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ABSTRACT

PROFILES OF LARGE COMBINATORIAL STRUCTURES

Michael T. Lugo

Robin Pemantle, Advisor

We derive limit laws for random combinatorial structures using singularity anal-

ysis of generating functions. We begin with a study of the Boltzmann samplers of

Flajolet and collaborators, a useful method for generating large discrete structures at

random which is useful both for providing intuition and conjecture and as a possible

proof technique. We then apply generating functions and Boltzmann samplers to

three main classes of objects: permutations with weighted cycles, involutions, and

integer partitions. Random permutations in which each cycle carries a multiplica-

tive weight σ have probability (1 − γ)σ of having a random element be in a cycle

of length longer than γn; this limit law also holds for cycles carrying multiplicative

weights depending on their length and averaging σ. Such permutations have num-

ber of cycles asymptotically normally distributed with mean and variance ∼ σ log n.

For permutations with weights σk = 1/k or σk = k, other limit laws are found; the

prior have finitely many cycles in expectation, the latter around
√
n. Compositions

of uniformly chosen involutions of [n], on the other hand, have about
√
n cycles on

average. These can be modeled as modified 2-regular graphs. A composition of two

random involutions in Sn typically has about n1/2 cycles, characteristically of length

vi



n1/2. The number of factorizations of a random permutation into two involutions

appears to be asymptotically lognormally distributed, which we prove for a closely

related probabilistic model. We also consider connections to pattern avoidance, in

particular to the distribution of the number of inversions in involutions. Last, we

consider integer partitions. Various results on the shape of random partitions are

simple to prove in the Boltzmann model. We give a (conjecturally tight) asymptotic

bound on the number of partitions pM(n) in which all part multiplicities lie in some

fixed set n, and explore when that asymptotic form satisfies log pM(n) ∼ π
√
Cn for

rational C. Finally we give probabilistic interpretations of various pairs of partition

identities and study the Boltzmann model of a family of random objects interpolating

between partitions and overpartitions.
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Chapter 1

Introduction

1.1 What is analytic combinatorics?

Analytic combinatorics is an approach to combinatorics that treats the generating

function as the central object. Furthermore, the generating function is not just viewed

as a convenient bookkeeping device (a formal power series), but is considered as an an-

alytic object in its own right. Generating functions are tremendously useful, because

they enable combinatorialists to harness the rich tools of complex analysis. There are

generally two attitudes towards generating functions. The first is to treat them as

formal power series; the second is to treat them as analytic objects. The formal power

series view is nice for computation – one does not have to worry about convergence!

Using this approach it is possible to derive explicit formulas, new recurrences, and

the like for many combinatorially defined sequences. It is tempting to omit the ana-
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lytic parts, but as Wilf puts it [Wil94, Preface], “To omit those parts of the subject,

however, is like listening to a stereo broadcast of, say, Beethoven’s Ninth Symphony,

using only the left audio channel.” Complex-analytic methods enable us to extract

information that would be extraordinarily elusive by purely algebraic means.

Recent decades have seen substantial growth in combinatorics and discrete math-

ematics in general, much of which is motivated by applications to computer science.

The “gold standard” for proof in combinatorics has long been the bijective proof –

we feel that we really understand why two sets are the same size when we can pair

up elements in one with elements in the other. But there are few general methods

for finding bijections, so combinatorics is often seen as a collection of ad hoc tricks,

or “theorems in search of a theory”. As combinatorics has grown from a bag of tricks

to a full-fledged branch of mathematics, there have been various efforts to create

such unifying theories. The analytic approach taken here is one. A more algebraic

approach – rather reminiscent of category theory – is the “theory of species” of the

French-Canadian school [Joy81, BLL98]. This theory has the particular advantage

of making clear the concept of a “natural isomorphism” in combinatorics. Polya’s

theory of enumeration under group action [PR87] has been another powerful theory,

particularly for the enumeration of unlabelled objects.

A particular strength of generating function methods is that different combinato-

rial classes have similar generating functions and therefore similar asymptotic prop-

erties; these are what one might call universality phenomena, a term borrowed from

2



statistical physics. For example, in the enumeration of trees, where generating func-

tions satisfy certain polynomial relations, the number of trees of size n with a finite

set of allowed node degrees always has the form C ·Ann−3/2 regardless of the finite set

in question; the height is proportional to the square root of size; and the number of

leaves is normally distributed in the limit. The logarithmic combinatorial structures

of [ABT03] are another example; cycle structure of permutations, factorizations of

polynomials in finite fields, connected components of certain forests, prime factor-

izations of integers, and a variety of other combinatorial objects have a number of

components which is logarithmic in their size and a largest component which makes

up an appreciable fraction of the entire structure. These are all in some sense tied to-

gether by their generating functions, which resemble (1−z)−θ where θ is a parameter

that controls the shape of the structure. Later we will see hints of other such classes

of structures, such as the “square-root structures” which have generating functions

like exp(σz/(1− z)).

Within the framework of analytic combinatorics, many asymptotic enumeration

results become quasi-routine. There is a long history of collecting asymptotic results

in combinatorics, going back to [PR87] and [HP73] among others. The survey papers

of Bender and Odlyzko [Ben74, Odl95] summarize many of these methods; textbooks

covering asymptotic enumeration include [GK90, GKP94, Wil94]. Another excellent

exposition of asymptotic methods, not just restricted to combinatorics, is [dB81].

Asymptotic enumeration has proven to be a tremendously useful tool in the analysis
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of algorithms; see for example [FS95]. The main results of analytic combinatorics are

treated in the recent treatise of Flajolet and Sedgewick [FS09]. This book is largely

divided into two parts. The first part explains how to derive generating functions for

combinatorial objects; the second part shows how to extract asymptotic information

from such generating functions. Both of these are essential parts of any problem in

asymptotic combinatorics.

The first sort of results in asymptotic combinatorics are essentially those of asymp-

totic enumeration. Stanley [Sta97, p. vii] tells us that “Enumerative combinatorics is

concerned with counting the number of elements of a finite set S. This definition, as it

stands, tells us very little about the subject since virtually any mathematical problem

can be cast in these terms. In a genuine enumerative problem, the elements of S will

usually have a rather simple combinatorial definition and very little additional struc-

ture.” The central problem of asymptotic enumeration, then, is to approximately

solve this problem for a sequence of finite sets S1, S2, S3, . . ., where Sk is the set of

objects of “size” k. Then we would like an approximate formula for |Sn| in terms of

simple functions of n.

One simple example comes from tilings of 2-by-n boards with 1-by-2 and 2-by-

1 dominoes. The Fibonacci numbers are defined by F0 = 0, F1 = 1, and Fn =

Fn−1 + Fn−2 for n ≥ 2. Each such tiling has at its left end either one vertical or two

horizontal dominoes, so these tilings satisfy the same recurrence. Checking the initial

conditions, we see that a 2-by-n board has Fn+1 tilings. In chapter 2 we will use (very
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Figure 1.1: The five tilings of a 2-by-4 board by dominoes.

simple!) asymptotic methods to derive the classic formula

Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
.

This is an example of an exact formula for a combinatorially defined sequence; asymp-

totic formulae like Fn ∼ 1√
5

(
1+

√
5

2

)n

, however, are often accessible even when the

exact forms are not.

The next natural question of asymptotic combinatorics is “what does a typical

object look like?” There are several ways to answer this question. The most crude

is simply to determine the mean of some statistic on the objects. (Whenever we

speak about the mean of some combinatorial statistic, it will be over objects chosen

from the uniform distribution on the set in question, unless stated otherwise.) More

complicated statistical information – higher moments and variances of statistics – are

also accessible. (The variance, however, is a difference of two quantities which in

many cases are of the same order, so terms beyond the first order are needed.) Often

the first two moments are enough; the Gaussian distribution is ubiquitous in limit

laws for random structures. Intuitively this is true because the statistics are sums

of indicator variables which are “almost independent”. Various discrete distributions

also occur frequently. Two examples from permutation enumeration which will figure
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prominently in this thesis are the number of cycles of a random permutation of [n],

and the number of cycles of length k of a random permutation of [n]; the former is

asymptotically normally distributed with mean and variance log n, and the latter is

asymptotically Poisson with mean 1/k. We will determine many such distributions,

and attempt to explain them via appeals to probabilistic intuition.

Again we return to the Fibonacci example. In this case we can answer the following

simple probabilistic questions, which will feature as an example in Chapter 2 and

resurface in another guise in Chapter 6:

• The probability that the leftmost tile in a large tiling is vertical is (
√

5− 1)/2;

• The distribution of the number of vertical dominoes at the “left end” of a tiling

is geometric;

• The distribution of the number of vertical dominoes in the entire tiling is asymp-

totically normally distributed, with mean n/
√

5 and variance 4
√

5/25 · n.

Our main method for showing distributional results such as these will be bivariate

generating functions, which track objects both by their size and by the statistics of

interest; this principle will become particularly important in Chapter 4.

Analytic combinatorics has become quite useful in the analysis of algorithms, fig-

uring quite prominently in books such as [Knu, FS95, GK90]. It is particularly useful

in average-case analysis of algorithms and in randomized algorithms. Traditionally

analysis of algorithms has focused on worst-case results, asking how much computing

6



time, memory, or other resources will be used given the worst possible input to a

program. Such analyses are therefore geared towards constructing exceptional cases

which do not often occur in practice. Randomized algorithms, such as those in the

book [MR95], do away with this difficulty. Perhaps the simplest example is the quick-

sort algorithm, which runs on average in time O(n log n) on lists of size n, but actually

takes O(n2) time on lists that are already sorted. If one wishes to create a general-

purpose sorting routine that runs quickly on almost-sorted inputs – which would be

desirable in many cases occurring in practice – then one thing to do is to shuffle the

input randomly and then run quicksort. Some critics of average-case analysis have

said that it reveals more information about the distribution of inputs than the actual

performance of algorithms – it is common to choose simple input distributions, such

as the uniform distribution, which may or may not correspond with distributions that

occur in practice. But this flaw from the computer science point of view does not

matter to the mathematician.

Analytic combinatorics can also be useful for statistical testing. In statistical

testing one often wants to test the hypothesis that certain objects are drawn from a

certain distribution on all such objects. In a typical situation there are a very large

number of possible objects – perhaps we are picking random binary trees, or random

permutations – or it may be difficult to generate samples from the distribution in

question, and so tests such as the χ-squared test on the entire distribution are not

useful. In many cases of interest we may only have a sample of size one. For example,

7



the human genome can be considered as a very long string of the letters A, C, G,

and T . Given a snippet of the genome, how can we tell if it “does something”? If a

segment of genome has no function, it can be modeled as a string of A, C, G, and T

chosen uniformly and independently at random; if it does have a function, then this is

not true. Thus one wants to know the probability that a certain pattern (say CAT )

appears in a long string with some large frequency. There also exist combinatorial

models of secondary structures in RNA – RNA is single-stranded but base-pairing

can occur among segments of the same strand. (See for example [Neb02].) Analytic

combinatorics allows these structures to be enumerated (they look rather like trees)

and it should be possible to determine the expected “amount” of secondary structure

in random strands of RNA; in this way sections of the genome which have particularly

low or high amounts of secondary structure could be identified.

On a more frivolous note, the same techniques can be used to determine if mes-

sages are hidden in (ordinary-language) texts. In the text of Hamlet, there are ap-

proximately 1.63×1039 hidden occurrences of the word “combinatorics”, in which the

letter c appears, followed somewhere later by the letter o, and so on. (Of course these

overlap.) Does this mean Shakespeare is sending a message about combinatorics?

Of course not. If a monkey typed letters at random, with the letter frequencies of

English, roughly the same count would occur. This example is from [FS09, Example

I.11], based on the papers [BV02, FSV06]. It is related to the famous and controver-

sial “Bible Code” [WRR94, MBNBHK99], in which hidden messages were found in

8



the Bible using similar methods; what would be most interesting in such a case would

be a lack of patterns.

This understanding of patterns and lack of patterns is a goal of analytic com-

binatorics. We want to know what “typical” objects look like. The discovery of

universality classes of combinatorial objects is especially tantalizing. Many solvable

combinatorial models fall in these classes. It is tempting to suspect that more compli-

cated combinatorial systems, perhaps “naturally occurring” systems that cannot be

completely analyzed but are of practical interest, also fall into such classes. We might

call this a “physics” of random structures, and attempt to form laws about combi-

natorial structures that are ignorant of fine details of the underlying mathematics.

With such a classification in progress – partially rigorously, partially by building up a

library of examples and recognizing patterns – we are coming to an understanding of

the large-scale laws that govern all random structures. Herein we add to that library

of examples and aim to give some intuition on how small-scale randomness gives rise

to some sort of large-scale order.

1.2 Statements of results

This thesis is organized as follows. Chapter 2 is a compilation of results that will be

useful in the remainder of the thesis. We begin with a brief overview of the theory

of generating functions, covering the different types of generating functions that we

will need in the sequel, and explain how probabilistic information can be extracted

9



from combinatorial generating functions. We then show how generating functions

for many sequences of combinatorial interest can easily be derived via the “symbolic

method”, which constructs combinatorial objects recursively from atoms using a few

basic combinatorial building blocks. After this we give a brief exposition of singular-

ity analysis, which is our main technique for extracting asymptotic information from

generating functions. Here we will recall various ad hoc results of singularity analysis

– partial fraction expansion, Hayman’s method, saddle-point methods, and the theo-

rems of Meinardus and Wright – and we will give a more systematic treatment based

upon the Flajolet-Odlyzko transfer theorems. Finally we recall miscellaneous results:

the Euler-Maclaurin theorem, central limit theorems, and results from the method of

moments.

Chapter 3 explains the Boltzmann sampling methodology. Boltzmann samplers

are a method for sampling objects at random from a combinatorial class, with a given

approximate size; they are often much faster than methods for generating objects of

a fixed size, but at the cost of approximation. These samplers are also much easier

to analyze than fixed-size samplers because of their recursive structure, and because

dependence between different parts of the structure is reduced. We begin by defin-

ing Boltzmann samplers and showing how to construct them for various recursively

specified combinatorial classes. After this we give formulas for some statistics of such

samplers. It appears that results about Boltzmannized objects are very similar to

results about the corresponding fixed-size objects if and only if the distribution of

10



sizes of the Boltzmannized objects is concentrated. We give examples of this; the

most striking result is that the size of Boltzmannized partitions, tuned to have mean

size n, has standard deviation of order n3/4. We also explain how the Boltzmann

sampler gives a method for creating models of “combinatorial objects of infinite size”

which is useful in the sequel.

In Chapter 4, parts of which are adapted from the paper [Lug09], we consider

the combinatorics of permutations with restricted cycle structure. Given the set

[n] = {1, 2, . . . , n}, a permutation is a bijective function f : [n] → [n] – in such a

function, each element of [n] occurs exactly once among f(1), f(2), . . . , f(n). Permu-

tations can naturally be decomposed into their cycles, and it has long been known

that a “typical” permutation of n objects has approximately log n cycles [Gon44].

