Hx(p, q)
=

p

λq

χ2 =
1

2Hx
(χ2

1Hxx − 2χ1Hxy +Hyy)

∣∣∣∣
(x,y)=(p,q)

M = −2χ2

p
− χ2

1

p2
− 1

λq2

Assume that Hx(p, q) and M are nonzero. Then, the following expression holds as r, s→∞:

[xrys]H(x, y)−β ∼ rβ−
3
2 p−rq−s(−Hx(p, q)p)−β

Γ(β)
√
−2πq2M

In the above expression, −Hx(p, q)p will be a positive real number, and (−Hx(p, q)p)−β will

also be a positive real number. Additionally, −2πq2M is positive, so the positive square root is

taken.

Proof. Since H has real coefficients and p and q are positive real numbers, we must have that

−Hx(p, q)p is real. The line H(tp, tq) for 0 ≤ t ≤ 1 is real and can’t pass through the origin since

(p, q) is minimal. Also, the line from 0 to −Hx(p, q)p is real, and it approximates H(tp, tq) for t

near 1, as described in Section 3.5 and Figure 3.5 above. This would mean that −Hx(p, q)p is in
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fact positive. Additionally, the line H(tp, tq) cannot wrap around the origin, which forces ω = 0

in the statement of the original Theorem. As a result, {(−Hx(p, q)p)−β}P is positive. With this

term positive, the only other term with an unknown sign is
√
−2πq2M . However, knowing that

−2πq2M is real, in order for the coefficients of H−β to be real at all, −2πq2M must be negative.

Thus,
√
−2πq2M is always positive (since the principal root is taken), which forces the whole

formula to be positive always.

3.7 Example

We will look at the coefficients xrys of the following bivariate generating function:

F (x, y) =
1− x(1 + y)√

1− 2x(1 + y)− x2(1− y)2

This example comes from a problem of Ron Graham and Fan Chung Graham (through personal

correspondence), motivated by their research generalizing the cover polynomials of digraphs. Be-

cause each y term is attached to an x of equal or greater power, the power series expansion of F

will have no terms where the power of y is larger than the power of x. Thus, we will look at the

asymptotics only the case where µ := λ−1 = s
r ∈ (0, 1). (We switch to µ so that the range of

possible directions is bounded.)

To begin, we find the critical points of the denominator, H(x, y) = 1− 2x(1 + y)− x2(1− y)2.

We will use a Gröbner basis to compute these points in terms of µ. In Maple, after importing the

Groebner package, the command is as follows:

gb := Basis([H, y ∗ diff(H, y)− mu ∗ x ∗ diff(H, x)], plex(x, y)); (3.26)

This command returns a basis of polynomials which vanishes collectively at exactly the same

points that the original polynomials H and yHy − µxHx vanished. However, by specifying the

pure lexicographical order with x > y, the Gröbner basis will attempt to eliminate y from the first
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Figure 3.6: The three x critical solution curves of H, in terms of µ = s
r .

polynomial in the basis. Here, the first polynomial in the basis is as follows:

1− 2µ+ µ2 + (−4− 2µ2 + 6µ)x+ 2x3 + (2µ2 − 4µ+ 3)x2 (3.27)

Because this is a degree 3 polynomial in x, we can solve for the three values of x explicitly in terms

of µ. A graph of these solutions for µ ∈ (0, 1) is shown in Figure 3.6.

Once the x solutions are found, they can be plugged into the second basis element of the

Gröbner basis to compute the corresponding y solutions in terms of µ. We must check that all of

these critical points are smooth. To do so, we find the following Gröbner basis:

Basis([H, y ∗ diff(H, y)− mu ∗ x ∗ diff(H, x), diff(H, x)], plex(x, y))

This command returns [1], which means that there is never a time when all of these terms vanish.

Thus, Hx is never zero at any of the critical points, so they are all smooth critical points. Similarly,
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we can check if x = 0 or y = 0 for any of the critical point pairs by computing the following Gröbner

bases in Maple:

gbx := Basis([H, y ∗ (diff(H, y))− mu ∗ x ∗ diff(H, x), x], plex(y, x, mu)) (3.28)

gby := Basis([H, y ∗ (diff(H, y))− mu ∗ x ∗ diff(H, x), y], plex(y, x, mu)) (3.29)

The first returns the trivial basis, [1], while the second has the first basis element, µ, which implies

that µ = 0 is the only time when y can be zero. Thus, the solutions are never zero for µ ∈ (0, 1).

Showing that the curvature, M , is nonzero becomes a little more complicated. We can use a

Gröbner basis to compute M in terms of µ by using the command,

gb := Basis([H, y ∗ Hy− mu ∗ x ∗ Hx, Hx ∗ chi1− Hy, 2 ∗ Hx ∗ chi2− chi12 ∗ Hxx+

2 ∗ chi1 ∗ Hxy− Hyy, 2 ∗ chi2 ∗ y2 ∗ x + chi12 ∗ y2 + mu ∗ x2], plex(chi1, chi2, y, x, mu))

Here, the first two equations restrict the x and y values to the critical points. The third equation

defines χ1 implicitly, while the fourth equation defines χ2 implicitly, and the fifth equation sets

M = 0. The first basis element of the resulting Gröbner basis is:

−µ− 10µ2 + 12µ3 − 4µ4 + 2µ5

It is easy to verify via Sturm sequences that none of the five solutions to this equation occur in

µ ∈ (0, 1).

It remains to check the critical points for minimality. Before showing that an individual critical

point is minimal, we compare the height function h = log |x|+µ log |y| for each of the three critical

point pairs (xi, yi). The critical point pair with the smallest height value will be our candidate for

the minimal critical point. We plot the three height curves in Figure 3.7, and see that one of the

solutions has a height below the other two. To prove that one of the solutions is indeed below the

other two, we begin by showing that all three solution pairs are real. Looking at the polynomial
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Figure 3.7: The magnitude of the three critical point solutions (x, y), in terms of µ = s
r .

the x-solutions satisfy, (3.27), we compute the discriminant of this cubic equation:

− 1

216
+

43

72
µ4 − 1/2µ3 +

5

27
µ6 − 5

12
µ5 +

1

108
µ8 − 1/18µ7 +

23

108
µ2 − 1/36µ

=
1

216

(
2µ4 − 4µ3 + 12µ2 − 10µ− 1

)
(µ− 1)

4

The roots of a cubic polynomial are real if the discriminant is negative. Of course, the (µ − 1)4

term is positive, so we must show that the remaining factor is negative. We notice that

2µ4 − 4µ3 + 12µ2 − 10µ = 2µ(µ− 1)(µ2 − µ+ 5)

On µ ∈ (0, 1), µ > 0, µ − 1 < 0, and µ2 − µ + 5 > 4 since it has a global minimum of 4.75 at

µ = 1/2. Thus, overall, 2µ4 − 4µ3 + 12µ2 − 10µ < 0 and 2µ4 − 4µ3 + 12µ2 − 10µ − 1 < 0. So,

indeed, the discriminant is negative and all three x solutions are real. The second element of the

Gröbner basis gb from (3.26) is:

4− µ3 + 5µ2 − 8µ+
(
−8 + 2µ3 + 13µ− 8µ2

)
x+ (−4 + 2µ)x2 +

(
µ3 − 3µ2 + 3µ− 1

)
y
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Setting this to zero and solving for y shows that if x is real, then so is y. Thus, each critical point

pair is real. Knowing that xi and yi are never zero from the Gröbner bases gbx and gby (equations

(3.28) and (3.29)), we can conclude that for each of the three solution curves (xi(µ), yi(µ)), each

component xi and yi is always positive or always negative for all µ ∈ (0, 1). By testing a specific

value of µ on each of the three curves, we find that one solution has x > 0, y < 0, another

has x < 0, y < 0, and the last has x > 0, y > 0. Thus, the height function h can be written

h = log(±x) + µ log(±y), where the signs depend on which solution curve we are examining.