Furthermore, the distribution of the number of cycles of length k in a random large

permutation approaches a Poisson distribution with mean 1/k. In this chapter this

work is extended to random choices from some restricted classes of permutations –

for example, those in which all cycle lengths are even, which for large n have number

of cycles nearly normally distributed with mean and variance 1
2
log n. The statistics

arising when permutations are weighted depending on their cycle structure are also of

interest; this is a generalization of the Ewens sampling formula of population genetics

[Ewe72]. Restricted and weighted permutations turn out to be quite similar, as is

seen in section 4.4.

In Section 4.5 we proceed to another specific case, that of permutations with
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periodic weighting sequences. These obey the same limit laws but the asymptotic

enumeration of such permutation introduces new factors. In Section 4.6 we consider

the weighting scheme σj = 1/j; in this weight scheme, permutations have one long

cycle and, on average, π2/6 short cycles. Section 4.7 considers permutations having

square roots or more generally mth roots; this is a natural example of a permutation

model with restricted multiplicities which nonetheless strongly resembles the weighted

models. In Section 4.8 we consider the weighting scheme σj = j, which corresponds

to “sets of lists”; a set of lists in [n] usually has about
√
n components, of typical size

√
n, which is a combinatorial consequence of the generating function exp(z/(1− z))

of “exponential of a pole” type. In Section 4.9 we show that the number of cycles of

a permutation of [n] of length in [γn, δn] obeys a limit law. Finally Sections 4.10 and

4.11 consider connections between random permutations and, respectively, stochastic

processes and number theory.

In Chapter 5, we consider the cycle structure of compositions of involutions. An

involution on [n] is a permutation in which all cycles have length 1 or 2, and thus

involutions have order 1 or 2 as elements of the symmetric group; thus this is an

attempt to look more closely at algebraic structure. An involution in Sn can be viewed

as a partial matching on [n]. Thus a composition of two involutions can be viewed as a

superposition of two partial matchings, which is a graph (with colored edges) in which

each vertex has degree at most two. These graphs have components which are either

cycles or paths and can be enumerated by the exponential formula. In Section 5.2 we
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find generating functions for these graphs counting them by their size and number of

cycles and paths; these can be reinterpreted in terms of permutation cycle structure.

In particular, as shown in Section 5.3, the number of k-cycles of a composition of two

random involutions of [n] converges in distribution, as n→∞, to Ak +2Bk where Ak

is Poisson(1) and Bk is Poisson(1/2k); the expected total number of cycles is ∼
√
n,

as seen in Section 5.5. The first of these facts can be predicted by looking at cycles

and paths as “rare events”. Finally we address the class multiplication problem

for involutions: in how many ways can a permutation be written as a product of

two involutions? An n-cycle π can be factored into two involutions in n ways, and a

permutation consisting of two n-cycles has n2+n factorizations into involutions. These

building blocks lead to Theorem 5.7.1, which gives the total number of solutions to π =

σ◦τ where σ, τ are involutions. This leads to Theorem 5.7.5, in which we show that in

a certain stochastic model of permutations the number of factorizations is lognormally

distributed; the logarithm of the number of factorizations of a random permutation

into two involutions has mean (log n)2/2 and variance (log n)3/3. In particular, the

median number of factorizations of a permutation is near exp((log n)2/2) but the

mean is of larger order, near exp(2
√
n). This is a hint that the measure defined by

compositions of random involutions looks quite different than the uniform measure

on Sn.

For large n, the number of involutions of [n] is asymptotic to
√
n! multiplied by a

subexponential factor [MW55], roughly the square root of the number of all permuta-
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tions. So we explore ways in which involutions are a “square root” of permutations.

The Stanley-Wilf conjecture (proven by Marcus and Tardos [MT04]) states that the

number of π-avoiding permutations of n, Sn(π), satisfies limn→∞ Sn(π)1/n = L(π)

for some constant π. For involutions we can define In(π) similarly; we have

limn→∞ In(π)1/n =
√
L(π) in cases where both limits are known. Probabilistically,

this means that π-avoiding involutions are much more common than π-avoiding per-

mutations. This motivates counting the occurrences of patterns in involutions; in

Section 5.9 we show that the number of inversions in a random involution has the

same mean as the number of inversions in a random permutation, but twice the

variance. Finally, in Section 5.10, using saddle-point methods we prove that the

number of permutations in which all cycles have length in a given finite set S, with

m = maxS, is asymptotic to (n!)1−1/m times a subexponential factor, and that the

expected number of k-cycles in such a permutation, chosen uniformly at random,

is asymptotic to nk/m/k. The main term
√
n! for involutions can be explained by

noting that a permutation corresponds to an ordered pair of involutions, both via

the RSK correspondence and since the graph of an involution σ – that is, the set

{i, σ(i) : i ∈ [n]} – is symmetric across the diagonal. The cycle structure can be

explained by considering Boltzmann samplers.

In Chapter 6 we consider Boltzmann sampling as applied to partitions of integers.

Section 6.1 is devoted to recovering classical results about partitions from careful

consideration of the Boltzmann sampler. In particular we show that the mean number
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of parts of partitions and partitions into distinct parts can be predicted from the

Boltzmann samplers, giving an explanation for results of [EL41]. We also derive

results on the average shape of the Young diagrams of partitions which echo [DVZ00].

Finally, we determine the number of parts of different multiplicities which occur in

the Boltzmann model for partitions with restrictions on part multiplicities. In Section

6.2 we enumerate families of partitions for which the generating function has form∏∞
k=1 g(z

k), where g(z) =
∏∞

k=1(1 − zk)−bk . These encompass many, but not all,

classes of multiplicity-restricted permutations. In Section 6.3 we enumerate similar

families in which the generating function does not have such a simple form. The

enumeration involves dilogarithms of the root of the generating polynomial for the

allowed multiplicities. This work is motivated by Subbarao’s identity [Sub71]: the

number of partitions into parts of multiplicities 2, 3, or 5 is equal to number of

partitions of n into parts congruent to 2, 3, 6, 9, or 10 mod 12, so we can associate

the constant 5/12 with the set {2, 3, 5}. There appears to be no such similar identity,

and no such rational constant, for partitions into parts of multiplicity 2 or 3. In

Section 6.4 we interpret various pairs of partition identities in terms of probabilities.

From the Rogers-Ramanujan identities we can show that the probability a partition

of n into nonconsecutive parts contains no part equal to 1 approaches (
√

5− 1)/2 as

n → ∞; this is, rather unexpectedly, connected to the Fibonacci numbers. Similar

connections to combinatorics on words occur for the Gollnitz-Gordon identities and

Gordon’s identities. Finally, we consider in Section 6.5 the probabilistic aspects of
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overpartitions, which are partitions in which the last occurrence of each part can

be barred. We show that a typical overpartition of n has barred parts summing to

n/3. We review results on random overpartitions from [CH04, CGH06], and define w-

overpartitions, which are a class of weighted objects interpolating between partitions

and overpartitions. Boltzmannization of w-overpartitions gives formulas interpolating

between known statistics of partitions and of overpartitions.

f
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Chapter 2

Background and singularity

analysis

In this chapter we collect the background results necessary for this thesis. We begin

by defining the various types of generating functions to be used and show how proba-

bilistic information can be extracted from generating functions. We then explain the

symbolic method for deriving generating functions of combinatorial classes. Next we

give a primer on singularity analysis, which is used for extracting asymptotics of the

coefficients of generating functions. We close with statements of some miscellaneous

results.
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2.1 Generating functions

We will deal with several different types of univariate generating functions in this

thesis: the ordinary, exponential, and Dirichlet generating functions. In addition we

will consider certain multivariate generating functions.

Given a sequence {an}∞n=0, with an ∈ C, its ordinary generating function is A(x) =∑
n≥0 anx

n. This can be viewed in two ways: as a formal power series in C[x], or as a

function A : C → C. We will generally use lowercase letters to denote a sequence and

uppercase letters to denote the corresponding generating function. The exponential

generating function of {an} is A(x) =
∑

n≥0 anx
n/n!. We will not consider both the

ordinary and exponential generating functions of the same sequence, so the difference

will be clear in context. We let [zn]A(z) denote the coefficient of zn in A(z), and

[zn/n!]A(z) denote n! times the coefficient of zn in A(z).

If {an} does not grow too quickly – faster than any exponential rn in the ordinary

case, or faster than any function of the form rnn! in the exponential case – then A(z)

is an analytic function in some neighborhood of zero.

In general we will use ordinary generating functions to count unlabelled combina-

torial objects, and exponential generating functions to count labelled combinatorial

objects. There are usually many more labelled objects of a given type than unlabelled

objects, due to symmetry considerations.

The Dirichlet generating function of a sequence {an}, often called its Dirichlet

series, is given by
∑

n≥1 ann
−s. The Dirichlet series is particularly well suited for
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number-theoretic problems, because it is adapted to the Dirichlet convolution: given

two sequences {an} and {bn}, with Dirichlet generating functions A(s) and B(s) re-

spectively, let cn =
∑

d|n adbn/d, and let C(s) =
∑

n≥1 cnn
−s. Then C(s) = A(s)B(s).

The Dirichlet generating function of the all-ones sequence is
∑

n≥0 n
−s = ζ(s). We

will make use of Dirichlet series in Chapter 6.

We will also consider multivariate generating functions. Algebraically these are

objects in C[x1, . . . , xn]; analytically they are functions from Cn to C, which are

analytic in some polydisc centered at the origin. Most of our generating functions

will be asymmetric, in the following sense: one variable will keep track of the size

of the combinatorial object under consideration, while the others will mark certain

statistics. We will generally indicate the size variable by the letter z and the statistic-

tracking variables by u1, u2, . . . or by u and v.

Consider an array of numbers an,k1,...,kr . The ordinary (r + 1)-variate generating

function of this array is given by

A(z, u1, . . . , ur) =
∑
n≥0

∑
ki≥0∀i

an,k1,...,krz
nuk1

1 · · ·ukr
r

and the exponential (r + 1)-variate generating function is given by

A(z, u1, . . . , ur) =
∑
n≥0

∑
ki≥0∀i

an,k1,...,kr

n!
znuk1

1 · · ·ukr
r .

Specializations of these generating functions will also be useful. In particular, the

univariate function A(z, 1, . . . , 1) satisfies

[zn/ωn]A(z, 1, . . . , 1) =
∑

(k1,...,kr)∈Zr
+

an,k1,...,kr
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where ωn is 1 in the ordinary case and n! in the exponential case. This sum is the

number of objects of size n where the parameters under consideration are arbitrary;

thus A(z, 1, . . . , 1) counts objects accordingly only to their size. If some variable is set

to 0, this has the effect of excluding objects for which the corresponding statistic is

nonzero. Further “semi-combinatorial” specializations are also possible. For example,

in the case r = 1 (the bivariate case), [zn/ωn]A(z,−1) is the difference between the

number of A-objects with an even u-statistic and with an odd u-statistic. Letting u

equal other roots of unity gives other linear combinations.

A simple example is as follows: the generating function for permutations counted

by their size and number of fixed points is

P (z, u) = exp

(
uz +

z2

2
+
z3

3
+ · · ·

)
= exp

(
(u− 1)z + z +

z2

2
+
z3

3
+ · · ·

)
= exp

(
(u− 1)z + log

1

1− z

)
=

1

1− z
exp(u− 1)z.

Thus P (z, 1) = 1/(1 − z) and P (z, 0) = e−z/(1 − z). The prior is the generating

function of permutations regardless of their number of fixed points; the latter is

the generating function of permutations without fixed points, or derangements. We

will later see that limn→∞[zn]P (z, 0) = e−1; thus the probability that a random

permutation is a derangement is e−1. Such a statement should be understood to be

an abbreviation for “the limit of the probability that a permutation of [n] chosen

uniformly at random is a derangement, as n→∞, is e−1”. We also have P (z,−1) =

e−2z/(1− z). The number of permutations of [n] with an even number of fixed points

is thus [zn/n!](P (z,−1) + P (z, 1))/2; for large n this is very near (1 + e−2)/2 times
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the number of permutations. And in fact (1+e−2)/2 is the probability that a Poisson

random variable with mean 1 is even.

We will not have to do asymptotics for multivariate generating functions. Finding

asymptotic information on the coefficients of multivariate generating functions is a

quite delicate operation, and an area of active research. The underlying principle

for asymptotic work is that the type and location of the singularity closest to the

origin governs the asymptotic behavior of the coefficients. In the univariate case,

singularities are points; in the multivariate case, one must deal with a singular variety.

However, we will be able to extract the probabilities we seek from bivariate generating

functions by considering only their univariate specializations.

Let A be a combinatorial class, so A = ∪∞n=0An with |An| = an < ∞. The

uniform probability distribution over An assigns to any α ∈ An the same probability,

namely 1/An. We will let P, PAn or Pn denote the probability relative to this uniform

distribution. In general, the symbol P will denote probabilities, and subscripts on it

will denote the particular probabilistic model under consideration.

Consider a parameter or statistic χ, which associates to every object α ∈ A an

integer value χ(α). The parameter χ determines a discrete random variable on the

probability space An. The probability generating function of this random variable

is p(u) =
∑

k P(χ = k)uk. The following proposition follows immediately from the

definition.

Proposition 2.1.1. [FS09, Prop. III.1] Let A(z, u) be the bivariate generating func-
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tion of a parameter χ defined over a combinatorial class A. The probability generating

function of χ over An is given by

∑
k

PAn(χ = k)uk =
[zn]A(z, u)

[zn]A(z, 1)
.

We note that [zn]A(z, u) is in general a function of u; if we intend the coefficient

of znu0, we will use the notation [znu0]. That is, [z2](3z2 + z2u + z3) = 3 + u, and

[z2u0](3z2 + z2u+ z3) = 3.

Proposition 2.1.2. [FS09, Prop. III.2] The factorial moment of order r of a pa-

rameter χ is determined from the bivariate generating function A(z, u) by r-fold dif-

ferentiation followed by evaluation at 1:

EAn((χ)r) =
[zn] ∂r

uA(z, u)|u=1

[zn]A(z, 1)
.

Proof. From Proposition 2.1.1, we have the probability generating function of An.

The effect of differentiation is as follows:

(
∂

∂u

)r∑
k

P(χ = k)uk =
∑

k

P(χ = k)(k)ru
k−r.

Setting u = 1, we have ∂r
up(u) =

∑
k P(χ = k)(k)r; the right-hand side is just the rth

factorial moment of χ.

In particular, the first two moments satisfy

EAn(χ) =
[zn]Au(z, 1)

[zn]A(z, 1)
,EAn(χ2) =

[zn]Auu(z, 1)

[zn]A(z, 1)
+

[zn]Au(z, 1)

[zn]A(z, 1)

and the variance satisfies V(χ) = E(χ2)− E(χ)2.
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2.2 The symbolic method in combinatorics

In this section we give a brief exposition of the symbolic method in combinatorics.

This is essentially a device for the specification of combinatorial objects which are

recursively built up from simpler objects. We will build up a library of recursive con-

structions used in such constructions, which are called admissible constructions, and

show how such constructions are translated into operations on generating functions.

This makes the determination of the generating functions counting such objects, which

include many of the generating functions occurring naturally in combinatorics, fairly

routine, which frees us up to concentrate on the analysis of the generating functions.

An (unlabelled) combinatorial class is nothing more than a countable union of

finite sets. We write A =
⋃

n≥0An, where An is the number of objects of size n; we

then write an = |An| for the number of objects of size n. We can endow a class A

with a multidimensional parameter χ = (χ1, . . . , χd), which is a function from A to

the set of d-tuples of nonnegative integers. We say such a parameter is d-valued.

We now define labelled combinatorial classes. A weakly labelled object is a graph

whose vertices are a subset of the positive integers. An object of size n is said to

be well-labelled, or labelled, if it is weakly labelled and its collection of labels is the

set {1, 2, . . . , n}. A labelled class is a combinatorial class consisting of well-labelled

objects. The restriction to graphs may seem overly restrictive, but all “natural”

labelled objects can be encoded as graphs. In our case, labelled objects will be

permutations; a permutation σ can be encoded as a directed graph with edges i→ σ(i)
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for each i. Labelled combinatorial classes can carry parameters just as unlabelled ones

do.

The essence of the symbolic method is that we can recursively specify combi-

natorial classes, in such a way that they are naturally built up from atoms by

applying a few basic constructions. Those consructions which are adapted to the

generating-function approach, we call admissible. Formally, let Φ be a construc-

tion that associates to m combinatorial classes a new class: B = Φ[A(1), . . . ,Am)].

Then Φ is called admissible iff the sequence (Bn)∞n=1 depends only on the sequences

(A
(1)
n )∞n=1, · · · , (A

(m)
n )∞n=1. That is, the generating function B(z) depends only on the

A(k)(z). (This is from [FS09, Def. I.5].)

The classes {ε} and Z, which have one element of size 0 and size 1 respectively,

will be our building blocks for all other classes. We call {ε} a neutral class and Z an

atom. We will proceed by listing some admissible constructions.

Disjoint unions. Let A and B be combinatorial classes, and let φ and χ be the

corresponding parameters, both d-valued. Then define C = A + B by letting Cn be

the disjoint union of An and Bn. Formally,

Cn = {(α, 1) : α ∈ An} ∪ {(β, 2) : β ∈ Bn}

where 1 and 2 are simply tags in case An and Bn have elements in common. Let

ψ be a d-valued parameter for C, with ψ((α, 1)) = φ(α) and ψ((β, 2)) = χ(β).

Then the generating functions of these classes, either ordinary or exponential, satisfy

C(z, u1, . . . , ur) = A(z, u1, . . . , ur) + B(z, u1, . . . , ur). The proof is straightforward:
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an object γ ∈ C with ψ(γ) = ~k is either a pair (α, 1) with φ(α) = ~k or a pair (β, 2)

with χ(β) = ~k.

Cartesian products and labelled products. The Cartesian product of two

combinatorial classes, C = A × B, is defined in the ordinary set-theoretic way. Pa-

rameters are inherited by addition: if γ = (α, β), then ψ(γ) = φ(α) + χ(β). Then

the ordinary generating functions satisfy C(z, ~u) = A(z, ~u)B(z, ~u). To see this, con-

sider objects γ ∈ C with |γ| = n, ψ(γ) = ~k. These are of the form (α, β) with

|α| + |β| = n, φ(α) + χ(β) = ~k. Thus the product form for the generating function

follows immediately from the multiplication process.

The exponential case is slightly more complicated. We must define the labelled

product of two labelled combinatorial classes A and B, which we denote A?B. We first

must define relabellings. Given a weakly labelled structure α of size n, we denote by

ρ(α) its reduction, which is the same object with the labels reduced to the standard

set [n] and kept in the same order. Then given two labelled objects α ∈ A and β ∈ B,

we let α ? β be the set of ordered pairs that reduce to (α, β):

α ? β = {(α′, β′) : (α′, β′) is well-labelled , ρ(α′) = α, ρ(β′) = β}.

Then the labelled product of classes is given by

A ? B =
⋃

α∈A,β∈B

α ? β.

If C = A ? B, we have that C(z, ~u) = A(z, ~u)B(z, ~u). To see this, consider objects

γ ∈ C with |γ| = n, ψ(γ) = ~k. These are of the form (α′, β′) with |α′| + |β′| =
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n, φ(α′) + χ(β′) = ~k. Furthermore (α′, β′) ∈ α ? β. Thus α′ and β′ together contain

all the labels 1, 2, . . . , n, with none repeated.

Now we refine based on |α′|. We can construct
(

n
j

)
ajbn−j pairs (α′, β′) ∈ A ? B in

which |α′| = j, |β′| = n− j – we choose the j labels which will be used in α′ and then

pick α′ with size j and β′ with size n− j, with suitable labels. Summing over j, the

total number of pairs (α′, β′) with |α′|+ |β′| = n, that satisfy the labelling conditions,

is
n∑

j=0

(
n

j

)
ajbn−j = n!

n∑
j=0

aj

j!

bn−j

n− j!
.

This is just n![zn]A(z)B(z). So we have [zn/n!]C(z) = n![zn]A(z)B(z), or

[zn/n!]C(z) = [zn/n!]A(z)B(z).

Sequences. We can form a combinatorial class by taking sequences of elements

from an already-specified class which contains no elements of size zero. We denote the

class obtained in this way by B = Seq(A). This is an abbreviation for a combination

of sums and products:

Seq(A) = {ε}+A+ (A×A) + (A×A×A) + · · ·

where ε is a structure of size 0, corresponding to the empty sequence. Then we have

the generating function identity

B(z, ~u) = 1 + A(z, ~u) + A(z, ~u)2 + A(z, ~u)3 + · · · = 1

1− A(z, ~u)
.

The geometric series converges as a formal power series, since [z0]A(z) = 0 by as-

sumption.

26



Sets (for labelled structures). Denote by Setk(A) the class of k-sets formed

from A. Formally we write Setk(B) = Seqk(B)/ ∼. Here ∼ is the equivalence

relation in which two sets are equivalent if the components of one are a permutation

of the components of the other. Therefore ∼ partitions Seqk(A) into orbits of size

k!. So if B = Setk(A), we have B(z) = A(z)k/k!, and similarly for the parameter-

enriched version B(z, ~u) = A(z, ~u)/k!.

We then define the set construction by

Set(A) = {ε}+A+ Set2(A) + · · · =
⋃
k≥0

Setk(A).

Translating into generating functions, where B = Set(A), we get

B(z, ~u) =
∑
k≥0

A(z, ~u)k

k!
= expA(z, ~u) (2.1)

Thus taking sets corresponds to exponentiation; this is a form of the well-known

“exponential formula”.

Multisets (for unlabelled structures). For a finite combinatorial class A,

with A0 empty, the multiset class B = Mset(A) can be defined by

Mset(A) =
∏
α∈A

Seq({α}).

That is, let A = {α1, α2, . . . , αk}. Then we can write a multiset of elements of A as

a sequence of repeated elements α1, followed by a sequence of repeated elements α2,

and so on. The generating function of Seq({α}) is 1/(1− z|α|), and so we get

B(z) =
∏
α∈A

1/(1− z|α|) =
∞∏

n=1

(1− zn)−An .
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This can be written in the form B(z) = exp
∑∞

k=1A(zk)/k, which does not require

coefficient extraction, but we will not need this.

Cycles. We proceed to define cycles as we did for sets. We have Cyck(A) =

Seqk(A)/ ∼, where now ∼ identifies two sequences when the components of one are

a cyclic permutation of the components of the other. Thus ∼ partitions Seqk(A) into

orbits of size k. Thus if B = Cyck(A), we have B(z) = A(z)k/k, again with possible

parameter enrichment. We now define Cyc(A) =
⋃

k≥1 Cyck(A). If B = Cyc(A),

we thus have the generating function relation

A(z) =
∞∑

k=1

1

k
B(z)k = log

1

1−B(z)
. (2.2)

A note on notation. We will often use subscripts to denote a set of allowed

sizes in the constructions Set,Mset,Cyc. For example, Cyc≤3(Z) would denote the

combinatorial class of cycles of length less than or equal to 3, and so Set(Cyc≤3(Z))

is the combinatorial class of permutations with all cycle lengths at most 3. The spec-

ification Sete(Cyc(Z), in which the e stands for even, corresponds to permutations

with an even number of cycles; similarly Set(Cyco(Z), with o for odd, corresponds

to permutations with all cycles having odd length. The corresponding generating

functions can be found by summing over only the set of allowed sizes in an analogue

of (2.1) or (2.2).

Marking components. The multivariate generating functions under considera-

tion in this thesis are in general “asymmetric”: one variable indicates size, and other

variables indicate various statistics of these objects. In particular these statistics tend
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to be smaller than the size. We will generally arrive at such multivariate generating

functions by attaching marks – these are objects of size 0 which are attached to atoms

in specifications for combinatorial structures. Generally we will denote marks by the

symbols µ and ν and they will be translated into variables u, v. For example, com-

positions of integers can be specified by C = Seq(Seq≥1(Z)) and therefore have the

generating function 1/(1− z/(1− z)) = (1− z)/(1− 2z). We may insert a “mark” in

front of each part in order to get the bivariate generating function for compositions

counted by size and number of parts; we get the specification C = Seq(µ Seq≥1Z)),

and so the generating function is

C(z, u) =
1

1− uz
1−z

=
1− z

1− (u+ 1)z
.

Similarly, we can specify permutations as P = Set(Cyc(Z)). This gives the expo-

nential generating function P (z) = exp(log 1/(1− z))) = 1/(1− z). If we mark cycles

of length k, then we have P = Set(Cyc 6=k(Z)+µCyck(Z)). Therefore permutations

counted by size and number of cycles of length k have the generating function

P (z, u) = exp

((∑
j 6=k

zj

j

)
+ u

zk

k

)

= exp

(
log

1

1− z
− zk

k
+ u

zk

k

)
=

exp((u− 1)zk/k)

1− z
.

Factors of u − 1 often appear when marking; they arise since in marking we often

replace a term in a series with the same term multiplied by u. We will sometimes

write expressions like P = Set(Cyc(Z) + (µ − 1)CyckZ) despite the fact that the

symbol − is technically meaningless in our combinatorial specification language; in
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such cases we will always be “subtracting” a set from a set which it is contained in.

2.3 Singularity analysis

In previous sections of this chapter we have seen that it is possible to write enumera-

tive and probabilistic information about a combinatorial class in terms of generating

functions associated with that class. We would like to extract asymptotic enumer-

ative results and probabilistic limit laws from generating functions. In order to do

this we will consider the generating function as an analytic object. In this section

we compile various results used in this thesis for extracting coefficients, which are

adapted to various types of singularities.

The big picture. First we consider how the radius of convergence of a generating

function is linked to the growth of its coefficients.

Theorem 2.3.1 (Hadamard). The radius of convergence of the Taylor series a0 +

a1z + a2z
2 + · · · is given by

R =
1

lim supn→∞ |an|1/n
.

It is a classical fact that such a function must have a singularity on its circle of

convergence, |z| = R. Furthermore, in the “combinatorial case” where an ≥ 0 for all

n, we have

Theorem 2.3.2 (Pringsheim). If the Taylor series of f(z) at the origin has nonneg-

ative coefficients and radius of convergence R, then the point z = R is a singularity.
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We call this singularity the dominant singularity of a combinatorial generating

function. This name is apt because of the following formula:

Theorem 2.3.3 (Exponential growth formula). [FS09, Thm. IV.7] If f(z) is analytic

at 0 and has all coefficients nonnegative, and R is the modulus of the singularity

nearest to the origin in the sense that

R = sup{r ≥ 0 : f is analytic at all points of 0 ≤ z ≤ r}

then the coefficient fn = [zn]f(z) satisfies fn = R−nθ(n), where θ(n) is a subexponen-

tial factor, i. e. lim sup |θ(n)|1/n = 1.

This is an example of what Flajolet and Sedgewick call the first principle of coef-

ficient asymptotics: “The location of a function’s singularities dictate the exponential

growth (An) of its coefficients.” Their second principle is “the nature of a function’s

singularities determines the associate subexponential factor (θ(n))”. The second prin-

ciple is rather opaque at this point but we will learn much more about it; for now,

observe that since z = 1/φ is a pole of order 1 of F (z), the subexponential factor θ(n)

is in fact a constant.

Rational functions. Singularity analysis is simplest for rational functions; in this

case it can be reduced to the partial fraction decompositions familiar from calculus.

We will consider in some depth the example of tilings of 2-by-n boards with dominoes

from Section 1.1. This will enable us to use the tools we already have to answer some

probabilistic questions in a setting where coefficient extraction is simple and exact
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formulas for coefficients can be found, before we begin to concern ourselves with the

machinery of singularity analysis proper.

We begin by observing that the Fibonacci numbers have the generating function

F (z) =
∑
n≥0

Fnz
n =

z

1− z − z2
.

To see this, we begin with the recurrence

Fn = Fn−1 + Fn−2 + Jn = 1K

where J·K are the “Iverson bracket”: Jn = 1K is 1 if n = 1 and 0 otherwise. (Knuth

[Knu92] advocates using [·] in this way but this conflicts with our notation for coeffi-

cient extraction.)

We can multiply both sides by zn and sum over n to get

∑
n≥0

Fnz
n =

∑
n≥0

Fn−1z
n +

∑
n≥0

Fn−2z
n +

∑
n≥0

Jn = 1Kzn.

The sum on the left-hand side is F (z). The first sum on the right-hand side can be

rewritten, letting m = n− 1:

∑
n≥0

Fn−1z
n =

∑
m≥−1

Fmz
m+1 = z

∑
m≥−1

Fmz
m = zF (z)

and similarly the second sum on the right-hand side is z2F (z). Finally,
∑

n≥0Jn =

1Kzn = z. So we have F (z) = (z + z2)F (z) + z; solving for F (z) gives F (z) =

z/(1− z − z2).

To derive the exact formula for the Fibonacci numbers, we can write F (z) as a

sum of partial fractions. Let φ = (1 +
√

5)/2 and τ = (1−
√

5)/2; then we have

z

1− z − z2
=

1√
5

(
1

1− φz
− 1

1− τz

)
.
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Finally, [zn]1/(1− φz) = φn and [zn]1/(1− τz) = τn, so extracting zn coefficients we

get

[zn]
z

1− z − z2
=

1√
5
(φn − τn).

So we have the classical formula for the Fibonacci numbers.

Now, the generating function F (z) = z/(1− z − z2), when treated as a complex-

analytic function, has singularities at z = 1/φ and z = 1/τ , and these singularities

are poles. The function F (z) is analytic everywhere else in the complex plane. The

singularity at 1/φ is closest to the origin, and Fn grows like φn. This is what happens

in general, although in most cases some “subexponential factor” contributes to the

asymptotics.