Taking the derivative of h with respect to µ yields:

∂h

∂µ
=

1

x

dx

dµ
+
µ

y

dy

dµ
+ log(±y)

Again, the sign in front of y depends on which solution curve we are examining. After solving for

x and y explicitly, the following is easily verified:

1

x

dx

dµ
+
µ

y

dy

dµ
= 0

Thus, we can simplify the derivative of h:

∂h

∂µ
= log(±y)

So, the critical points occur where y = ±1. We can find which µ correspond to these y by using

two more Gröbner bases:

gby1 := Basis([H, y ∗ (diff(H, y))− mu ∗ x ∗ diff(H, x), y− 1], plex(y, x, mu))

gby2 := Basis([H, y ∗ (diff(H, y))− mu ∗ x ∗ diff(H, x), y + 1], plex(y, x, mu))

gby1 has first basis element 2µ−1, while gby2 has first basis element −µ+µ2. Thus, the potential

locations of critical points of h between all three solution curves are at µ = 0, 1/2, and 1. Plugging

in these values of µ into the three different solution curves shows that the solution curve where

x > 0 and y > 0 has a global maximum less than the global minimum of the other two solution

curves for µ ∈ (0, 1). (Two of the solution curves are undefined at µ = 1, s we take limits as
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µ → ∞ instead.) Thus, this is the candidate for the curve of critical points which contributes to

the asymptotics.

However, it is still difficult to verify rigorously that this whole curve consists of minimal critical

points. Without knowing this, it is unknown whether these critical points actually contribute to

the asymptotics. One approach is presented in [DeV11], where DeVries presents an algorithm for

showing that a given critical point must contribute to the asymptotics of the coefficients. The

idea behind the algorithm is as follows: at a critical point (x0, y0), we can compute the degree

of degeneracy, k, of the height function, h = log |x| + µ log |y|. If V>c is the subset of VH where

the height function h is greater than c, then for any sufficiently small neighborhood U of (x0, y0),

U ∩ V >h(x0,y0) has k connected components. For each connected component A, consider any

strictly-ascending path in VH starting at (x0, y0), staying in A, and approaching infinity. The x

or y coordinate of this path must tend towards 0 in order for the path to remain in VH . If there

is at least one component where the path tends towards x = 0 and at least one component where

the path tends towards y = 0, then the critical point must contribute to the asymptotics of the

coefficients because it creates a topological obstruction to expanding the contour in the Cauchy

integral formula. The details of these computations for this example will appear in the published

version of this thesis.

To see how well the formula works, we look at the example where µ = 1
2 . Using the x and y

solutions from the Gröbner bases above, we have that the critical point is at (x, y) =
(

1
4 , 1
)
. From

here, we can compute the following:

χ1 =
1

8

χ2 = − 3

64

Hx

(
1

4
, 1

)
= −4

M = −3

8

Thus, from the Corollary above (with β = 1
2 ), we have that as r, s → ∞ with 2 = r+O(1)

s as
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r, s→∞,

[xrys]H(x, y) ∼ r−1
(

1
4

)−r

Γ( 1
2 )
√

3π
4

=
2 · 4r
rπ
√

3

If the numerator of F was a monomial axmyn, it would simply shift the terms in the series of F by

m in the x variable and n in the y variable, and multiply all the coefficients by a. We can break up

the numerator of F linearly and compute these shifts separately. Equivalently, to account for the

fact that the numerator G(x, y) := 1−x(1 + y) is not a monomial, we multiply our approximation

above by G evaluated at the critical point. In this case, since G
(

1
4 , 1
)

= 1
2 , the final approximation

is:

[xrys]F (x, y) ∼ 4r

rπ
√

3

When r = 70, this formula gives approximately 3.65924 ·1039. Taking derivatives of F reveals that

the value of
[
x70y35

]
F (x, y) is approximately 3.59821 · 1039. The ratio of these values is 1.017,

showing that the approximation is already quite good for r = 70.

3.8 Future Research

One obvious extension of these results is to find more terms in the asymptotic expansion of the

coefficients of H. This can be accomplished by using the Cauchy integral formula over the same

contour as before. However, one must be much more precise about the error terms and the

contributions of each part of the contour to the asymptotics in order to find the lower order terms.

That makes the computations even more messy than they are currently.

Another potential extension of these results is to more variables. In the two-variable case, the

zero set of H was analyzable by a change of variables which was not originally obvious. However,

this change of variables allowed H to be approximated by a one-dimensional binomial function.

Thus, the challenge in more dimensions is to find an appropriate change of variables that is simple

but still reduces H to a one-dimensional binomial.

Not all algebraic singularities come in the form, H(x, y)−β . Thus, another direction for future
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research is the case where H is only known to satisfy a polynomial equation. Here, the critical

points can be computed implicitly, but it is harder to be explicit about finding an appropriate

contour in the Cauchy integral.

Finally, combining these results with other asymptotic techniques may yield stronger results

and more complete asymptotic expansions, too. For example, creative telescoping methods take the

generating function in question and find a partial differential equation that the function satisfies.

By finding a basis of solutions to this differential equation, one can find complete asymptotic

expansions to the coefficients of the generating function. Unfortunately, it is often difficult to

find the correct coefficients of the solution to the PDE – this is referred to as the connection

problem. However, if the leading-term asymptotics of the solution are known, the connection

problem can often be solved. Thus, combining these creative telescoping methods with the first-

order asymptotics results in this thesis, one may be able to analyze generating functions without

too many technical computations.
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Chapter 4

Quantum Walks

4.1 Introduction

Random walks have proven to be a useful tool in creating optimized algorithms for many sit-

uations. For example, random walks can contribute to algorithms for counting and sampling,

and also algorithms which test properties such as the satisfiability of Boolean formulae or graph

connectivity [BP07].

Quantum random walks provide the opportunity to expand upon and better these algorithms.

The process was first constructed in the 1990’s by [ADZ93], with the idea of using such a process

for quantum computing. In their 2001 paper, Ambainis et al pointed out that “quantum random

walks have the potential to offer new tools for quantum algorithms,” including that they “may

yield techniques for analyzing discrete quantum processes [...] more generally.”

Quantum random walks differ from their classical counterparts because they allow for destruc-

tive interference between different paths between the same two locations. In particular, quantum

walks frequently encounter this interference near the origin. As a result, particles tend to spread

much faster in quantum random walks than in classical random walks. Explicitly, at time n, the

location of a quantum random walk’s particle is typically found at distance θ(n) from the origin,
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while in a classical random walk, the partical is found at distance θ(
√
n) from the origin.

4.1.1 Preliminaries

For our discrete quantum random walks, we first choose a dimension d for the integer lattice Zd

around which the particle moves. Next, we need to add a degree of freedom to allow for quantum

interference. This extra degree of freedom, called a chirality, is somewhat like the spin of a particle.

Each chirality j corresponds to one way a particle can move throughout the walk, defined by a

vector v(j) ∈ Zd. For example, in a simple 1-dimensional case, there may be 2 chiralities: one

which corresponds to moving one step to the left, and one which corresponds to moving one step

to the right. Throughout our models of a walk, the chirality of a particle will describe the last step

the particle took. Overall, this gives the state space for the quantum random walk,

Ω := L2
(
Zd × {1, . . . , k}

)

A Hilbert Basis for Ω is the set of elementary states δr,j , as r ranges over Zd and 1 ≤ j ≤ k; we

will also denote δr,j simply by (r, j).

Next, the walk needs a unitary matrix U to describe how any chirality transforms into the

other chiralities during a step of the walk. Although in general U can take complex values, we

restrict to the case where U is real for ease of computations. For a k-chirality walk, U will be a

k× k unitary matrix. Let I ⊗U denote the unitary operator on Ω whose value on the elementary

state (r, j) is equal to
∑k
i=1 Uij(r, i). Let T denote the operator whose action on the elementary

states is given by T (r, j) = (r + v(j), j). The QRW operator S = Sd,k,U,{v(j)} is defined by

S := T · (I ⊗ U) . (4.1)

More informally, a step of a QRW may be broken down into two parts: first, change the

chiralities of the particle by acting on it by U . The njth entry of U gives a square root of the

probability that a particle starting in chirality n changes to chirality j in any given step - so, the
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nth column of the matrix describes the distribution of a particle of chirality n after it has taken its

next step. For the second part of the step, move the particles according to their new chiralities. It

is important to notice that even when we restrict to real values, U matrix will have both positive

and negative entries. This is because these values represent amplitudes, which are squared to

give probabilities. By allowing negative amplitudes, the particles may interfere with each other

throughout the walk. The fact that the matrix is unitary guarantees that the total probability of

a particle being anywhere always adds up to 1 after every step.

Therefore, to fully set up any quantum random walk, we need a collection of chiralities, a

corresponding unitary matrix, and an initial distribution. The initial distribution simply tells the

probability of our particle starting at any location, with any given amplitudes.