We return to the Fibonacci example. We can answer the following questions:

• What is the probability that the leftmost tile in a large tiling is vertical?

• What is the distribution of the number of vertical dominoes at the “left end”

of a tiling?

• What is the distribution of the number of vertical dominoes in tilings of the

2-by-n board?

(The first and second of these questions will be revisited in Section 6.4.)

For the first question, we note that the number of tilings of a 2-by-n board is Fn+1.

Tilings of 2-by-n boards in which the leftmost tile is vertical can be identified with

tilings of 2-by-(n−1) boards, so there are Fn of them. Therefore the probability that
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the leftmost tile in a 2-by-n tiling is vertical is Fn/Fn+1; as n → ∞ this approaches

1/φ = (
√

5− 1)/2. Note that we have written a probability as the ratio of the answer

to a problem in combinatorial enumeration, evaluated at two different points; we will

see this principle again, particularly in the limit laws of Chapter 4.

We can continue in the same manner to get an answer to the second question.

Tilings of the 2-by-n board which “begin” with k vertical dominoes followed by a pair

of horizontal dominoes correspond with tilings of the 2-by-(n− (k + 2)) board. The

probability that a random tiling begins with exactly k vertical dominoes is therefore

Fn−k−1/Fn+1; as n → ∞ this approaches φ−(k+2). The distribution of the number of

initial vertical tiles, then, is geometric. (Such a refinement according to the number

of initial vertical tiles also provides a proof of the identity Fn+1 = Fn−1 +Fn−2 + · · ·+

F1 + F0; see [BQ03] for many more proofs of combinatorial identities of this type.)

This probabilistic interpretation does not give the probability that a random tile

in the “interior” of a tiling is vertical, though. Domino tilings of a 2-by-n board in

which the kth column contains a vertical tile can be identified with pairs consisting

of a tiling of the 2-by-(k − 1) board and one of the 2-by-(n − k) board; thus the

probability that a random 2-by-n tiling has a vertical domino in the kth column

is FkFn−k+1/Fn+1. If we assume k and n − k are both large, then we can replace

each Fibonacci number with the leading term of the explicit formula; thus this is

approximately
1√
5
φk · 1√

5
φn−k+1

1√
5
φn+1

=
1√
5
.
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Thus the probability that a random “interior” column contains a vertical domino is

1/
√

5, and we expect that horizontal dominoes slightly predominate.

Indeed they do. The main tool here is a bivariate generating function, which

counts tilings according not just to their size, but also according to their number of

vertical dominoes. This is

P (z, u) =
1

1− uz − z2

since we can write P = Seq(µ + ), or more conventionally P = Seq(µZ+Z×Z).

The coefficient [znuk]P (z, u) is the number of tilings of the 2-by-n board with k

vertical dominoes. The series begins

P (z, u) = 1 + uz + (1 + u2)z2 + (2u+ u3)z3 + (1 + 3u2 + u4)z4 + · · ·

and indeed the number of tilings of the 2-by-4 board containing 0, 2, 4 vertical domi-

noes are 1, 3, 1. The mean number of vertical dominoes is given by the quotient

[zn]Pu(z, 1)/[zn]P (z, 1); we note that the numerator just counts the total number of

vertical dominoes in all the tilings, and the denominator counts their number. We

have Pu(z, 1) = z/(1− z − z2)2; expanding this into partial fractions gives

z

(1− z − z2)2
=

A

1− φz
+

B

(1− φz)2
+

C

(1− τz)
+

D

(1− τz)2

where A = −
√

5/50− 1/10, B = (1 +
√

5)/10, C =
√

5/50− 1/10, D = (1−
√

5)/10.

From this we can derive an exact formula for the coefficient [zn]z(1−z−z2)−2, namely

[zn]
z

(1− z − z2)2
= Aφn +B(n+ 1)φn + Cτn +D(n+ 1)τn.
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In particular Pu(z, 1) ∼ Bnφn as n → ∞. We can extract this information knowing

only the coefficient B above; in complex-analytic terms, then, we only need to know

that z = 1/φ is a pole of order 2 with residue B.

This coefficient is the total number of vertical tiles in all tilings. The mean number

of vertical tiles in a tiling, then, is asymptotic to (Bnφn/Fn+1 ∼ (Bnφn)/(φn+1/
√

5) =

B
√

5/φ)n = n/
√

5. In this case there is an exact formula for the coefficients in terms

of Fibonacci numbers, as well; it is given in [Slo10] – but the power of this approach

is that exact formulas are not necessary. Similarly we can extract the variance of

the number of vertical tiles in a random tiling. It turns out to be asymptotic to

(4
√

5/25)n as n→∞.

Saddle-point bounds. For functions which are not rational, coefficient extrac-

tion is not quite so simple as before. Our principal tool for coefficient extraction in

the remainder of this section will be Cauchy’s integral formula, applied on judiciously

chosen contours. Saddle-point methods are a broad class of methods for extracting

asymptotic information from analytic generating functions. A crude class of these are

generally useful for extracting upper bounds on the coefficients of generating func-

tions; it often turns out that these upper bounds are reasonably close to the correct

answer.

We begin by recalling Cauchy’s integral formula. Let f : C → C be a function,

analytic in an open neighborhood containing the closed disc |z| ≤ ρ. Then f has a
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power series expansion at 0, f(z) =
∑

n≥0 fnz
n. Cauchy’s integral formula states that

fn =
1

2πi

∫
γ

f(z)

zn+1
dz

where γ is the circle |z| = ρ, traversed in the counterclockwise direction.

Now, if we take the absolute value of the right-hand side, we get

fn ≤
1

2π

∫
γ

|f(z)|
ρn+1

dz ≤ ρ−n max
|z|=ρ

f(z).

If we choose ρ so that ρ−n max|z|=ρ f(z) is close to its minimum, this is often a

reasonably tight bound for fn. For contours passing through saddle points, most of

the contribution to the integral comes from the region near the saddle point, often of

width 1/
√
n; thus bounds which are off by a factor of n1/2 are common. We will in

particular need the following lemma, which can be found in Odlyzko’s survey [Odl95,

Lemma 8.1].

Lemma 2.3.4. Suppose that f(z) is analytic in |z| < R, and that [zn]f(z) ≥ 0 for

all n ≥ 0. Then for any x, 0 < x < R, and any n ≥ 0, [zn]f(z) ≤ x−nf(x).

Proof. Note that for 0 < x < R, the term fnx
n is less than f(x) itself, by nonnega-

tivity of the coefficients. Rearrange to get fn ≤ f(x)/xn, as desired.

Hayman’s method. Hayman’s method, which is essentially a saddle-point

method, is one of the first methods for “routinizing” the extraction of coefficients

from combinatorial generating functions. The previous subsection shows how to get

bounds for coefficients from considering saddle points. Hayman’s method gives a

means of extracting leading-term asymptotics.
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We call a function f(z) =
∑

n≥0 fnz
n Hayman-admissible (or just admissible) in

the disc z < R if it satisfies certain complex-analytic conditions. Instead of reproduc-

ing those conditions here, we give some sufficient conditions for admissibility, from

[Wil94, p. 184]:

• If f is admissible, then so is exp f .

• If f and g are both admissible in the disc |z| < R, so is their product fg.

• Let f be admissible in |z| < R. Let P be a polynomial with real coefficients

and positive leading coefficient; if R ≤ ∞, further assume P (R) > 0. Then the

product fP is admissible in |z| < R.

• Let P be a polynomial with real coefficients, and let f be admissible in |z| < R.

Then f + P is admissible, and P (f(z)) is admissible if P has positive leading

coefficient.

• If P is a nonconstant polynomial with real coefficients, f(z) = expP (z), and

[zn]f(z) > 0 for all sufficiently large n, then f(z) is admissible in the plane.

Now we define auxiliary functions a(r) = rf ′(r)/f(r), and

b(r) = ra′(r) = r
f ′(r)

f(r)
+ r2 f

′′r

f(r)
− r2

(
f ′(r)

f(r)

)2

.

Under these conditions we have the following asymptotic estimate.

Theorem 2.3.5 (Hayman). [Hay56, Wil94] Let f(z) =
∑
fnz

n be an admissible

function. Let rn be the positive real root of the equation a(rn) = n, for each positive
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integer n. Then

fn ∼
f(rn)

rn
n

√
2πb(rn)

as n→∞.

Hayman initially provided this estimate in order to derive Stirling’s formula,

n! ∼
√

2πn(n/e)n. If we take f(z) = exp(z) then we have fn = 1/n!, and exp(z)

is admissible. We will use this estimate in Section 5.10 to derive estimates for the

number of permutations with all cycle lengths in some finite set S; these have generat-

ing function which are expP (z) for some polynomial P , and are therefore admissible

in the case where the members of S do not have a nontrivial common multiple.

Flajolet-Odlyzko transfer theorems. Given two real numbers φ,R with R > 1

and 0 < φ < π/2, the open domain ∆(φ,R) is defined as

∆(φ,R) = {z : |z| < R, z 6= 1, | arg(z − 1)| > φ}.

A domain is a ∆-domain at 1 if it is ∆(φ,R) for some choice of φ and R. For

ζ ∈ C \ {0}, a ∆-domain at ζ is the image of a ∆-domain at 1 under multiplication

by ζ. A function is ∆-analytic if it is analytic in some ∆-domain.

Theorem 2.3.6 (Flajolet-Odlyzko). [FS09, Thm. VI.3] Let α, β be arbitrary real

numbers. Let f(z) be a function which is ∆-analytic. If f(z) satisfies in the intersec-

tion of a neighborhood of 1 with its ∆-domain the condition

f(z) = O

(
(1− z)−α

(
log

1

1− z

)β
)

then [zn]f(z) = O(nα−1(log n)β). The same result holds if O is replaced by o.
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This is proved by applying Cauchy’s integral formula on a well-chosen contour.

The following corollary is immediate:

Corollary 2.3.7. Let f be a ∆-analytic function, and let α 6∈ {0,−1,−2, . . .}. Sup-

pose f(z) ∼ (1 − z)−α as z → 1 with z ∈ ∆. Then the coefficients of f satisfy

[zn]f(z) ∼ nα−1/Γ(α).

These results are referred to as “transfer theorems”, as they allow us to transfer

knowledge about the asymptotics of a function near its singularity to the asymptotics

of its coefficients. A simple example is the asymptotics of the number of 2-regular

graphs, following [FS09, p. 395]. We note that 2-regular graphs have the combi-

natorial specification R = Set(UCyc≥3(Z)), where UCyc is an undirected cycle

construction. Thus there are 2k ordered k-sequences corresponding to a single k-

cycle, so in (2.2) we see that A = UCyc(B) translates to A(z) =
∑

k≥1
1
2k
B(z)k =

1/2 · log(1−B(z))−1. This gives the generating function

R(z) =
e−z/2−z2/4

√
1− z

for 2-regular graphs. This function is ∆-analytic – in fact it is analytic in the complex

plane with the set {z ∈ R : z ≥ 1} removed. Furthermore R(z) ∼ e−3/4/
√

1− z

as z → 1. We can immediately read off from Corollary 2.3.7 that [zn]R(z) ∼

e−3/4n−1/2Γ(1/2)−1 = e−3/4/
√
πn.

To obtain more refined asymptotics of [zn]f(z) for functions f which are analytic

at z = 0, it often suffices to obtain asymptotic expansions for f(z) in terms of well-

understood functions and apply the transfer theorems.
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We begin by defining asymptotic expansions. A sequence of functions ω0, ω1, . . .

is said to constitute an asymptotic scale if all functions ωj exist in a common neigh-

borhood of some point s0, and if they satisfy there ωj+1(s) = o(ωj(s)), that is,

lims→s0 ωj+1(s)/ωj(s) = 0. (We may have s0 = ∞.) Given such a scale, a func-

tion f is said to admit an asymptotic expansion in ω0, ω1, . . . if there exist complex

coefficients λ0, λ1, . . . such that for each integer m,

f(s) =
m∑

j=0

λjωj(s) +O(ωm+1(s)) (2.3)

as s→ s0. We can write f(s) ∼
∑∞

j=0 λjωj in this case; sometimes we will explicitly

indicate the error term, analogously to (2.3), especially if we wish to emphasize that

certain of the λj are zero.

One particularly useful asymptotic scale is the functions of the form (1 −

z)−α(log(1/(1 − z)))β, which we will call the standard scale. The following theo-

rems are from [FS09, Sec. VI.2], which also includes a table of asymptotic forms of

various commonly occurring functions.

Theorem 2.3.8. Let α be an arbitrary complex number in C \ Z≤0. The coefficient

of zn in f(z) = (1 − z)−α admits for large n a complete asymptotic expansion in

descending powers of n,

[zn]f(z) ∼ na−1

Γ(a)

(
1 +

∞∑
k=1

ek

nk

)

where ek is a polynomial in α of degree 2k. In particular e1 = α(α − 1)/2, e2 =

α(α− 1)(α− 2)(3α− 1)/24, e3 = α2(α− 1)2(α− 2)(α− 3)/48.
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This can be viewed as a refinement of the binomial theorem with negative expo-

nent,

[zn](1− z)−α = (−1)n

(
−α
n

)
=

(
n+ α− 1

n

)
=

Γ(n+ α)

Γ(α)Γ(n+ 1)

where Γ(n+ α)/Γ(n+ 1) ∼ nα−1 from Stirling’s formula.

In the cases where logarithms occur, we have a series in descending powers of

log n:

Theorem 2.3.9. Let α be an arbitrary complex number in C \ Z≤0. The coefficient

of zn in the function f(z) = (1 − z)−α(1/z · log 1/(1 − z))β admits a full asymptotic

expansion in descending powers of log n,

[zn]f(z) ∼ nα−1

Γ(α)
(log n)β

[
1 +

C1

log n
+

C2

log2 n
+ · · ·

]

where Ck =
(

β
k

)
Γ(α) dk

dsk
1

Γ(s)

∣∣∣
s=α

.

We can use these results to obtain an asymptotic expansion for the number of

2-regular graphs on n vertices. Note that R(z) = exp(−z/2 − z2/4)/
√

1− z, the

exponential generating function of such graphs, is ∆-analytic. We take the Taylor

series of exp(−z/2− z2/4) at z = 1 to get

e−z/2−z2/4 = e−3/4 + e−3/4(1− z) +
e−3/4

4
(1− z)2 − e−3/4

12
(1− z)3 +O((1− z)4)

and so

R(z) ∼ e−3/4(1−z)−1/2+e−3/4(1−z)1/2+
e−3/4

4
(1−z)3/2−e

−3/4

12
(1−z)5/2+O((1−z)7/2).
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We now apply Theorem 2.3.8 to each term with absolute error O(n−9/2):

[zn](1− z)−1/2 =
1√
πn

(
1− 1

8n
+

1

128n2
+

5

1024n3
+O(n−4)

)
[zn](1− z)1/2 =

1√
πn3

(
−1

2
+

3

16n
+

25

256n2
+O(n−3)

)
[zn]

1

4
(1− z)3/2 =

1√
πn5

(
3

16
+

45

128n
+O(n−2)

)
[zn]

−1

12
(1− z)5/2 =

1√
πn7

(
−1

9
+O(n−1)

)
Adding these together (after multiplication by e−3/4) gives an asymptotic series

for [zn]R(z),

[zn]R(z) =
e−3/4

√
πn

(
1− 5

8n
+

49

128n2
+

3161

9216n3
+O(n−4)

)
.