Notice that the QRW is translation invariant, meaning that if σ is any translation operator

(r, j) 7→ (r + u, j) then S ◦ σ = σ ◦ S. The n-step operator is Sn. Using bracket notation, we

denote the amplitude for finding the particle in chirality j and location x+r after n steps, starting

in chirality i and location x, by

a(i, j, n, r) := 〈(x, i) |Sn| (x + r, j)〉 . (4.2)

By translation invariance, this quantity is independent of x. The squared modulus |a(i, j, n, r)|2

is interpreted as the probability of finding the particle in chirality j and location x+r after n steps,

starting in chirality i and location x, if a measurement is made. Unlike the classical random walk,

the quantum random walk can be measured only at one time without disturbing the process. We

may therefore study limit laws for the quantities a(i, j, n, r) but not joint distributions of these.
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4.2 Examples

4.2.1 Hadamard QRW

As an example, we look at the classic Hadamard walk, which was defined in [ADZ93] and analyzed

in [ABN+01] and [CIR03]. The walk has two chiralities, which correspond to staying still and

moving one step to the right - and in this special case, we name them accordingly: {0, 1}. The

unitary matrix for the walk is as follows:

U =

∣∣∣∣∣∣∣∣

1√
2

1√
2

1√
2
− 1√

2

∣∣∣∣∣∣∣∣

In general, we assume that all of our particles start at the origin, because a simple translation

could make the starting location a new origin. Therefore, we can choose our starting state to be a

particle with amplitude 1 in chirality 1. Then, after one step, the distribution of the particle will

be as follows: there is a particle at location 0 with an amplitude of 1√
2

and a chirality of 0, and

there is another particle at location 1 with an amplitude of − 1√
2

and a chirality of 1.

For the second step, the unitary matrix acts upon each theoretical location of the particle. We

will get the following four particles, labelled as [location, amplitude, chirality]:

[
0, 1

2 , 0
]

[
1, 1

2 , 1
]





coming from the particle at location 0

[
1,− 1

2 , 0
]

[
2, 1

2 , 1
]





coming from the particle at location 1

Notice that the particles at 1 do not yet interfere because they have different chiralities. It

is not until the next step of the walk that the particles first interfere: this happens only with

the particles at 1, who will necessarily move to the same locations with the same chiralities. The
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distribution of the particles
[
1, 1

2 , 1
]

and
[
1,− 1

2 , 0
]

are as follows:

[
1, 1

2
√

2
, 0
]

[
2,− 1

2
√

2
, 1
]





coming from the particle with chirality 1

[
1,− 1

2
√

2
, 0
]

[
2,− 1

2
√

2
, 1
]





coming from the particle with chirality 0

So here, the two paths which led to a particle at position 1 will cancel with each other completely,

leaving no particle at this location with chirality 0. On the other hand, the particles at location 2

will constructively interfere, giving a particle with amplitude − 1√
2

and chirality 1 at this location.

As previous works have shown, up to a rapidly oscillating factor due to a phase difference in

two summands in the amplitude, the rescaled amplitudes n1/2a(i, j, n, nθ) converge to a profile

f(θ) supported on the interval J :=

[
1

2
−
√

2

4
,

1

2
+

√
2

4

]
. The function f is continuous on the

interior of J and blows up like |θ−θ0|−1/2 when θ0 is an endpoint of J . These results are extended

in [BP07] to arbitrary unitary matrices. The limiting profiles are all qualitatively similar; a plot

for the Hadamard QRW is shown in figure 4.1, with the upper envelope showing what happens

when the phases of the summands line up.

4.2.2 Walks with Three or More Chiralities

When the number of chiralities is allowed to exceed two, new phenomena emerge. The possibility

of a bound state arises. This means that for some fixed location x, the amplitude a(i, j, n, x) does

not go to zero as n → ∞. This was first shown to occur in [BCA03, IKS05]. From a generating

function viewpoint, bound states occur when the denominator Q of the generating function factors.

The occurrence of bound states appears to be a non-generic phenomenon.

To investigate these phenomena further, my coworker Rajarshi Das and I wrote codes that

would model 1-dimensional quantum random walks with 3 or 4 chiralities, and generalized matrices

U and step sizes {v(j)}. Many of the walks we modelled are catalogued here:
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Figure 1: probability profile for the one-dimensional Hadamard QRW

2.2 Walks with Three or More Chiralities

When the number of chiralities is allowed to exceed two, new phenomena emerge.

The possibility of a bound state arises. This means that for some fixed location x,

the amplitude a(i, j, n, x) does not go to zero as n → ∞. This was first shown to

occur in [BCA03, IKS05]. From a generating function viewpoint, bound states occur

when the denominator Q of the generating function factors. The occurrence of bound

states appears to be a non-generic phenomenon.

To investigate these phenomena further, my coworker Rajarshi Das and I wrote

Figure 4.1: probability profile for the one-dimensional Hadamard QRW

http://www.math.upenn.edu/~pemantle/Summer2007/First_Page.html .

The probability profile shown in figure 4.2 is typical of what we found and is the basis for an

example running throughout this section. In this example,

U =
1

27




17 6 20 −2

−20 12 13 −12

−2 −15 4 −22

−6 −18 12 15




(4.3)

and v(j) = −1, 0, 1, 2 for j = 1, 2, 3, 4 respectively. The profile shown in the figure is a plot of

|a(1, 1, 1000, x)|2 against x for integers x in the interval [−1000, 2000].

The values were computed exactly by recursion and then plotted. The most obvious new feature

is the existence of a number of peaks in the interior of the feasible region. The phase factor is

somewhat more chaotic as well, which turns out to be due to a greater number of summands in the

amplitude function. Our aim is to use the theory described in Section 2 to establish the locations
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Figure 2: probability profile for a four-chirality QRW in one dimension

The values were computed exactly by recursion and then plotted. The most

obvious new feature is the existence of a number of peaks in the interior of the

feasible region. The phase factor is somewhat more chaotic as well, which turns out

to be due to a greater number of summands in the amplitude function. Our aim is to

use the theory described in Section 2 to establish the locations of these peaks, that is

to say, the values of θ for which n1/2a(i, j, n, x) become unbounded for x sufficiently

near nθ.

Figure 4.2: probability profile for a four-chirality QRW in one dimension

of these peaks, that is to say, the values of θ for which n1/2a(i, j, n, x) become unbounded for x

sufficiently near nθ.

4.2.3 2-dimensional example

We can extend the quantum random walks to two dimensions, adding a component to each chirality

to describe the step sizes in the new dimension. For example, we can take a walk with chiralities

{(1, 0), (−1, 0), (0, 1), (0,−1)}, the unitary matrix

U :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

51
305 − 188

305 − 18
305 − 234

305

116
305 − 3

305
282
305

6
305

− 258
305

54
305

109
305 − 108

305

− 102
305 − 234

305
36
305

163
305

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and a starting distribution of the particle with amplitude 1√
2

in each of the first two chiralities. We

plot the graph for 200 steps and get the distribution in Figure ??, where the darker lines represent

higher probabilities of being at that location:
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2.3 2-dimensional example

We can extend the quantum random walks to two dimensions, adding a component

to each chirality to describe the step sizes in the new dimension. For example, we

can take a walk with chiralities {(1, 0), (−1, 0), (0, 1), (0, −1)}, the unitary matrix

U :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

51
305

−188
305

− 18
305

−234
305

116
305

− 3
305

282
305

6
305

−258
305

54
305

109
305

−108
305

−102
305

−234
305

36
305

163
305

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and a starting distribution of the particle with amplitude 1√
2

in each of the first two

chiralities. We plot the graph for 200 steps and get the distribution in Figure 2.3,

where the darker lines represent higher probabilities of being at that location:

Figure 3: The probability distribution of a 2-dimensional QRW after 200 steps.
Figure 4.3: The probability distribution of a 2-dimensional QRW after 200 steps.

4.3 Asymptotics

In the following sections, the notation and results mimic those of [BGPP09].

4.3.1 Generating Functions

Quantum random walks show pronounced asymptotes. In particular, for each walk, there are

set ratios r/s of location to time where the amplitude of the particle explodes, relative to the

amplitudes of nearby locations. Precisely, the peaks are values θ such that
√
na(i, j, n, x) becomes

unbounded for x sufficiently close to nθ.

We wish to determine exactly where these values of θ are, without approximating them through

merely iterating a QRW. The key to analyzing a QRW’s graphs is through generating functions. In

his book [Wil06], Herbert Wilf describes a generating function as “a clothesline on which we hang

up a sequence of numbers for display.” Generating functions encode a sequence of numbers {an}∞n=0

by encapsulating the information an expression whose power series has the same coefficients {an}.