This illustrates the general principles for deriving asymptotic series. First, fix the

desired level of accuracy, and expand the function in question around its singularity,

obtaining all terms which after transferring will contribute at this level or higher

(above, O(n−9/2)). Then obtain the asymptotic expansion of the Taylor coefficients

of each term, again only to the necessary level of accuracy; finally add all the series

together.

Finally, in some cases there are finitely many singularities at the same distance;

these are all “dominant singularities”. The result is that we take the separate con-

tributions from each singularity on the circle of convergence and add them together.

Formally this is given by the following theorem.

Theorem 2.3.10 (Singularity analysis for multiple singularities). [FS09, Thm. VI.5]

Let f(z) be analytic on |z| < ρ and have a finite number of singularities on the circle
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|z| = ρ, at points ζ1, . . . , ζr. Assume that there exists a ∆-domain ∆0 such that f(z)

is analytic in the indented disc D =
⋂r

j=1(ζj · ∆0), where ζ · ∆0 is the image of ∆0

under multiplication by ζ. Assume that there exist r functions σ1, . . . , σr, which are

each a linear combination of functions from the standard scale, and a function τ from

the standard scale such that

f(z) = σj(z/ζj) +O(τ(z/ζj))

as z → ζj in D. Then the coefficients of f(z) satisfy the asymptotic estimate

fn =
r∑

j=1

ζ−n
j σj,n +O(ρ−nτ ∗n)

where each σj,n has its coefficients determined by Theorems 2.3.8, 2.3.9, and τ ∗n =

na−1(log n)b if τ(z) = (1− z)−a
(

1
z
log 1

1−z

)b
.

Meinardus’ theorem. Meinardus’ theorem can be used to extract the asymp-

totics of infinite product generating functions of the form
∏

n≥1(1 − zn)−ak , where

the sequence of ak has a reasonably nice structure. This theorem is originally due to

[Mei54a, Mei54b]. An English-language exposition can be found in [And98, Ch. 6]

The coefficient [zn]f(z) is the number of partitions of n into parts in which there

are ak parts of type k for each k. (In most cases that we will consider, the ak are

positive integers and it is practical to think of these types as “colors”.)

To this product we associate the Dirichlet series α(s) =
∑

n≥1 an/n
s. Assume

that α(s) can be analytically continued to a meromorphic function on the half-plane

Re(s) ≥ −C0 for some C0 > 0, and that in this half-plane α is analytic except for
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a simple pole at ρ > 0 with residue A. Furthermore, we must have the following

“concentration conditions”:

• α(s) = O(|t|C1) uniformly in σ ≥ −C0 as |t| → ∞, where s = σ + it with σ, t

real and C1 is a fixed positive real number.

• Let g(τ) =
∑∞

n=1 ane
−τn. Then if τ = y + 2πix, and for | arg τ | > π/4 and

|x| ≤ 1/2, we have Re(g(τ))− g(y) ≤ −C2y
−ε for small enough y, where ε > 0

is arbitrary and C2 depends on ε.

Given these conditions, we have Meinardus’ theorem:

Theorem 2.3.11 (Meinardus). As n→∞,

r(n) = Cnκ exp(Knρ/(ρ+1))(1 +O(n−κ1))

where the constants in the asymptotic form are

K = (1 + ρ−1)(AΓ(ρ+ 1)ζ(ρ+ 1))1/(ρ+1)

κ =
α(0)− 1− ρ/2

1 + ρ

C = eα′(0)(2π(1 + ρ))−1/2[AΓ(ρ+ 1)ζ(ρ+ 1)](1−2α(0))/(2ρ+2)

and the exponent in the relative error is

κ1 =
α

α+ 1
min

(
C0

α
− δ

4
,
1

2
− δ

)

for an arbitrary real number δ.
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In particular, if S is a periodic subset of the positive integers – that is, if S is can

be written as the set of integers congruent to one of {r1, . . . , ra} modulo k – then

these concentration conditions holds [Bre86].

Wright’s expansions. In Chapter 5 there are many functions the coefficients

of which are determined from the fact that they resemble exp(σ/(1 − z)) for some

constant σ > 0. The leading-term asymptotics of their coefficients were explicitly

given by E. M. Wright.

Theorem 2.3.12 (Wright). [Wri32, Thm. 2 and Thm. 3]

(a) The leading-term asymptotics for

cn = [zn](1− z)βΦ(z) exp

(
σ

1− z

)
where β is a complex number, Φ(z) is regular in the unit disk, and σ is a real

number, are given by

cn =
1

nβ/2+3/4

[
exp(2

√
σn)

1

2
√
π

Φ(1)eσ/2σβ/2+1/4

]
(1 +O(n−1/2)).

(b) The leading-term asymptotics for

[zn]

(
log

1

1− z

)k

(1− z)βΦ(z) exp

(
1

1− z

)
with k a positive integer can be derived from that for the k = 0 case by differ-

entiating k times with respect to β and switching signs if k is odd.

In particular, in the k = 1 case we have

cn =
log n

2nβ/2+3/4

[
exp(2

√
n)

1

2
√
π

Φ(1)e1/2

]
(1 +O(n−1/2)).
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2.4 Other miscellaneous results

The Euler-Maclaurin formula. One central theme of this thesis is the approxi-

mation of the discrete by the continuous. We seek limit laws for large combinatorial

structures, and often statistics of these large combinatorial structures are given by

sums. It is natural to approximate these sums by integrals. The Euler-Maclaurin

formula makes such approximation rigorous, and in addition allows us to derive a

full asymptotic series for such sums in which the leading term is the corresponding

integral.

Define the Bernoulli numbers Bk by giving their exponential generating function

t/(et − 1) =
∑∞

m=0Bmt
m/m!. In particular we have B0 = 1, B1 = −1/2, B2 =

1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, and B2j+1 = 0 for j ≥ 1. Then we have

Theorem 2.4.1 (Euler-Maclaurin). [GKP94] Let f be a smooth function defined on

the reals. Then we have the asymptotic series

b∑
n=a

f(n) ∼
∫ b

a

f(x) dx+
f(a) + f(b)

2
+

∞∑
k=1

B2k

(2k)!

(
f (2k−1)(b)− f (2k−1)(a)

)
where a and b are integers.

In a typical case we will hold a constant and let b→∞. In this case it is enough

to have f defined on the interval [a,∞).

Central limit theorems. We will often be dealing with distributions which

come from adding up a large number of small, independent or “almost independent”

contributions; we will want to prove that limit distributions arising in these cases are

47



normal. For this purpose we will need the following central limit theorems.

We begin with the Lyapunov central limit theorem. This theorem shows that the

partial sums of certain sequences of independent random variables with finite mean

and variance, once standardized, converge to the standard normal. The Lyapunov

condition (2.4) amounts to showing that no single summand dominates the sum.

Theorem 2.4.2 (Lyapunov). [Dur04] Let Y1, Y2, . . . be independent random variables

with finite mean and variance, E(Yn) = µn and V(Yn) = σ2
n. Let s2

n =
∑n

k=1 σ
2
k. If

for some δ > 0, E(|Yk|2+δ) is finite for k = 1, 2, . . . and the Lyapunov condition

lim
n→∞

1

s2+δ
n

n∑
k=1

E(|Yk − EYk|2+δ) = 0 (2.4)

is satisfied, then the standardization (
∑n

k=1(Yn − µn))/sn converges in distribution to

a standard normal random variable as n→∞.

Theorem 2.4.3 (Lindeberg-Feller). For each n, let Xn,m, 1 ≤ m ≤ n, be independent

random variables with expectation 0. Suppose that:

(i) limn→∞
∑n

m=1 EX2
n,m = σ2 for some positive constant σ.

(ii) For all ε > 0, the truncated expectation limn→∞
∑n

m=1 E(X2
n,mJXn,m > εK) = 0.

Then let Sn = Xn,1+· · ·+Xn,n. Then the Sn converge in distribution to a standard

normal with mean 0 and standard deviation σ as n→∞.

This says that the sum of a large number of small independent effects has ap-

proximately normal distribution. The condition in (ii), like the Lyapunov condition,

amounts to showing that no single summand dominates the sum. In fact the Linde-

berg condition follows from the Lyapunov condition [Bil95, p. 362].

48



Theorem 2.4.4 (Renewal CLT). Let Y1, Y2, . . . be iid positive random variables, with

EYi = µ and VYi = σ2 positive real numbers. Let Sn = Y1 + · · · + Yn and let

Nt = sup{m : Sm ≤ t}. Then as n→∞,

Nt − t/µ√
σ2t/µ3

d→ N(0, 1).

That is, the time until the sum of the Yi reaches t is asymptotically normally

distributed, with mean t/µ and variance σ2t/µ3.

Method of moments. Finally, many distributions to be considered in the text

will be found by the method of moments: we will argue that a random variable has

certain moments and then that this suffices to specify the random variable in question.

Theorem 2.4.5 (Stieltjes moment problem). Let ν0, ν1, . . . be a sequence of positive

real numbers. If lim supk→∞ ν
1/2k
k /2k <∞, then there is at most one distribution on

[0,∞) with kth moment equal to νk.

Proposition 2.4.6. The moments of a distribution with finite support uniquely de-

termine the distribution.

See [FS09, p. 778] for a proof.

Proposition 2.4.7. If Fn(x) for n = 0, 1, 2, . . . are the distribution functions of

random variables and

lim
n→∞

∫ ∞

−∞
(x)kdFn(x) =

∫ ∞

−∞
(x)kdF (x)

and F is characterized by its moments, then the Fn converge in distribution to F .

See [Bil95, Thm. 30.2] for a proof.
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Chapter 3

Boltzmann samplers

3.1 Definition of Boltzmann samplers

Boltzmann samplers are a family of algorithms, first given in [DFLS04], used to

generate random combinatorial structures. The classical paradigm for the generation

of random combinatorial structures, as exemplified by [NW78], has concentrated on

generating objects of fixed size. In Boltzmann sampling, on the other hand, a measure

is specified on all the members of a combinatorial class, of any size; by making a

small sacrifice in precision one is able to create much faster and easier-to-implement

algorithms. Furthermore, we will see in the remainder of this thesis that Boltzmann

samplers enable one to guess quite easily various probabilistic results on random

combinatorial structures.

Definition 3.1.1. Let C be a combinatorial class with generating function C(x) =
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∑
n≥0

Cn

ωn
xn, where either ωn ≡ 1 for all n (the ordinary case) or ωn = n! for all n (the

exponential case). Then the Boltzmann distribution on C with positive real parameter

x, where the sum giving C(x) converges, assigns to each object γ ∈ C the probability

Px(γ) =
x|γ|

ω|γ|

1

C(x)
.

A Boltzmann sampler ΓC(x) for a class C is a procedure which generates objects from

C according to the Boltzmann distribution.

We must show, of course, that Boltzmann samplers can be constructed. In Section

2.2 we saw an introduction to the symbolic method in combinatorics. The symbolic

method allows us to recursively specify combinatorial classes, building up each class

from atoms via a few basic constructions. We now show how these constructions can

be transformed into Boltzmann samplers.

Unlabelled objects. Many unlabelled combinatorial classes are built up from

simpler classes using the operations of disjoint union, Cartesian product, and se-

quence. So, given combinatorial classes A and B with Boltzmann samplers ΓA,ΓB,

we must construct Boltzmann samplers Γ(A+B),Γ(A×B),Γ(Seq(A)).

Disjoint union. Let A and B be combinatorial classes, with C = A+B; objects

in C inherit their sizes from A and B. By disjointness, Cn = An + Bn, and so the

generating functions satisfy C(z) = A(z) +B(z).

Now consider a random element of C from the Boltzmann distribution with pa-
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rameter x. The probability that such an element comes from A is

∑
α∈A

x|α|

C(x)
=
∑
n≥0

Anx
n

C(x)
=
A(x)

C(x)

and, conditioned on coming from A, the distribution of objects is exactly the

Boltzmann-x distribution on A. Therefore a Boltzmann sampler on C with parameter

x is as follows:

• Generate a Bernoulli random variable with mean A(x)/C(x).

• If this Bernoulli has value 1, return the output of ΓA(x), otherwise return the

output of ΓB(x).

Cartesian product. Again letA and B be combinatorial classes, with C = A×B;

if γ = (α, β) for α ∈ A, β ∈ B, then |γ| = |α| + |β|. Then C(z) = A(z)B(z). The

probability of γ ∈ C in the Boltzmann model is then

Px(γ) =
x|γ|

C(x)
=

x|α|

A(x)

x|β|

B(x)
= Px(α)Px(β).

Therefore a Boltzmann sampler ΓC(x) on C = A × B can be constructed by calling

ΓA(x) and ΓB(x) independently.

Sequence. Let A be a combinatorial class, and C = Seq(A). Then

Seq(A) = 1 +A+ (A×A) + · · · =
∑
n≥0

An.

The generating functions satisfy

C(z) = 1 + A(z) + A(z)2 + · · · =
∑
n≥0

A(z)n =
1

1− A(z)
.
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Although this is an infinite sum we can treat it analogously to finite sums. A Boltz-

mann sampler ΓC(x) is obtained by calling ΓAn(x) with probability A(x)n/C(x) =

A(x)n(1−A(x)), for each n. That is, call ΓAN(x) where N is a geometric random vari-

able with rate A(x). The probability of obtaining the sequence α = (α1, α2, . . . , αn)

is therefore

A(x)n(1− A(x))
x|α1|

A(x)
· · · x

|αn|

A(x)
= (1− A(x))x|α1|+···+|αn| =

x|α|
C(x)

in accordance with the definition.

Alternatively, we can proceed from first principles and note that C = 1 +A× C,

where 1 represents the empty sequence. Therefore an alternative implementation of

ΓC(x) is as follows: return the empty sequence with probability 1/C(x) = 1−A(x),

and with probability A(x) return the pair (ΓA(x),ΓC(x)). The formulation in terms

of geometric random variables essentially “unrolls” this construction. In particular,

we note that in the Boltzmann distribution on the class C = Seq(A), the number of

parts of an object has a geometric distribution.

This does not, however, mean that the corresponding fixed-size objects have a

geometric distribution for their number of parts; we will see this for compositions.