In what follows, we let x denote the vector (x1, . . . , xd). Given a lattice QRW, for 1 ≤ i, j ≤ k
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we may define a power series in d+ 1 variables via

Fij(x, y) :=
∑

n≥0

∑

r∈Zd
a(i, j, n, r)xryn . (4.4)

Here and throughout, xr denotes the monomial power xr11 · · ·xrdd . We let F denote the generating

matrix (Fij)1≤i,j≤k, which is a k × k matrix with entries in the formal power series ring in d + 1

variables. The following result from [BP07] is obtained via a straightforward use of the transfer

matrix method.

Lemma 4.3.1 ([BP07, Proposition 3.1]). Let M(x) denote the k × k diagonal matrix whose

diagonal entries are xv(1)

, . . . ,xv(k)

. Then

F(x, y) = (I − yM(x)U)
−1

. (4.5)

Consequently, there are polynomials Pij(x, y) such that

Fij =
Pij
Q

(4.6)

where Q(x, y) := det(I − yM(x)U).

Within these generating functions, x is a placeholder whose power represents the location of a

particle, and y is a placeholder whose power represents the number of steps taken by the particle.

Let z denote the vector (x, y) and let

V := {z ∈ Cd+1 : Q(z) = 0}

denote the algebraic variety which is the common pole of the generating functions Fij . Let V1 :=

V ∩ T d+1 denote the intersection of the singular variety V with the unit torus T d+1 := {|x1| =

· · · = |xd| = |y| = 1}. An important map on V is the logarithmic Gauss map µ : V → CPd defined

by

µ(z) :=

(
z1
∂Q

∂z1
: . . . : zd+1

∂Q

∂zd+1

)
. (4.7)
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The map µ is defined only at points of V where the gradient ∇Q does not vanish. Here, we will

be concerned only with instances of QRW satisfying

∇Q vanishes nowhere on V1 . (4.8)

This condition holds generically.

4.3.2 Previous Results

It is shown in [BBBP10, Proposition 2.1] that the image µ[V1] is contained in the real subspace

RPd ⊆ CPd. Also, under the hypothesis (4.8), ∂Q/∂y cannot vanish on V1, hence we may interpret

the range of µ as Rd ⊆ RPd via the identification (x1 : · · · : xd : y) ↔ ((x1/y), . . . , (xd/y)). In

what follows, we draw heavily on two results from [BBBP10].

Theorem 4.3.2 (shape theorem [BBBP10, Theorem 4.2]). Assume (4.8) and let G ⊆ Rd be the

closure of the image of µ on V1. If K is any compact subset of Gc, then

a(i, j, n, r) = O(e−cn)

for some c = c(K) > 0, uniformly as r/n varies over K.

In other words, under ballistic rescaling, the region of non-exponential decay or feasible region

is contained in G. The converse, and much more, is provided by the second result, also from the

same theorem. For z ∈ V1, let κ(z) denote the curvature of the real hypersurface −i logV1 ⊆ Rd+1

at the point log z, where log is applied to vectors coordinatewise and manifolds pointwise.

Theorem 4.3.3 (asymptotics in the feasible region). Suppose Q satisfies (4.8). For r ∈ G, let

Z(r) denote the set µ−1(r) of pre-images in V1 of the projective point r under µ. If κ(z) 6= 0 for

all z ∈ Z(r), then

a(i, j, n, r) = n−d/2


 ∑

z∈Z(r)

Pij(z)

|∇logQ(z)| |κ(z)|−1/2eiω(r,n)


+O

(
n−(d+1)/2

)
(4.9)

where the argument ω(r, n) is given by −r ·Arg(z)+ iπτ(z)/4 and τ(z) is the index of the quadratic

form defining the curvature at the point (1/i) log z ∈ (1/i) logV1.
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4.4 Results and Conjectures

The results of Section 4.2.2 may be summarized informally in the case of one-dimensional QRW

as follows. Provided the quantities ∇Q and κ do not vanish for the points z associated with

a direction r, then the amplitude profile will be a the sum of terms whose phase factors may

be somewhat chaotic, but whose magnitudes are proportional to κ−1/2/|∇logQ|. In practice the

magnitude of the amplitude will vary between zero and the sum of the magnitudes of the pieces,

depending on the behavior of the phase terms. In the two-chirality case, with only two summands,

it is easy to identify the picture with the theoretical result. However, in the multi-chirality case,

the empirical results in figure 4.2 are not easily rectified with the theoretical result, firstly because

the theoretical result is not trivial to compute, and secondly because the computation appears at

first to be at odds with the data. In the remainder of Section 4.2.2, we show how the theoretical

computations may be executed in a computer algebra system, and then recify these with the data

in figure 4.2. The first step is to verify some of the hypotheses of Theorems 4.3.2–4.3.3. The second

step, reconciling the theory and the data, will be done in Section 4.4.1.

Proposition 4.4.1. Let Q(x, y) be the denominator of the generating function for any QRW in

any dimension that satisfies the smoothness hypothesis (4.8). Let π be the projection from V1 to

the d-torus T d that forgets the last coordinate. Then the following properties hold.

1. ∂Q/∂y does not vanish on V1;

2. V1 is a compact d-manifold;

3. π : V1 → T d is smooth and nonsingular;

4. In fact, V1 is homeomorphic to a union of some number s of d-tori, each mapping smoothly

to T d under π and covering T d some number nj times for 1 ≤ j ≤ s.

5. κ : V1 → R vanishes exactly when the determinant of the Jacobian of the map µ vanishes.

6. κ vanishes on the boundary ∂µ[V1] of the range of µ.

Proof. The first two conclusions are shown as [BBBP10, Proposition 2.2]. The map π is smooth
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on T d+1, hence on V1, and nonsingularity follows from the nonvanishing of the partial derivative

with respect to y. The fourth conclusion follows from the classification of compact d-manifolds

covering the d-torus. For the fifth conclusion, recall that the Gauss-Kronecker curvature of a real

hypersurface is defined as the determinant of the Jacobian of the map taking p to the unit normal

at p. We have identified projective space with the slice zd+1 = 1 rather than with the slice |z| = 1,

but these are locally diffeomorphic, so the Jacobian of µ still vanishes exactly when κ vanishes.

Finally, if an interior point of a manifold maps to a boundary point of the image of the manifold

under a smooth map, then the Jacobian vanishes there, hence the last conclusion follows from the

fifth.

An empirical fact is that in all of the several dozen quantum random walks we have investigated,

the number of components of V1 and the degrees of the map π on each component depend on the

dimension d and the vector of chiralities, but not on the unitary matrix U .

Conjecture 4.4.1. If d, k,v(1), . . . ,v(k) are fixed and U varies over unitary matrices, then the

number of components of V and the degrees of the map π on each component are constant, except

for a set of matrices of positive co-dimension.

Remark. The unitary group is connected, so if the conjecture fails then a transition occurs at

which V1 is not smooth. We know that this happens, resulting in a bound state [IKS05], however

in the three-chirality case, the degeneracy does not seem to mark a transition in the topology of V1.

Specializing to one dimension, the manifold V1 is a union of topological circles. The map

µ : V1 → R is evidently smooth, so it maps V1 to a union of intervals. In all catalogued cases, in

fact the range of µ is an interval, so we have the following open question:

Question 4.4.2. Is it possible for the image of µ to be disconnected?

Because µ smoothly maps a union of circles to the real line, the Jacobian of the map µ must

vanish at least twice on each circle. Let W denote the set of z ∈ V1 for which κ(z) = 0. The
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cardinality of W is not an invariant (compare, for example, the example in Section 4.4.1 with

the first 4-chirality example on the web archive). This has the following interesting consequence.

Again, because the unitary group Uk is connected, by interpolation there must be some U for which

there is a double degeneracy in the Jacobian of µ. This means that the Taylor series for log y on V1

as a function of log x is missing not only its quadratic term but its cubic term as well. In a scaling

window of size n1/2 near the peaks, it is shown in [BP07] that the amplitudes are asymptotic to an

Airy function. However, with a double degeneracy, the same method shows a quartic-Airy limit

instead of the usual cubic-Airy limit. This may be the first combinatorial example of such a limit

and will be discussed in forthcoming work.

LetW = {w(0), . . . ,w(t)} be a set of vectors in Rn. Say thatW is rationally degenerate if the set

of t-tuples (r ·(w−w(0))w∈W is not dense in (R mod 2π)t as r varies over Zn. Generic t-tuples are

rationally nondegenerate because degeneracy requires a number of linear relations to hold over the

2πQ. If W is rationally nondegenerate, then the distribution on t-tuples (r ·(w−w(0))w∈W when r

is distributed uniformly over any cube of side M in Zd converges weakly to the uniform distribution

on (Z mod 2π)t. Let χ(α1, . . . , αt) denote the distribution of the square modulus of the sum of t

complex numbers chosen independently at random with moduli α1, . . . , αt and arguments uniform

on [−π, π]. The following result now follows from the above discussion, Theorems 4.3.2 and 4.3.3,

and Proposition 4.4.1.

Proposition 4.4.3. For any one-dimensional QRW, let Q,Z(r) and κ be as above. Let J be

the image of V1 under µ. Let r be any point of J such that κ(z) 6= 0 for all z ∈ Z(r) and

W := (1/i) logZ(r) is rationally nondegenerate. Then for any ε > 0 there exists an M such that

if r(n) is a sequence of integer vectors with r(n)/n→ r, the empirical distribution of nd times the

squared moduli of the amplitudes

{a(i, j, n, r(n) + ξ) : ξ ∈ {0, . . . ,M − 1}d+1}

is within ε of the distribution χ(α1, . . . , αt) where t = |Z(r)|, {z(j)} enumerates Z(r), and αj =
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|Pij(z(j))κ(z(j))−1/2|. If r /∈ J , then the empirical distribution converges to a point mass at zero.

Remark. Rational nondegeneracy becomes more difficult to check when the size of Z(r) increases,

which happens when the number of chiralities increases. If one weakens the conclusion to con-

vergence to some nondegenerate distribution with support in I := [0,
∑ |Pij(z)2κ(z)−1|], then one

needs only that not all components of all differences log z − log z′ are rational, for z, z′ ∈ Z(r).

For the purpose of qualitatively explaining the plots, this is good enough, though the upper envelope

may be strictly less than the upper endpoint of I (and the lower envelope may be strictly greater

than zero) if there is rational degeneracy.

Comparing to figure 4.2, we see that J appears to be a proper subinterval of [−1, 2], that

there appears to be up to seven peaks which are local maxima of the probability profile. These

include the endpoints of J (cf. the last conclusion of Proposition 4.4.1) as well as several interior

points, which we now understand to be places where the map µ folds back on itself. We now turn

our attention to corroborating our understanding of the picture by computing the number and

locations of the peaks.

4.4.1 Computations

Much of our computation is carried out symbolically in Maple. Symbolic computation is signif-

icantly faster when the entries of U are rational, than when they are, say, quadratic algebraic

numbers. Also, Maple sometimes incorrectly simplifies or fails to simplify expressions involving

radicals. It is easy to generate quadratically algebraic orthogonal or unitary matrices via the

Gram-Schmidt procedure. For rational matrices, however, we turn to a result we found in [LO91].

Proposition 4.4.4. The map S 7→ (I + S)(I − S)−1 takes the skew symmetric matrices over a

field to the orthogonal matrices over the same field. To generate unitary matrices instead, use

skew-hermitian matrices S.

The map in the proposition is rational, so choosing S to be rational, we obtain orthogonal
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matrices with rational entries. In our running example,

S =




0 −3 −1 3

3 0 1 −2

1 −1 0 2

−3 2 −2 0




,

leading to the matrix U of equation (4.3).

The example shows amplitudes for the transition from chirality 1 to chirality 1, so we need the

polynomials P11 and Q:

P11(x, y) =
(
27x− 15 yx3 − 4 yx+ 12 y2x3 − 12 y + 4 y2x2 + 9 y2 − 17 y3x2

)
x

Q(x, y) = −17 y3x2 + 9 y2 + 27x− 12 y + 12 y2x3 + 8 y2x2 − 15 yx3 − 4 y3x3

−15 y3x+ 12 y2x− 4 yx− 17 yx2 + 9 y2x4 − 12 y3x4 + 27 y4x3 .

The curvature is proportional to the quantity

(−xQx − y Qy)xQx y Qy − x2 y2 (Q2
y Qxx +Q2

xQxy − 2QxQy Qxy) ,

where subscripts denote partial derivatives. Evaluating this leads to xy times a polynomial K(x, y)

that is about half a page in Maple 11. The command

Basis([Q,K] , plex (y, x));

leads to a Gröbner basis, the first element of which is an elimination polynomial p(x), vanishing

at precisely those x-values for which there is a pair (x, y) ∈ V for which κ(x, y) = 0. We may also

verify that Q is smooth by computing that the ideal generated by [Q,Qx, Qy] has the trivial basis,

[1].

To pass to the subset of roots of p(x) that are on the unit circle, one trick is as follows. If

z = x+1/x then x is on the unit circle if and only if z is in the real interval [−2, 2]. The polynomial

defining z is the elimination polyomial q(z) for the basis [p, 1−zx+x2]. Applying Maple’s built-in
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Figure 4: probability profile with peaks drawn as vertical lines

Drawing vertical lines corresponding to these six peak locations leads to figure 4.

Surprisingly, the largest peak appearing in the data plot appears to be missing

from the set of analytically computed peak directions. Simultaneously, some of the

analytically computed peaks appear quite small and it seems implausible that the

probability profile blows up there. Indeed, this had us puzzled for quite a while.

In order to doublecheck our work, we plotted y against x, resulting in the plot in

figure 5(a), which should be interpreted as having periodic boundary conditions be-

cause x and y range over a circle. This shows V1 to be the union of two circles, each

embedded in T 2 so that the projection π onto x has degree 2. (Note: the projection

onto y has degree 1, and the homology class of the embedded circle is (2, −1) in the

Figure 4.4: probability profile with peaks drawn as vertical lines

Sturm sequence evaluator to q shows symbolically that there are six roots of z in [−2, 2]. This

leads to six conjugate pairs of x values. The second Gröbner basis element is a polynomial linear

in y, so each x value has precisely one corresponding y value. The y value for x is the conjugate

of the y value for x, and the function µ takes the same value at both points of a conjugate pair.

Evaluating the µ function at all six places leads to floating point expressions approximately equal

to

1.362766, 1.126013, 0.929248, 0.229537,−0.143835,−0.346306 .

Drawing vertical lines corresponding to these six peak locations leads to figure 4.4.

Surprisingly, the largest peak appearing in the data plot appears to be missing from the set of

analytically computed peak directions. Simultaneously, some of the analytically computed peaks

appear quite small and it seems implausible that the probability profile blows up there. Indeed,

this had us puzzled for quite a while. In order to doublecheck our work, we plotted y against

x, resulting in the plot in figure 4.5a, which should be interpreted as having periodic boundary

conditions because x and y range over a circle. This shows V1 to be the union of two circles, each
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basis generated by the x and y axes.) We also plotted µ against x. To facilitate com-

putation, we used Gröbner bases to eliminate y from Q and xQx −µyQy, enabling us

to plot solutions to a single polynomial. The resulting plot is shown in figure 5(b).

(a) y versus x (b) µ versus x

Figure 5: Two interleaved circles and their images under the Gauss map

The last figure shows nicely how peaks occur at values where the map µ backtracks.

The explanation of the appearance of the extra peak at µ ≈ 0.7 becomes clear if we

compare plots at n = 1, 000 and n = 10, 000. At first glance, it looks as if the extra

peak is still quite prominent, but in fact it has lowered with respect to the others.

To be precise, the false peak has gone down by a factor of 10, from 0.004 to 0.0004,

because its probabilities scaled as n−1. The width of the peak also remained the same,

indicating convergence to a finite probability profile. The real peaks, however, have

gone down by factors of 102/3, as is shown to occur in the Airy scaling windows near

directions r where κ(z) = 0 for some z ∈ Z(r). When the plot is vertically scaled

so that the highest peak occurs at the same height in each picture, the width above

half the maximum has shrunk somewhat, as must occur in an Airy scaling window,

(a) y versus x
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compare plots at n = 1, 000 and n = 10, 000. At first glance, it looks as if the extra

peak is still quite prominent, but in fact it has lowered with respect to the others.

To be precise, the false peak has gone down by a factor of 10, from 0.004 to 0.0004,

because its probabilities scaled as n−1. The width of the peak also remained the same,

indicating convergence to a finite probability profile. The real peaks, however, have

gone down by factors of 102/3, as is shown to occur in the Airy scaling windows near

directions r where κ(z) = 0 for some z ∈ Z(r). When the plot is vertically scaled

so that the highest peak occurs at the same height in each picture, the width above

half the maximum has shrunk somewhat, as must occur in an Airy scaling window,

(b) dir versus x

Figure 4.5: Two interleaved circles and their images under the Gauss map.

embedded in T 2 so that the projection π onto x has degree 2. (Note: the projection onto y has

degree 1, and the homology class of the embedded circle is (2,−1) in the basis generated by the

x and y axes.) We also plotted µ against x. To facilitate computation, we used Gröbner bases to

eliminate y from Q and xQx − µyQy, enabling us to plot solutions to a single polynomial. The

resulting plot is shown in figure 4.5b.