Rather, it follows from the fact that Boltzmann samplers for sequences tend to have

size which is roughly geometrically distributed, and the number of parts is near some

constant multiple of the size; compositions are an example.

Labelled structures. For labelled structures we can construct Boltzmann sam-

plers in the same way as for unlabelled structures; in this case we must use exponential
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generating functions instead of ordinary generating functions. The samplers for dis-

joint union and sequence carry over unchanged. We replace the Cartesian product

A×B with the labelled product A?B previously defined; then a Boltzmann sampler

ΓC(x) for C = A ? B can still be constructed by calling ΓA(x) and ΓB(x) indepen-

dently, and completing with a randomly chosen relabeling. Sequences in the labelled

world are constructed from sums and products, and thus proceed in the same manner

as in the unlabelled world.

Set. Let C = Set(A), and assume that a Boltzmann sampler ΓA(x) exists. The

sampler ΓC(x) will work by calling ΓA(x) repeatedly. Recall that C(x) = expA(x).

Now, the probability that an element of C chosen from the Boltzmann-x distribution

consists of k components is

1

C(x)

A(x)k

k!
= e−A(x)A(x)k

k!

since k-component sets drawn from A have the generating function A(x)k/k!. This is

the probability that a Poisson random variable with mean A(x) takes the value k. So

for C = Set(A), the sampler ΓC(x) works by sampling a Poisson random variable of

mean A(x), which we call k, and then calling ΓA(x) k times.

Cycle. Let C = Cyc(A); as with sets, a Boltzmann sampler for cycles will

work by calling the Boltzmann sampler for the components repeatedly. Recall that

C(x) = log(1/(1 − A(x)). The probability that an element of C chosen from the
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Boltzmann-x distribution consists of k components is

1

C(x)

A(x)k

k
=

1

log
(

1
1−A(x)

)A(x)k

k
.

This is the probability that a “logarithmic” random variable with rate A(x) takes the

value k. The logarithmic random variable with rate λ has law

P(X = k) =
1

log 1
1−λ

λk

k

For example, the class of permutations has the specification Set(Cyc(Z)) – that

is, permutations are sets of cycles of atoms. Since the outer construction here is Set,

Boltzmann-sampled permutations with parameter x have a number of cycles which is

Poisson-distributed. The mean of this Poisson is given by evaluating the generating

function of cycles, log 1/(1 − x). This gives a first example of the use of Boltzmann

samplers for approximate statistics of combinatorial classes; as we will see the mean

size of a Boltzmann-x permutation is 1/(1 − x), so we can quickly predict that a

random permutation of [n] has about log n cycles.

We will rarely explicitly use the cycle construction. Rather, we prefer to write

Cyc = Cyc1 + Cyc2 + · · · , which gives for example

Set(Cyc(Z)) = Set(Cyc1(Z) + Cyc2(Z) + · · · )

= Set(Cyc1(Z))× Set(Cyc2(Z))× · · ·

Thus we can create a set of cycles by creating a set of cycles of each possible length

and juxtaposing all the cycles thus obtained. So we need a Boltzmann sampler for
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Cyck(A) given one for A. It suffices to use the Boltzmann sampler for Seqk(A) = Ak

– that is, to generate k objects from A in sequence – and consider two sequences to

be the same cycle if they are equivalent up to cyclic permutation. This provides

the Boltzmann sampler for permutations in terms of individual cycle lengths. The

exponential generating function of Cyck(Z) is xk/k, so to generate a permutation,

generate P(xk/k) cycles of length k, independently for each k.

3.2 Some philosophy

Boltzmann models for the analysis of combinatorial objects derive much of their power

from the simplicity of the Boltzmann sampler for Cartesian or labelled products.

Therefore in cases where it is possible to write a combinatorial class as a product of

other combinatorial classes, we can treat the “factor” classes as independent.

One example of this can be seen in the cycle structure of permutations. Consider

permutations of [n] chosen uniformly at random. Let Xk, a random variable, be

the number of cycles of length k in such permutations. Then it is well-known that

as n → ∞ with k fixed, Xk converges in distribution to the Poisson with mean

1/k. Furthermore the pair (Xk, Xl) converges in distribution to a pair of independent

Poissons with means 1/k, 1/l, and similarly for larger tuples.

The (joint) Poisson distribution follows from the following lemma [Wat74]:
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Proposition 3.2.1. For nonnegative integers k1, . . . , kr,

En

(
r∏

j=1

(Xj)kj

)
=

(
r∏

j=1

(
1

j

)kj

)
J

r∑
j=1

jkj ≤ nK

Proof. Consider the generating function counting permutations by their total size

and number of cycles of each length 1, 2, . . . , r, marked by z and u1, u2, . . . , ur . This

generating function is

P (z, u1, . . . , ur) =
exp

(∑r
j=1

(uj−1)zj

j

)
1− z

as can be seen from the class specification P = Set(Cyc>r(Z) +µ1Cyc1(Z) + · · ·+

µrCycr(Z)). The desired moment can be obtained by differentiation:

En

(
r∏

j=1

(Xj)kj

)
=

[zn] ∂k1

∂u
k1
1

· · · ∂kr

∂ukr
r
P (z, u1, . . . , ur)

∣∣∣
u1=···=ur=1

[zn]P (z, 1, . . . , 1)
.

We have P (z, 1, . . . , 1) = 1/(1− z), so the denominator is 1. The numerator is

[zn]

∏r
j=1

(
zj

j

)kj

1− z
=

r∏
j=1

1

jkj
[zn]

z
P

j jkj

1− z
.

This coefficient is 1 if n ≥
∑

j jkj and 0 otherwise, giving the desired result.

To keep the notation reasonably clean, we find joint moments of the tuple

(X1, . . . , Xr); but we can of course fix any of the kj to be zero, so this propo-

sition actually includes all joint moments of any of the Xi. For n large enough,

these moments are exactly the joint factorial moments of the Poisson distribution

(P(1),P(1/2), . . . ,P(1/r)). In fact, these joint factorial moments are exactly those

of the joint Poisson exactly when n is “large enough” to fit kj cycles of length j for
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each j, therefore permitting the factorial moment to be larger than zero. From the

method of moments, the cycle counts of an n-permutation converge in distribution

to independent Poissons.

The Boltzmann sampler for permutations, on the other hand, assigns P(xk/k)

cycles to each length k, independently. The asymptotic independence seen in the

fixed-case model is replaced by exact independence. Furthermore in the “critical”

case where k = 1, which corresponds to permutations of large sets, the distributions

of the cycle counts in the Boltzmann sampler are exactly the limiting distribution

from the fixed-size model.

The Boltzmann model originates in statistical mechanics. In statistical mechan-

ics, certain systems are said to satisfy Maxwell-Boltzmann statistics. This occurs in

the classical (non-quantum) situation in which temperature is high enough and den-

sity low enough that quantum effects are negligible. In such systems, configurations

with energy equal to E have a probability of occurrence proportional to e−E/kBT ,

where E is energy, kB is the Boltzmann constant, and T is inverse temperature. If

we set kB ≡ 1 (equivalent to a change of units) and T = 1/β, then the probability

of occurrence of states with energy E is proportional to e−βE. Setting x = e−β and

identifying the size of a combinatorial configuration with the energy of a thermo-

dynamical system, we recover the Boltzmann model. Note that the “atoms” in our

combinatorial objects, whether the structures are labelled or unlabelled, still satisfy

the Maxwell-Boltzmann statistics. There is not an immediately obvious analogue
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to the Bose-Einstein or Fermi-Dirac distributions occurring in quantum statistical

mechanics, in which particles become quantum-mechanically indistinguishable.

3.3 Formulas for the mean and variance of object

size

The Boltzmann framework gives sampling algorithms that run quickly, are easy to

program, and are easy to analyze – but with the tradeoff of not generating objects all

of the same size. Thus it is useful to quantify exactly how much of a tradeoff this is.

Proposition 3.3.1. [DFLS04, Thm. 2.1] The size of objects in a class C produced

from the Boltzmann distribution with parameter x has first and second moments sat-

isfying

Ex(N) =
xC ′(x)

C(x)
,Ex(N

2) =
x2C ′′(x) + xC ′(x)

C(x)
.

Proof. The probability generating function of the random size N is

∑
n≥0

Px(N = n)zn =
C(xz)

C(x)
.

This gives the factorial moments

Ex((N)j) =

(
∂j

∂zj

C(xz)

C(x)

)
z=1

=
xjC(j)(x)

C(x)
.

In particular we have for j = 1, 2

Ex(N) =
xC ′(x)

C(x)
,Ex(N(N − 1)) =

x2C ′′(x)

C(x)

and adding these gives Ex(N
2) by linearity of expectation.
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The variance of the size, then, is given by

Vx(N) = x
d

dx
Ex(N) =

(
x d

dx

)2
C(x)

C(x)
−

(
x d

dx
C(x)

C(x)

)2

.

We can see that Ex(N) is an increasing function of x, as long as C contains objects

of at least two different sizes. Since Vx(N) = x d
dx

Ex(N) and Vx(N) > 0, we have

that d
dx

Ex(N) > 0 as well; thus Ex(N) is increasing.

On the other hand, Vx(N) is not necessarily an increasing function of x, for

0 < x < xc. The simplest case is C(x) = 1 + x. In this case N is Bernoulli with

mean x/(1+x), and therefore Vx(N) is maximized when x/(1+x) = 1/2, i. e. when

x = 1. The variance Vx(N) is an increasing function of N in cases where there are

“enough” objects of large size, however. One example is the case C(x) = expA(x),

where A(x) has all Taylor coefficients nonnegative; this corresponds to C = Set(A).

In this case we have

Vx(N) = xA′(x) + x2A′′(x),
d

dx
Vx(N) = A′(x) + 3xA′′x+ x2A′′′(x).

Since all the Taylor coefficients of A(x) are nonnegative, the same is true for

d/dxVx(N).

3.4 The rule of thumb

Let Xn, for n = 1, 2, 3, . . ., be a family of random variables. Let µn = EXn and

σn =
√

VXn be the mean and variance of Xn. We recall that if σn = o(µn) as
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n→∞, then the distribution of Xn is concentrated around its mean; that is,

lim
n→∞

P
(

1− ε ≤ Xn

µn

≤ 1 + ε

)
= 1

as n→∞. (See [FS09, Prop. III.3].)

Nothing in this definition requires n to be an integer; thus we can define concen-

tration of a family of random variables indexed by the positive real numbers in this

way.

Now, fix a combinatorial class A, and let µ(x), σ(x) denote the mean and standard

deviation of the size of Boltzmann-xA-objects. These are both increasing functions of

x, and so σ(µ−1(n)) is also an increasing function. This gives the standard deviation

of the size of Boltzmannized A-objects, where the Boltzmann parameter has been

chosen to make the mean object size n.

In the previous section we derived formulas for the mean and variance of the size

of Boltzmann-sampled objects. We can apply these results to Boltzmann-sampled

objects and distinguish between combinatorial classes for which the size of the Boltz-

mannized objects is concentrated and those for which it is not. It appears that for

classes for which the size of the Boltzmannized objects are concentrated, results on

Boltzmannized objects translate well into results on fixed-size combinatorial objects;

the translation does not work as well for classes for which the size of Boltzmannized

objects is not concentrated.

Involutions. Involutions have the exponential generating function A(x) =
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exp(x+ x2/2). From this we have

µ(x) =
xA′(x)

A(x)
= x+ x2, σ2(x) =

(x∂x)
2A(x)

A(x)
− µ(x)2 = x+ 2x2.

Thus we have µ−1(n) = (
√

1 + 4n− 1)/2, and so

σ2(µ−1(n)) = 2n−
√

1 + 4n− 1

2
∼ 2n.

So involutions are a concentrated class.

More generally, for permutations with all cycle lengths in some finite set S, let

A(x) = exp(P (x)), where P (x) =
∑

s∈S x
s is the generating polynomial of S. Then

we have

µ(x) =
xA′(x)

A(x)
=
xP ′(x)eP (x)

eP (x)
= xP ′(x) =

∑
s∈S

sxs

and

σ2(x) =
(x∂x)

2A(x)

A(x)
− µ(x)2 =

(xP ′ + x2P ′′ + x2(P ′)2)eP

eP
− (xP ′)2

= xP ′(x) + x2P ′′(x)

=
∑
s∈S

sxs +
∑
s∈S

s(s− 1)xs =
∑
s∈S

s2xs.

In particular, µ−1(n) ∼ (n/m)1/m as n → ∞, where m = maxS. We have

σ2(n) ∼ m2xm as x→∞, so σ2(µ−1(n)) ∼ m2(n/m) = mn. Thus permutations with

their cycle lengths restricted to any finite set are a concentrated class.

Partitions. Consider the Boltzmann sampler for partitions into distinct parts.

This includes a part of size k with probability xk/(1 + xk).

Proposition 3.4.1. The mean number of parts of a partition drawn from the Boltz-

mann sampler of parameter x is asymptotic to (1− x)−1 log 2, as x→ 1−.
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Proof. The mean number of parts is given by

∑
k≥1

xk

1 + xk
.

We can approximate this sum by the integral∫ ∞

0

xk

1 + xk
dk

Now, we can do a change of variable in order to find this integral: let u = xk, so

k = (log u)/(log x) and dk = du/(u log x). This gives∫ 0

1

u

1 + u

du

u log x
=

1

log x

∫ 0

1

1

1 + u
du =

− log 2

log x
.

Since log x ∼ x− 1 as x→ 1−, we get∫ ∞

0

xk

1 + xk
dk =

− log 2

log x
.

We next need to check how well the sum is approximated by the integral. Let

f(k) = xk/(1 + xk). Then we have the Euler-Maclaurin expansion

∑
k≥0

xk

1 + xk
=

∫ ∞

0

xk

1 + xk
dk +

f(0) + f(∞)

2
+

∞∑
j=1

B2j

(2j)!
(f (2j−1)(∞)− f (2j−1)(0))

where f (m)(∞) := limz→∞ f (m)(z). We then have

f (j)(k) =
−(logj x)Ej(−xk)

(1 + xk)j+1
(3.1)

where Ej is an Eulerian polynomial of degree j: E1(z) = z, E2(z) = z + z2, E3(z) =

z + 4z2 + z3, E4(z) = z + 11z2 + 11z3 + z4, . . ..

The Eulerian polynomials count permutations by their number of descents. We

say a permutation σ written in the one-line notation has a descent whenever σ(i) >

63



σ(i + 1). Then let A(n, k) be the number of permutations of n with k − 1 descents,

and Ej(x) =
∑∞

k=1A(j, k)xk. We prove (3.1) by induction. The k = 0 case is clear.

We can compute

d

dk

(
−(logj x)Ej(−xk)

(1 + xk)j+1

)
=

logj+1 x

(1 + xk)j+2

(
E ′

j(−xk)(1 + xk) + (j + 1)Ej(−xk)
)
xk

and so it suffices to show

Ej+1(z) = z(E ′
j(z)(1− z) + (j + 1)Ej(z)).