The last figure shows nicely how peaks occur at values where the map µ backtracks. The

explanation of the appearance of the extra peak at µ ≈ 0.7 becomes clear if we compare plots at

n = 1, 000 and n = 10, 000.

At first glance, it looks as if the extra peak is still quite prominent, but in fact it has lowered

with respect to the others. To be precise, the false peak has gone down by a factor of 10, from

0.004 to 0.0004, because its probabilities scaled as n−1. The width of the peak also remained the

same, indicating convergence to a finite probability profile. The real peaks, however, have gone

down by factors of 102/3, as is shown to occur in the Airy scaling windows near directions r where

κ(z) = 0 for some z ∈ Z(r). When the plot is vertically scaled so that the highest peak occurs at

the same height in each picture, the width above half the maximum has shrunk somewhat, as must

occur in an Airy scaling window, which has width
√
n. The location of the false peak is marked by
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(a) n = 1000 (b) n = 10000

Figure 6: As n → ∞, one peak scales down more rapidly

which has width
√

n. The location of the false peak is marked by a nearly flat spot

in figure 5(b), at height around 0.7. The curve stays nearly horizontal for some time,

causing the false peak to remain spread over a macroscopic rescaled region.

5 Two-dimensional QRW

In this section we consider two examples of QRW with d = 2, k = 4 and steps

v(1) = (0, 0),v(2) = (1, 0),v(3) = (0, 1) and v(4) = (1, 1). To complete the specification

(a) n = 1000

24

(a) n = 1000 (b) n = 10000

Figure 6: As n → ∞, one peak scales down more rapidly

which has width
√

n. The location of the false peak is marked by a nearly flat spot

in figure 5(b), at height around 0.7. The curve stays nearly horizontal for some time,

causing the false peak to remain spread over a macroscopic rescaled region.

5 Two-dimensional QRW

In this section we consider two examples of QRW with d = 2, k = 4 and steps

v(1) = (0, 0),v(2) = (1, 0),v(3) = (0, 1) and v(4) = (1, 1). To complete the specification

(b) n = 10000

Figure 4.6: As n→∞, one peak scales down more rapidly.

a nearly flat spot in figure 4.5b, at height around 0.7. The curve stays nearly horizontal for some

time, causing the false peak to remain spread over a macroscopic rescaled region.

4.5 Two-dimensional QRW

In this section we consider two examples of QRW with d = 2, k = 4 and steps v(1) = (0, 0),v(2) =

(1, 0),v(3) = (0, 1) and v(4) = (1, 1). To complete the specification of the two examples, we give
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the two unitary matrices:

U1 :=
1

2




1 1 1 1

−1 1 −1 1

1 −1 −1 1

−1 −1 1 1




(4.10)

U2 :=
1

2




1 1 1 1

−1 1 −1 1

−1 1 1 −1

−1 −1 1 1




. (4.11)

Note that these are both Hadamard matrices; neither is the Hadamard matrix with the bound

state considered in [Moo04], nor is either in the two-parameter family referred to as Grover walks

in [WKKK08]. The second differs from the first in that the signs in the third row are reversed. Both

are members of one-parameter families analyzed in [BBBP10], in Sections 4.1 and 4.3 respectively.

The (arbitrary) names given to these matrices in [Bra07, BBBP10] are respectively S(1/2) and

B(1/2). Intensity plots at time 200 for these two quantum walks, given in figure 4.7, reproduce

those taken from [BBBP10] but with different parameter values (1/2 each time, instead of 1/8 and

2/3 respectively).

For the case of U1 it is shown in [BBBP10, Lemma 4.3] that V1 is smooth. Asymptotics follow,

as in Theorem 4.3.3 of the present paper, and an intensity plot of the asymptotics is generated that

matches the empirical time 200 plot quite well. In the case of U2, V1 is not smooth but [BBBP10,

Theorem 3.5] shows that the singular points do not contribute to the asymptotics. Again, a limiting

intensity plot follows from Theorem 4.3.3 of the present paper and matches the time 200 profile

quite well.

It follows from Proposition 4.4.3 that the union of darkened curves where the intensity blows up

is the algebraic curve where κ vanishes, and that this includes the boundary of the feasible region.
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Figure 7: Time 200 probability profiles for two quantum walks: the darkness at (r, s)

corresponds to the squared amplitude |a(1, 1, 200, r, s)|2.

case of U2, V1 is not smooth but [BBBP08, Theorem 3.5] shows that the singular

points do not contribute to the asymptotics. Again, a limiting intensity plot follows

from Theorem 3.3 of the present paper and matches the time 200 profile quite well.

It follows from Proposition 4.4 that the union of darkened curves where the in-

tensity blows up is the algebraic curve where κ vanishes, and that this includes the

boundary of the feasible region. The main result of this section is the identification

of the algebraic curve. While this result is only computational, it is one of the first

examples of computation of such a curve, the only similar prior example being the

computation of the “Octic circle” boundary of the feasible region for so-called diabolo

tilings, identified without proof by Cohn and Pemantle and first proved by [KO07]

(see also [BP10]). The perhaps somewhat comical statement of the result is as follows.

Theorem 5.1. For the quantum walk with unitary coin flip U2, the curvature of the

variety V1 vanishes at some z ∈ Z(r, s) if and only if (r, s) is a zero of the polynomial

(a) U1

26

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

(a) U1

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

(b) U2

Figure 7: Time 200 probability profiles for two quantum walks: the darkness at (r, s)

corresponds to the squared amplitude |a(1, 1, 200, r, s)|2.

case of U2, V1 is not smooth but [BBBP08, Theorem 3.5] shows that the singular

points do not contribute to the asymptotics. Again, a limiting intensity plot follows
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(see also [BP10]). The perhaps somewhat comical statement of the result is as follows.

Theorem 5.1. For the quantum walk with unitary coin flip U2, the curvature of the

variety V1 vanishes at some z ∈ Z(r, s) if and only if (r, s) is a zero of the polynomial
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Figure 4.7: Time 200 probability profiles for two quantum walks: the darkness at (r, s) corresponds

to the squared amplitude.

The main result of this section is the identification of the algebraic curve. While this result is only

computational, it is one of the first examples of computation of such a curve, the only similar prior

example being the computation of the “Octic circle” boundary of the feasible region for so-called

diabolo tilings, identified without proof by Cohn and Pemantle and first proved by [KO07] (see

also [BP10]). The perhaps somewhat comical statement of the result is as follows.

Theorem 4.5.1. For the quantum walk with unitary coin flip U2, the curvature of the variety

V1 vanishes at some z ∈ Z(r, s) if and only if (r, s) is a zero of the polynomial P2 and satisfies

|r|+ |s| < 3/4, where

P2(r, s) := 1+14r2−3126r4 +97752r6−1445289r8 +12200622r10−64150356r12 +220161216r14−

504431361r16 + 774608490r18 − 785130582r20 + 502978728r22

−184298359r24 + 29412250r26 + 14s2 − 1284r2s2 − 113016r4s2 + 5220612r6s2−

96417162r8s2 + 924427224r10s2 − 4865103360r12s2 + 14947388808r14s2−

27714317286r16s2 + 30923414124r18s2 − 19802256648r20s2 + 6399721524r22s2−
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721963550r24s2−3126s4−113016r2s4+7942218r4s4−68684580r6s4−666538860r8s4+15034322304r10s4−

86727881244r12s4+226469888328r14s4−296573996958r16s4+183616180440r18s4−32546593518r20s4−

8997506820r22s4 + 97752s6 + 5220612r2s6− 68684580r4s6 + 3243820496r6s6− 25244548160r8s6 +

59768577720r10s6−

147067477144r12s6+458758743568r14s6−749675452344r16s6+435217945700r18s6−16479111716r20s6−

1445289s8−96417162r2s8−666538860r4s8−25244548160r6s8+194515866042r8s8−421026680628r10s8+

611623295476r12s8−

331561483632r14s8 + 7820601831r16s8 + 72391117294r18s8 + 12200622s10+

924427224r2s10 + 15034322304r4s10 + 59768577720r6s10 − 421026680628r8s10+

421043188488r10s10 − 1131276050256r12s10 − 196657371288r14s10+

151002519894r16s10 − 64150356s12 − 4865103360r2s12 − 86727881244r4s12−

147067477144r6s12+611623295476r8s12−1131276050256r10s12+586397171964r12s12−231584205720r14s12+

220161216s14 + 14947388808r2s14 + 226469888328r4s14+

458758743568r6s14−331561483632r8s14−196657371288r10s14−231584205720r12s14−504431361s16−

27714317286r2s16 − 296573996958r4s16 − 749675452344r6s16+

7820601831r8s16 + 151002519894r10s16 + 774608490s18 + 30923414124r2s18+

183616180440r4s18 + 435217945700r6s18 + 72391117294r8s18 − 785130582s20−

19802256648r2s20 − 32546593518r4s20 − 16479111716r6s20 + 502978728s22+

6399721524r2s22 − 8997506820r4s22 − 184298359s24 − 721963550r2s24 + 29412250s26.