But this is standard; see [Com74, p. 292].

In particular f (j)(0) = −(logj x)Ej(−1)2−(j+1). This gives

∑
k≥0

xk

1 + xk
=
− log 2

log x
+

1

4
−

∞∑
j=1

B2j

(2j)!

(log2j−1 x)E2j−1(−1)

4j
.

The k = 0 term of the sum is exactly 1/2, so we can subtract 1/2 from both sides to

get ∑
k≥1

xk

1 + xk
=
− log 2

log x
− 1

4
−

∞∑
j=1

B2j

(2j)!

(log2j−1 x)E2j−1(−1)

4j

and we note that E2j−1(−1) forms the sequence of signed tangent numbers: E1(−1) =

−1, E3(−1) = 2, E5(−1) = −16, E7(−1) = 272, . . .. This follows from the generating

functions E(u, t) =
∑

nEj(u)t
n/n! = (1− u)/(1− uet(1−u)) for the Eulerian numbers

and T (x) =
∑∞

k=1 Tkx
2k−1/(2k − 1)! = (1 − e2t)/(1 + e2t) for the signed tangent

numbers, from which E(−1, t) = 1 + T (t).

Thus we have

∑
k≥1

xk

1 + xk
=

− log 2

log x
− 1

4
+

1/6

2!

(log x) · (−1)

4

+
−1/30

4!

log3 x · (2)

16
+

1/42

6!

log5 x · (−16)

64
+ · · ·
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and recalling that log x = (x− 1)− (x− 1)2/2 + (x− 1)3/3− · · · , we get

∑
k≥1

xk

1 + xk
=

log 2

1− x
−
(

1

2
log 2 +

1

4

)
+

(
1

48
− 1

12
log 2

)
(1− x)

+

(
1

96
− 1

24
log 2

)
(1− x)2 +O((1− x)3);

the series can be continued to any desired accuracy.

Proposition 3.4.2. The mean size of a partition into distinct parts drawn from the

Boltzmann sampler of parameter x is asymptotic to (1− x)−2 · π2/12, as x→ 1−.

Proof. Proceeding as before, we have the integral

∫ ∞

0

kxk

1 + xk
dk.

Again changing variables, this is

∫ 0

1

log u
log x

u

1 + u

du

u log x
=

1

log2 x

∫ 0

1

log u

1 + u
du.

The integral is improper – as u→ 0+ the integrand blows up – and evaluates to

1

log2 x

[
lim
u→0

(Li2(1 + u) + log u log(1 + u))− Li2(2)
]

and recalling that Li2(2) = −π2/12 gives the leading term. The Euler-Maclaurin

formula gives, with f(k) = kxk/(1 + xk),

∑
k≥0

kxk

1 + xk
∼
∫ ∞

0

kxk

1 + xk
dk +

f(0) + f(∞)

2
+

∞∑
k=1

B2j

(2j)!
(f (2j−1)(∞)− f (2j−1)(0)).
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Now, f(k) − k/2 is an even function of k, so f (3)(0) = f (5)(0) = · · · = 0. From this

we can find

∑
k≥0

kxk

1 + xk
∼ π2

12 log2 x
+

0 + 0

2
+

1/6

2!
(0− 1/2) +

∞∑
j=2

B2j

(2j)!
(0− 0).

Thus we have that the mean size is given by π2

12 log2 x
− 1

24
+o((1−x)k) for any positive

integer k.

Proposition 3.4.3. The variance of the size of a partition into distinct parts drawn

from the Boltzmann sampler of parameter x is asymptotic to π2

6
(1− x)−3 as x→ 1−.

Proof. Let Xk = Be(xk/(1 + xk)); we are computing

V

(∑
k≥1

Xk

)
=
∑
k≥1

V(kXk) =
∑
k≥1

k2 xk

(1 + xk)2
∼
∫ ∞

0

k2xk

(1 + xk)2
.

Changing variables, then, the variance of the size is

1

log3 x

∫ 0

1

log2 u

(1 + u)2
du

This integral is −π2/12. First, integrating by parts twice,

∫
un log2 u du =

un+1 log2 u

(n+ 1)
− 2un+1 log u

(n+ 1)2
+

2un+1

(n+ 1)3

and so ∫ 0

1

un log2 u du =
−2

(n+ 1)3
.
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Now, since (1 + u)−2 = 1− 2u+ 3u2 − · · · , we have∫ 0

1

log2 u

(1 + u)2
du =

∞∑
n=0

(−1)n(n+ 1)

∫ 0

1

un log2 u du

=
∞∑

n=0

(−1)n(n+ 1)
−2

(n+ 1)3

= 2
∞∑

n=0

(−1)n+1

(n+ 1)2
= 2

(
−π2

12

)
=
−π2

6
.

Now, as before, we have

∑
k≥1

k2xk

(1 + xk)2
∼
∫ ∞

0

k2xk

(1 + xk)2
dk+

f(0) + f(∞)

2
+

∞∑
j=1

B2j

(2j)!
(f (2j−1)(∞)−f (2j−1)(0)).

In this case f(0) = 0 by inspection, and f (2j−1)(0) = 0 for all integers j since f is an

even function. Thus we find that

∑
k≥1

k2xk

(1 + xk)2
=

∫ ∞

0

k2xk

(1 + xk)2
dk + o((1− x)k)

for any positive integer k. In powers of 1 − x, then, the variance of the size of a

Boltzmann-x partition into distinct parts is

π2

6
(1− x)3 − π2

4
(1− x)2 +

π2

12
(1− x)−O((1− x)−1).

Permutations. Permutations have the (exponential) generating function 1/(1−

x). Therefore the mean and variance of the size of Boltzmann-sampled permutations,

with parameter x, are x/(1−x) and x/(1−x)2. For x near 1, the variance is roughly

the square of the mean.

Consider the family of random variables Bx =
∑∞

k=1 kYk, where Yk is Poisson with

mean xk/k; note that Bx is the size of a random Boltzmann-x permutation.
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Proposition 3.4.4. As x→ 1−, (1−x)Bx converges in distribution to an exponential

random variable with mean 1.

Proof. The sum Bx is, as previously seen, the size of permutations chosen from the

Boltzmann distribution with parameter x. The nth moment of the size of such per-

mutations is therefore given by (x∂x)
n(1/(1− x))/(1/(1− x)).

Since the operator (x∂x) multiplies the coefficient of xk by k, we have

(x∂x)
n(1/(1− x)) =

∞∑
k=1

knxk.

The generating function of the sequence {kn}∞n=1 is

∞∑
k=1

knxk =

∑n−1
m=0A(n,m)xm+1

(1− x)n+1

where A(n,m) is an Eulerian number, the number of permutations of n with exactly

m ascents. Therefore we have

E [((1− x)Bx)
n] = (1− x)n

Pn−1
m=0 A(n,m)xm+1

(1−x)n+1

1/(1− x)
=

n−1∑
m=0

A(n,m)xm+1.

As x→ 1−, then, the right-hand side approaches
∑n−1

m=0A(n,m). This sum is just n!

since it enumerates permutations by their number of ascents. By the Stieltjes moment

problem (Thm. 2.4.5), this suffices to specify the limiting distribution. Finally, we

note that if B is exponential with mean 1, then E(Bn) = n!.

This is similar to the “sharp-cutoff” model for random permutations on n ele-

ments, in which we model the cycle type of a random permutation on n elements by

the sequence (X1, . . . , Xn) where Xk is Poisson with mean 1/k and the different Xk
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are independent. In [ABT03, Lemma 4.7] it is shown that the sum (
∑n

k=1 kXk) /n

has a limiting distribution as n→∞; however this distribution can only be given in

terms of iterated integrals.

3.5 The critical sampler and objects of infinite size

So far we have dealt with Boltzmann samplers where the Boltzmann parameter x is

a point at which C(x), the generating function of the class being sampled, converges.

By Pringsheim’s theorem, if all the coefficients of C(x) are positive, then the Taylor

series for C(x) diverges when x is the radius of convergence of C. But if we forge

ahead and run the Boltzmann sampler at this critical value nonetheless, we obtain

useful models for thinking about large combinatorial objects.

For example, in the Boltzmann sampler for permutations, we have P(xk/k) ob-

jects of size k, for each k. The exponential generating function for permutations

is 1/(1 − x), so the critical value is xc = 1. This suggests that we think of very

large permutations as having P(1/k) cycles of length k, for each k. And indeed this

is the limiting distribution for the number of cycles of length k in a random per-

mutation. Furthermore, just as the number of cycles of each length in this infinite

Boltzmann sampler are actually independent, the number of cycles of each length in

actual permutations are asymptotically independent. This philosophy even extends

to the limiting distribution of the number of cycles of length between γn and δn in a

random permutation of [n], as we will see in Section 4.9 – although this distribution
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is not Poisson, its kth moments are those of the Poisson distribution for sufficiently

small k.

For weighted permutations we can proceed in much the same way. We will consider

the weighted permutation model in which cycles of size k get a weight σk, the weight

of a permutation is the product of the weights of its cycles, and the probability of

picking a permutation is proportional to its weight. We will see more of this in

Chapter 4. The Boltzmann sampler for such objects takes P(σkx
k/k) cycles of size

k, for each k; thus in the limit there are P(σk/k) cycles for each k. Sets of lists, or

permutations in which each cycle has a distinguished “first” element, can be viewed

as the case σk = k; thus we can think of a vector of infinitely many P(1) random

variables as the cycle type of a very large set of lists.

In some cases, however, the sum
∑

k≥1 kσk converges, and therefore the expected

size of the Boltzmannized objects is finite; in these cases the structure of the short

cycles in the permutation are given by the Boltzmann sampler, and there is one very

long cycle.

For partitions of integers, the critical Boltzmann sampler does not make sense;

setting x = 1, we find that the number of parts of length 1 is a geometric random

variable with failure rate zero. But a critical sampler for partitions into distinct

parts is possible. The sampler with parameter x includes a part k with probability

xk/(1+xk). Letting x = 1, then, the critical sampler for partitions into distinct parts

includes each part with probability 1/2. That is, a very large partition into distinct
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parts can be modeled as a sequence of independent fair coin flips! In Section 6.4 this

model will be useful for probabilistic interpretation of some partition identities.

Compositions. Consider the Boltzmann sampler for compositions, which are

sequences of sequences of atoms. This Boltzmann sampler works as follows: fix a

parameter x with 0 < x < 1/2. Generate a Bernoulli random variable Be(x/(1−x)).

If this is 0, stop. If it is 1, then generate a part which is equal to k with probability

xk−1(1− x).

The critical sampler for compositions, with x = 1/2, is therefore as follows. In the

“outer loop” we never stop, since it only terminates when a Be(1) random variable

takes the value 0. Second, each part is equal to k with probability 1/2k. Alternatively,

we can interpret this in the “balls and bars” model: we generate a random composition

of infinity by generating infinitely many balls, where between each two balls we have

probability 1/2 of having a bar.

The average part is equal to
∑

k≥1 k/2
k = 2; this suggests that compositions of

n have about n/2 parts. In fact, we can apply the renewal central limit theorem to

see that the time at which a sum of geometric random variables with mean µ = 2

(and variance σ2 = 2) reaches n is asymptotically normally distributed with mean

n/µ = n/2 and variance σ2n/µ3 = n/4.

This is in fact the case. Consider compositions of [n], counted according to their

size and number of parts. These are counted by

P (z, u) =
1

1− (uz + uz2 + uz3 + · · · )
=

1

1− uz
1−z

=
1− z

1− (1 + u)z
.
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Differentiating, we have

Pu(z, 1) =
z(1− z)

(1− 2z)2
=
−1

4
+

1

4(1− 2z)2

and so, for n ≥ 1 (so we can ignore the −1/4),

[zn]Pu(z, 1) =
1

4

(
−2

n

)
(−2)n =

1

4
(−1)n(n+ 1)(−2)n = (n+ 1)2n−2.

The average number of parts of a composition of n is therefore µn := (n +

1)2n−2/2n−1 = (n+ 1)/2, as is predicted by the balls-and-bars model.

Similarly, we can find the variance of the number of parts. We have

Puu(z, 1) =
2(1− z)z2

(1− 2z)3
=

1

4

(
1− 1

1− 2z
−
(

1

1− 2z

)2

+

(
1

1− 2z

)3
)

and so, for n ≥ 1,

[zn]Puu(z, 1) =
1

4

(
−(2n)−

(
−2

n

)
(−2)n +

(
−3

n

)
(−2)n

)
=

1

4

(
−2n − (−1)n(n+ 1)(−2)n + (−1)n (n+ 1)(n+ 2)

2
(−2)n

)
= 2n−2 (−1− (n+ 1) + (n+ 1)(n+ 2)/2)

from which we find that the variance of the number of parts of a random composition

is

Puu(z, 1)

P (z, 1)
+ µn − µ2

n =
n2 + n− 2

4
+
n+ 1

2
−
(
n+ 1

2

)2

=
n− 1

4
.

Now consider only parts of length k. The generating function for compositions by

their size and number of parts equal to k is

P (k)(z, u) =
1

1−
(

z
1−z

+ (u− 1)zk
)
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Therefore the total number of k-parts in all compositions of n is

[zn]P (k)
u (z, 1) = [zn]

zk(1− z)2

(1− 2z)2
= [zn−k]

(
1− z

1− 2z

)2

.

We can easily find that [zr]
(

1−z
1−2z

)2
= (r + 3)2r−2; therefore the total number of k-

parts in all compositions of n is (n − k + 3)2n−k−2. This fact can also be proven

combinatorially. We will count compositions with distinguished k-parts. The distin-

guished k-part either comes at the beginning of a composition, at the end, or at one

of n − k − 1 intermediate positions. If the distinguished part is at the beginning or

end the composition is completed by generating a composition of n−k, which can be

done in 2n−k−1 ways. If the distinguished part starts l units from the beginning of the

composition, then the composition is completed by generating a composition of l and

a composition of n− k − l, which can be done in 2l−12n−k−l−1 = 2n−k−2 ways. Thus

there are a total of 2 · 2n−k−1 + (n− k − 1)2n−k−2 = (n− k + 3)2n−k−2 compositions

with a single distinguished k-part.

The mean number of k-parts in all compositions of n is therefore

[zn]P
(k)
u (z, 1)

[zn]P (k)(z, 1)
=

(n− k + 3)2n−k−2

2n−1
=
n− k + 3

2k+1
.

As n → ∞ with k fixed, this is asymptotic to n/2k+1, which is the prediction from

the critical Boltzmann sampler.

Proceeding similarly, we can work out the variance of the number of k-parts of a

random composition. We have

P (k)
uu (z, 1) =

2z2k(1− z)3

(1− 2z)3

73



and we observe that [zn](1− z)3/(1− 2z)3 = 2n−3(n+2)(n+7)/2. Therefore we have

[zn]P (k)
uu (z, 1) = 2n−2k−3(n− 2k + 2)(n− 2k + 7)

from which we compute that the variance of the number of k-parts is

2n−2k−3(n− 2k + 2)(n− 2k + 7)

2n−1
+
n− k + 3

2k+1
−
(
n− k + 3

2k+1

)2

which is linear in n. These results can be obtained directly from a balls-and-bars

model, but one must carefully sum covariances in a tedious case analysis. The gen-

erating function method is more systematic and does not require treating so many

different terms separately.