We check visually that the zero set of P2 does indeed coincide with the curves of peak intensity

for the U2 QRW.

Before embarking on the proof, let us be clear about what is requred. If r is in the boundary

of the feasible region, then κ must vanish at the pre-images of r in the unit torus. The boundary,

∂G, of the feasible region is therefore a component of a real algebraic variety, W . The variety W

is the image under the logarithmic Gauss map µ of the points of the unit torus where Q and κ

both vanish. Computing this variety is easy in principle: two algebraic equations in (x, y, z, r, s)

68



26

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

(a) U1

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

(b) U2

Figure 7: Time 200 probability profiles for two quantum walks: the darkness at (r, s)

corresponds to the squared amplitude |a(1, 1, 200, r, s)|2.

case of U2, V1 is not smooth but [BBBP08, Theorem 3.5] shows that the singular

points do not contribute to the asymptotics. Again, a limiting intensity plot follows

from Theorem 3.3 of the present paper and matches the time 200 profile quite well.

It follows from Proposition 4.4 that the union of darkened curves where the in-

tensity blows up is the algebraic curve where κ vanishes, and that this includes the

boundary of the feasible region. The main result of this section is the identification

of the algebraic curve. While this result is only computational, it is one of the first

examples of computation of such a curve, the only similar prior example being the

computation of the “Octic circle” boundary of the feasible region for so-called diabolo

tilings, identified without proof by Cohn and Pemantle and first proved by [KO07]

(see also [BP10]). The perhaps somewhat comical statement of the result is as follows.

Theorem 5.1. For the quantum walk with unitary coin flip U2, the curvature of the

variety V1 vanishes at some z ∈ Z(r, s) if and only if (r, s) is a zero of the polynomial
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Figure 8: The probability profile for the U2 QRW alongside the graph of the zero set

of P2

Before embarking on the proof, let us be clear about what is requred. If r is in

the boundary of the feasible region, then κ must vanish at the pre-images of r in the

unit torus. The boundary, ∂G, of the feasible region is therefore a component of a

real algebraic variety, W . The variety W is the image under the logarithmic Gauss

map µ of the points of the unit torus where Q and κ both vanish. Computing this

variety is easy in principle: two algebraic equations in (x, y, z, r, s) give the conditions

for µ(x, y, z) = (r, s) and two more give conditions for Q(x, y, z) = κ(x, y, z) = 0;

(b) zero set of P2 in (r/n, s/n)

Figure 4.8: The probability profile for the U2 QRW alongside the graph of the zero set of P2.

give the conditions for µ(x, y, z) = (r, s) and two more give conditions for Q(x, y, z) = κ(x, y, z) =

0; algebraically eliminating {x, y, z} then gives the defining polynomial P2 for W . In fact, due

to the number of variables and the degree of the polynomials, a straightforward Gröbner basis

computation does not work and we need to use iterated resultants in order to get the computation

to halt. The last step is to discard extraneous real zeros of P2, namely those in the interior of G

or Gc, so as to arrive at a precise description of ∂G.

Proof. To eliminate subscripts, we use the variables (x, y, z) instead of (x1, x2, y). The condition

for z ∈ Z(r, s) is given by the vanishing of two polynomials H1 and H2 in (x, y, z, r, s), where

H1(x, y, z, r, s) := xQx − rzQz ;

H2(x, y, z, r, s) := yQy − szQz .

The curvature of V1 at z also vanishes when a single polynomial vanishes, which we will call

L(x, y, z). We derive an explicit formulae for L: For (x, y, z) ∈ V1, write x = eiX , y = eiY and

z = eiZ . By Proposition 4.4.1 we know that Qz 6= 0 on V1, hence the parametrization of V1 by X
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and Y near a point (x, y, z) is smooth and the partial derivatives ZX , ZY , ZXX , ZXY , ZY Y are well

defined. Implicitly differentiating Q(eiX , eiY , eiZ(X,Y )) = 0 with respect to X and Y we obtain

ZX = −xQx
zQz

and ZY = −yQy
zQz

,

and differentiating again yields

ZXX =
−ixz

(zQz)3

[
QxQz(zQz − 2xzQxz + xQx) + xz(Q2

xQzz +Q2
zQxx)

]
;

ZY Y =
−iyz

(zQz)3

[
QyQz(zQz − 2yzQyz + zQy) + yz(Q2

yQzz +Q2
zQyy)

]
;

ZXY =
−ixyz
(zQz)3

[zQz(QzQxy −QxQyz −QyQxz) +QxQyQz + zQxQyQzz] .

In any dimension, the Gaussian curvature vanishes exactly when the determinant of the Hessian

vanishes of any parametrization of the surface as a graph over d − 1 variables. In particular, the

curvature vanishes when

det




ZXX ZXY

ZXY ZY Y




vanishes, and plugging in the computed values yields the polynomial

L(x, y, z) := −xyzQ2
zQ

2
xy + zQxQ

2
zQy − 2yzQxQzQyQyz + yQxQzQ

2
y + yzQxQ

2
yQzz

+ yzQxQ
2
zQyy − 2xzQxQzQxzQy + 2xyzQxQxzQyQyz − 2xyzQxQzQxzQyy

+ xQ2
xQzQy + xyQ2

xQzQyy + xzQ2
xQzzQy + xyzQ2

xQzzQyy + xzQxxQ
2
zQy

− 2xyzQxxQzQyQyz + xyQxxQzQ
2
y + xyzQxxQ

2
yQzz + xyzQxxQ

2
zQyy − xyzQ2

yQ
2
xz

− xyzQ2
xQ

2
yz + 2xyzQzQxyQxQyz + 2xyzQzQxyQyQxz − 2xyQzQxyQxQy

− 2xyzQxyQxQyQzz.

It follows that the curvature of V1 vanishes for some (x, y, z) ∈ Z(r, s) if and only if the four

polynomials Q,H1, H2 and L all vanish at some point (x, y, z, r, s) with (x, y, z) ∈ T 3. Ignoring

the condition (x, y, z) ∈ T 3 for the moment, we see that we need to eliminate the variables (x, y, z)

from the four equations, leading to a one-dimensional ideal in r and s. Unfortunately Gröbner
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basis computations can have very long run times, with published examples showing for example

that the number of steps can be doubly exponential in the number of variables. Indeed, we were

unable to get Maple to halt on this computation (indeed, on much smaller computations). The

method of resultants, however, led to a quicker elimination computation.

Definition 4.5.1 (resultant). Let f(x) :=
∑`
j=0 ajx

j and g(x) :=
∑m
j=0 bjx

j be two polyomials

in the single variable x, with coefficients in a field K. Define the resultant result(f, g, x) to be the

determinant of the (`+m)× (`+m) matrix




a0 b0

a1 a0 b1 b0

a2 a1
. . . b2 b1

. . .

... a2
. . . a0

... b2
. . . b0

al
...

. . . a1 bm
...

. . . b1

al
... a2 bm

... b2

. . .
...

. . .
...

al bm




.

The crucial fact about resultants is the following fact, whose proof may be found in a number

of places such as [CLO98, GKZ94]:

result(f, g, x) = 0 ⇐⇒ ∃x : f(x) = g(x) = 0 . (4.12)

Iterated resultants are not quite as nice. For example, if f, g, h are polynomials in x and y, they

may be viewed as polynomials in y with coefficients in the field of rational functions, K(x). Then

result(f, h, y) and result(g, h, y) are polynomials in x, vanishing respectively when the pairs (f, h)

and (g, h) have common roots. The quantity

R := result(result(f, h, y), result(g, h, y), x)

will then vanish if and only if there is a value of x for which f(x, y1) = h(x, y1) = 0 and g(x, y2) =
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h(x, y2) = 0. It follows that if f(x, y) = g(x, y) = 0 then R = 0, but the converse does not in

general hold. A detailed discussion of this may be found in [BM07].

For our purposes, it will suffice to compute iterated resultants and then pass to a subvariety

where a common root indeed occurs. We may eliminate repeated factors as we go along. Accord-

ingly, we compute

R12 := Rad(result(Q,L, x))

R13 := Rad(result(Q,H1, x))

R14 := Rad(result(Q,H2, x))

where Rad(P ) denotes the product of the first powers of each irreducible factor of P . Maple is

kind to us because we have used the shortest of the four polynomials, Q, in each of the three

first-level resultants. Next, we eliminate y via

R124 := Rad(result(R12, R14, y))

R134 := Rad(result(R13, R14, y)) .

Polynomials R124 and R134 each have several small univariate factors, as well as one large multi-

variate factor which is irreducible over the rationals. Denote the large factors by f124 and f134.

Clearly the univariate factors do not contribute to the set we are looking for, so we eliminate z by

defining

R1234 := Rad(result(f124, f134, z)) .

Maple halts, and we obtain a single polynomial in the variables (r, s) whose zero set contains the

set we are after. Let Ω denote the set of (r, s) such that κ(x, y, z) = 0 for some (x, y, z) ∈ V with

µ(x, y, z) = (r, s) [note: this definition uses V instead of V1.] It follows from the symmetries of

the problem that Ω is symmetric under r 7→ −r as well as s 7→ −s and the interchange of r and

s. Computing iterated resultants, as we have observed, leads to a large zero set Ω′; the set Ω′

may not possess r-s symmetry, as this is broken by the choice of order of iteration. Factoring the
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iterated resultant, we may eliminate any component of Ω′ whose image under transposition of r

and s is not in Ω′. Doing so, yields the irreducible polynomial P2. Because the set Ω is algebraic

and known to be a subset of the zero set of the irreducible polynomial P2, we see that Ω is equal

to the zero set of P2.

Let Ω0 ⊆ Ω denote the subset of those (r, s) for which as least one (x, y, z) ∈ µ−1((r, s)) with

κ(x, y, z) = 0 lies on the unit torus. It remains to check that Ω0 consists of those (r, s) ∈ Ω with

|r|+ |s| < 3/4.

The locus of points in V at which κ vanishes is a complex algebraic curve γ given by the

simultaneous vanishing of Q and L. It is nonsingular as long as ∇Q and ∇L are not parallel, in

which case its tangent vector is parallel to ∇Q ×∇L. Let ρ := xQx/(zQz) and σ := yQy/(zQz)

be the coordinates of the map µ under the identification of CP2 with {(r, s, 1) : r, s ∈ C}. The

image of γ under µ (and this identification) is a nonsingular curve in the plane, provided that γ is

nonsingular and either dρ or dσ is nonvanishing on the tangent. For this it is sufficient that one of

the two determinants detMρ,detMσ does not vanish, where the columns of Mρ are ∇Q,∇L,∇ρ

and the columns of Mσ are ∇Q,∇L,∇σ.

Let (x0, y0, z0) be any point in V1 at which one of these two determinants does not vanish. It

is shown in [BBBP10, Proposition 2.1] that the tangent vector to γ at (x0, y0, z0) in logarithmic

coordinates is real; therefore the image of γ near (x0, y0, z0) is a nonsingular real curve. Removing

singular points from the zero set of P2 leaves a union U of connected components, each of which

therefore lies in Ω0 or is disjoint from Ω0. The proof of the theorem is now reduced to listing the

components, checking that none crosses the boundary |r| + |s| = 3/4, and checking Z(r, s) for a

single point (r, s) on each component (note: any component intersecting {|r| + |s| > 1} need not

be checked as we know the coefficients to be identically zero here).

We close by stating a result for U1, analogous to Theorem 4.5.1. The proof is entirely analogous

as well and will be omitted.
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Theorem 4.5.2. For the quantum walk with unitary coin flip U1, the curvature of the variety V1

vanishes at some (x, y, z) ∈ Z(r, s) if and only if |r| and |s| are both at most 2/3 and (r, s) is a

zero of the polynomial

P1(r, s) := 132019r16 + 2763072s2r20 − 513216s2r22 − 6505200s2r18 + 256s2r2+

8790436s2r16 − 10639416s10r8 + 39759700s12r4 − 12711677s10r4 + 4140257s12r2−

513216s22r2 − 7492584s2r14 + 2503464s10r6 − 62208s22 + 16s6 + 141048r20+

8790436s16r2 + 2763072s20r2 − 6505200s18r2 − 40374720s18r6 + 64689624s16r4−

33614784s18r4 + 14725472s10r10 + 121508208s16r8 − 1543s10 − 23060s2r6+

100227200s10r12 +7363872s20r4−176524r18 +121508208s8r16−197271552s8r14−13374107s8r6 +

1647627s8r4 + 18664050s8r8 − 227481984s10r14 − 19343s4r4+

279234496s12r12 − 67173440s14r4 − 7492584s14r2 + 4140257s2r12 + 291173s2r8−

1449662s2r10 + 7363872s4r20 − 227481984s14r10 + 132019s16 − 197271552s14r8−

59209r14−1449662s10r2+100227200s12r10−1543r10−153035200s14r6−13374107s6r8+3183044s6r6+

39759700s4r12−176524s18+72718s6r4+1647627s4r8−62208r22+141048s20−1472s4r2+11664s24−

33614784s4r18 + 128187648s16r6 − 1472s2r4 − 67173440s4r14 + 291173s8r2 + 64689624s4r16 −

10639416s8r10−59209s14 +72718s4r6 +92321584s8r12−56r8 +92321584s12r8−153035200s6r14−

23060s6r2 + 128187648s6r16− 40374720s6r18 + 72282208s12r6 + 14793r12 + 11664r24 + 14793s12 +

16r6 + 2503464s6r10 − 56s8 − 12711677s4r10 + 72282208s6r12.

4.6 Next Steps

4.6.1 Higher dimensions

As with the development of the one-dimensional case in Section 4.2.2, the two-dimensional QRWs

can be generalized beyond the Hadamard walk similarly. Our online database mentioned above

includes several 2-dimensional walks. For example, we can take a walk with the same 4 chiralities
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Figure 9: The probability distribution of a 2-dimensional QRW after 200 steps.

starting state in the first chirality, and the unitary matrix
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After twenty steps, we obtain the three-dimensional probability distribution Fig-

ure 10, where the size of the ball represents the probability it is at that point.

Figure 4.9: The probability distribution of a 2-dimensional QRW after 200 steps.

as above, {(0, 1), (0,−1), (1, 0), (−1, 0)}, the unitary matrix

U :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

57
67 − 12

67
30
67

14
67

204
469

17
469 − 30

67 − 366
469

− 10
469

390
469

33
67 − 120

469

138
469

246
469 − 40

67
249
469
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,

and a starting distribution of the particle with amplitude 1√
2

in each of the first two chiralities.

After 200 steps, we get the distribution in Figure ??, where as above, darker spots represent higher

probabilities of the particle ending in that location.

Similarly, we can extend the process to 3 or more dimensions. For 3 dimensions, we choose

the chiralities {(0, 0, 1), (0, 0,−1), (0, 1, 0), (0,−1, 0), (1, 0, 0), (−1, 0, 0)} with a starting state in the
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first chirality, and the unitary matrix
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After twenty steps, we obtain the three-dimensional probability distribution Figure 4.10, where

the size of the ball represents the probability it is at that point.

4.6.2 Multiple peaks

Finally, the QRW database has shown that the number of peaks for a given QRW with the same

chiralities and initial state is not independent of the matrix, U . Therefore, we would like to

investigate what controls the number of peaks. Say that the two QRWs have unitary matrices U1

and U2. One possible technique to compare the two is to use the inverse of the map from skew-

hermitian matrices to unitary matrices described above, in order to find 2 skew-hermitian matrices

S1 and S2 which correspond to U1 and U2, respectively. Then, we can create a parameter t in a

skew-hermitian matrix H such that at time t = 0, H = S1, and at time t = 1, H = S2. Through

the forward map once again, this parameterization then describes a continuous family of unitary

matrices, and therefore a family of QRWs which have a varying number of peaks. Upon further

analyzation, it should be possible to identify exact values of t where the QRW switches between

numbers of peaks, representing critical QRWs with “double peaks” or other new phenomena. To

date, these computations have been too complex to halt in Maple.
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Figure 10: A 3-dimensional QRW after 20 steps
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6.2 Multiple peaks

Finally, the QRW database has shown that the number of peaks for a given QRW with

the same chiralities and initial state is not independent of the matrix, U . Therefore, we

would like to investigate what controls the number of peaks. Say that the two QRWs

have unitary matrices U1 and U2. One possible technique to compare the two is to use

(d)

Figure 4.10: A 3-dimensional QRW after 20 steps.
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