3.6 Historical antecedents

In combinatorial work, there are two principal papers that have used special cases

of the Boltzmann sampler. The first is that of Shepp and Lloyd [LS66]; this paper

gives the distribution of the lengths of the rth shortest or rth longest cycle of a

random permutation of [n]. They study a sequence of independent random variables

(α1, α2, . . .) where αj is Poisson of mean zj/j, where z is a parameter strictly between

0 and 1; let Pz denote probabilities with respect to this model. They show that

Pz (α1 = a1, α2 = a2, . . .) = (1− z)z
P∞

j=1 jaj

∞∏
j=1

(1/j)aj

aj!

and therefore that

Pz (α1 = a1, α2 = a2, . . .) =
∞∏

j=1

(1/j)aj

aj!
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when
∑∞

j=1 jaj = n and zero otherwise. They proceed to study this model by ob-

serving that if Φ is a function of the cycle type (α1, α2, . . .) of a random permutation,

then Ez(Φ)/(1− z) =
∑

n≥0 En(Φ)zn. The left-hand side of this relation is a function

of independent random variables and is therefore easily understood; they perform the

coefficient extraction by use of Tauberian theorems.

The limiting distribution of the length of the rth shortest cycle is discrete and

supported on the integers; the limiting distribution of the length of the rth longest

cycle, after rescaling by a factor of [n], is a nontrivial continuous distribution. The

limiting distribution of the length of the rth shortest cycle is what one would pre-

dict directly from the use of Boltzmann samplers. Let Pn denote uniform measure

on permutations of [n], and let Sr denote the length of the rth shortest cycle in a

permutation. Then Shepp and Lloyd give the formula [LS66, p. 349]

lim
n→∞

Pn(Sr = j) =

∫ Hj

Hj−1

tr−1

(r − 1)!
e−t dt

where Hj =
∑j

k=1 1/k is a harmonic number. This follows from the fact that this

integral is equal to limx→1 Px(Sr = j), where Px is the Boltzmann-x measure on

permutations, and a Tauberian side condition. In the case where r = 1, for example,

we get

lim
n→∞

Pn(S1 = j) = exp(−Hj−1)− exp(−Hj) = exp(−Hj−1)(1− e−1/j).

We have S1 = j exactly when there are 0 cycles of length 1, 2, . . . , j− 1 and at least 1

cycle of length j. In the critical Boltzmann sampler the cycle counts are independent

Poissons, from which this result follows.
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The other principal area of application is to integer partitions. In this case the

Boltzmann sampler originally appears in a paper of Fristedt [Fri93]. Fristedt considers

a random partition model denoted by Qq, where q is a parameter; this model assigns

to the partition λ the probability Qq(λ) := q|λ|
∏∞

k=1(1− qk). Then letting Xk denote

the number of parts of size k in a random partition, we see that [Fri93, Prop. 4.1]

Qq(X1 = x1, X2 = x2, . . .) =
∞∏

k=1

(1− qk)qkxk .

where (x1, x2, . . .) is a sequence of nonnegative integers. From this Fristedt proceeds

to derive many properties of the structure of partitions of large integers. This has

been extended by Vershik and collaborators [DVZ00, Ver96] to find the limiting shape

of the Young diagram of integer partitions, and the same conditioning trick was used

in [CPSW99] to study the multiplicity of parts in random partitions.

3.7 Algorithmic uses

Although we use the Boltzmann sampler as a device for analysis of random combi-

natorial structures, it was introduced (at least under this name) as a means for the

generation of random combinatorial structures. Two paradigms are possible. One is

the approximate-size paradigm, in which it suffices to generate objects with size in

some interval [(1 − ε)n, (1 + ε)n]. The other is a fixed-size paradigm, in which we

require objects of size exactly n to be generated. In many cases approximate-size

generation is possible in one trial for large objects, since the distribution of sizes is
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concentrated (i. e. has variance smaller than the mean).

If approximate-size generation is possible, then so is fixed-size generation; to gen-

erate objects of size exactly n from a combinatorial class A, we simply generate

objects from the Boltzmann-x distribution on A until we find one which is of the

right size. This method succeeds regardless of the choice of x, since the Boltzmann-x

distribution restricted to An is uniform for any choice of x and n; however we will

choose x so that µA(x) ≈ n. In this case the number of trials needed to get an

object of exact size n is proportional to σA(µ−1
A (n)), where σA(x) is the variance of

the size of A-objects chosen from the Boltzmann-x distribution. For example, if A

is Hayman-admissible, then rejection sampling [DFLS04, Thm. 6.2] takes a mean

number of trials asymptotic to
√

2πσA(µ−1
A (n)). This follows from the fact that if A

has a Hayman-admissible generating function, then the distribution of sizes of objects

generated by the Boltzmann-x sampler is asymptotically normal as x approaches its

critical value or n→∞.

One particularly interesting application is to random sampling of plane partitions

[BFP07]. A plane partition is a two-dimensional array of integers (ai,j)i,j≥1, adding

up to n, which is weakly decreasing both in rows and columns. Plane partitions

have the generating function P (x) =
∏

r≥1(1− xr)−r, due to MacMahon. The simple

form of this generating function calls for a combinatorial interpretation. But plane

partitions do not seem to be specifiable in terms of admissible constructions starting

from atoms. However Pak [Pak02] gives a bijection between plane partitions and
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the class M = Mset(Z × Seq(Z)2). The right-hand side can be thought of as

multisets of ordered pairs of nonnegative integers, where the pair (k, l) has weight

k + l + 1 and the weight of a multiset is the sum of the weights of its elements (with

multiplicity); then this bijection takes a multiset with weight n to a plane partition

of n. Then in [BFP07] this bijection is used to give an algorithm for the generation of

plane partitions, starting with the Boltzmann sampler for Mset(Z ×Seq(Z)2); this

algorithm is faster than previously known algorithms for random sampling from plane

partitions. In general, it may be possible to do some sort of “post-processing” on the

output of Boltzmann samplers to use them for generation of random objects which are

not easily specified. For example, there does not seem to be a “nice” combinatorial

specification of integer partitions such that the difference between any two parts is at

least 2. But there is a nice specification of a class equinumerous with these, namely

partitions with all parts congruent to 1 or 4 modulo 5. Equinumerosity here is a

consequence of the Rogers-Ramanujan identities, for which there are bijective proofs;

it may be possible to use one of these proofs to determine the “average shape” of the

partitions counted by the Rogers-Ramanujan identities.
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Chapter 4

Profiles of permutations

4.1 Introduction

In this chapter we study the cycle structure of random permutations in which the

lengths of all cycles are constrained to lie in some infinite set S, and permutations

may be made more or less likely to be chosen through multiplicative weights placed

on their cycles. Cycle structures viewed in this manner are a special case of certain

measures on Sn which are conjugation-invariant and assign a weight to each element

of Sn based on its cycle structure.

Definition 4.1.1. Let ~σ = (σ1, σ2, . . .) be an infinite sequence of nonnegative real

numbers. Then the weight of the permutation π ∈ Sn, with respect to ~σ, is

w~σ(π) =
n∏

i=1

σ
ci(π)
i

where ci(π) is the number of cycles of length i in π.
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Informally, each cycle in a permutation receives a weight depending on its length,

and the weight of a permutation is the product of the weights of its cycles. The

sequence ~σ is called a weighting sequence.

For each positive integer n, let (Ω(n),F (n)) be a probability space defined as follows.

Take Ω(n) = Sn, the set of permutations of [n], and let F (n) be the set of all subsets of

Sn. Endow (Ω(n),F (n)) with a probability measure P(n)
~σ for each weighting sequence

~σ as follows. Let P(n)
~σ (π) = w~σ(π)/

∑
π′∈Sn

w~σ(π′); that is, each permutation has

probability proportional to its weight. Extend P(n)
~σ to all subsets of Sn by additivity.

To streamline the notation, we will sometimes write P~σ(π) for P(n)
~σ (π). The sum of

the weights of ~σ-weighted permutations of [n] is

∑
π∈Sn

w~σ(π) = n![zn] exp

(∑
k≥1

σkz
k/k

)

by the exponential formula for labelled combinatorial structures.

We fix some notation. Define the random variable X
(n)
k : Ω(n) → Z+ by set-

ting X
(n)
k (π) equal to the number of k-cycles in the permutation π. Let X(n)(π) =∑n

k=1X
(n)
k (π) be the total number of cycles. We will often suppress π and (n) in

the notation, and we will write (for example) P~σ(X1 = 1) as an abbreviation for

P~σ({π : X
(n)
1 (π) = 1}). Let Yk = kXk. We define Yk in order to simplify the state-

ment of some results.

This model incorporates various well-known classes of permutations, including

generalized derangements (permutations in which a finite set of cycle lengths is pro-

hibited), and the Ewens sampling formula from population genetics [Ewe72], which
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corresponds to the weighting sequence (σ, σ, σ, . . .). If ~σ is a 0-1 sequence with finitely

many 1s, then this model specializes to random permutations of which all cycle lengths

lie in a finite set. These have a fascinating structure studied by Benaych-Georges

[BG07] and Timashev [Tim08]; a typical permutation of [n] with cycle lengths in a

finite set S has about 1
k
nk/ max S k-cycles, for each k in S. In particular, most cycles

are of length maxS, which may be unexpected at first glance. Analytically, this situ-

ation is studied via the asymptotics of [zn]eP (z) where P is a polynomial, as done by

Wilf [Wil86]. Yakymiv [Yak00] has studied the case, alluded to by Bender [Ben74],

in which ~σ is a sequence of 0s and 1s with a fixed density σ of 1s; the behavior of

such permutations is in broad outline similar to that of the Ewens sampling formula

with parameter σ. An “enriched” version of the model has been studied by Ueltschi

and coauthors [GRU07, UB08]. In their model, permutations are endowed with a

spatial structure. Each element of the ground set of the permutation is a point in

the plane, and weights involve distances between points. Their “simple model of ran-

dom permutations with cycle weight” [UB08, Sec. 2] is the model used here, where

σi = e−αi .

There are other combinatorially interesting conjugation-invariant measures on Sn,

including permutations with all cycle lengths distinct [GK90], and permutations with

kth roots for some fixed k [FFG+06, Pou02]. However the generating functions count-

ing these classes are not exponentials of “nice” functions and thus different techniques

are required.
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Throughout this chapter, we often implicitly assume that permutations under the

uniform measure on Sn are the “primitive” structure, and weighted permutations

are a perturbation of these. Here we follow Arratia et al. in [ABT97, ABT03], in

embracing a similar philosophy and viewing the permutation as the archetype of a

class of “logarithmic combinatorial structures”, and Flajolet and Soria’s definition of

functions of logarithmic type [FS90].

It will be convenient to use bivariate generating functions which count permuta-

tions by their size and number of cycles. In general, we take F (z, u) =
∑

n,k fn,k
zn

n!
uk

to be the bivariate generating function, exponential in z and ordinary in u, of a

combinatorial class F , where fn,k is the number of objects in F of size n and with

a certain parameter equal to k. In our case n will be the number of elements of a

permutation, and k the total number of cycles or the number of cycles of a specified

size. Then [zn] ∂
∂u
F (z, u)

∣∣
u=1

/[zn]F (z, 1) gives the expected value of the parameter

k for an object of size n selected uniformly at random. The following lemma will

frequently be useful, as it reduces the bivariate analysis to a univariate analysis.

Lemma 4.1.2. Let f(z) be the exponential generating function of permutations with

weight sequence ~σ. Then the expected number of k-cycles in a permutation chosen

according to the measure P(n)
~σ is

E(n)
~σ Xk =

σk

k

[zn−k]f(z)

[zn]f(z)
.

Proof. The bivariate generating function counting the cycles of such permutations is

σ1z + σ2
z2

2
+ · · ·+ σk−1

zk−1

k − 1
+ uσk

zk

k
+ σk+1

zk+1

k + 1
+ · · ·
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and this can be rewritten as (u − 1)σkzk

k
+
∑

j≥1
σjzj

j
. Thus, from the exponential

formula, the bivariate generating function counting such permutations is

P (z, u) = exp

(
(u− 1)

σkz
k

k
+
∑
j≥1

σjz
j

j

)
.

The expected number of cycles in a random permutation is [zn]Pu(z, 1)/[zn]P (z, 1),

giving the result.

The structure of this chapter is as follows. In Section 4.2 we give exact formu-

las and asymptotic series (Propositions 4.2.2 and 4.2.3) for the mean and variance

of the number of cycles of permutations chosen from the Ewens distribution. We

also consider the average number of k-cycles in such permutations of [n] for fixed k

(Propositions 4.2.4 and 4.2.5) and for k = αn (Proposition 4.2.6). An “integrated”

version of these results, Theorem 4.2.7, is one of the main results; this is a limit law

for the probability that a random element of a weighted permutation is in a cycle

within a certain prescribed range of lengths. In Section 4.3 we derive similar results

for permutations in which all cycle lengths have the same parity. In addition, we

determine the mean and variance of the number of cycles of such permutations (The-

orem 4.3.6 treats the odd case, and Theorem 4.3.8 treats the even case). In Section 4.4

we explore connections to the generation of random objects by Boltzmann sampling.

The main theorem of this section, Theorem 4.4.3, states that the Boltzmann-sampled

permutations of a certain class of approximate size n, including the Ewens and parity-

constrained cases, have their number of cycles distributed with mean and variance

approximately a constant multiple of log n.
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In Section 4.5 we proceed to another specific case, that of permutations with

periodic weighting sequences. These obey the same limit laws but the asymptotic

enumeration of such permutation introduces new factors. In Section 4.6 we consider

the weighting scheme σj = 1/j; in this weight scheme, permutations have one long

cycle and, on average, π2/6 short cycles. Section 4.7 considers permutations having

square roots or more generally mth roots; this is a natural example of a permutation

model with restricted multiplicities which nonetheless strongly resembles the weighted

models. In Section 4.8 we consider the weighting scheme σj = j, which corresponds

to “sets of lists”; a set of lists in [n] usually has about
√
n components, of typical size

√
n, which is a combinatorial consequence of the generating function exp(z/(1− z))

of “exponential of a pole” type. In Section 4.9 we show that the number of cycles of

a permutation of [n] of length in [γn, δn] obeys a limit law. Finally Sections 4.10 and

4.11 consider connections between random permutations and, respectively, stochastic

processes and number theory.

4.2 The Ewens sampling formula and Bernoulli de-

composition

The Ewens distribution [Ewe72] on permutations of [n] with parameter σ gives to each

permutation π probability proportional to σX(π). This corresponds to the weighting

sequence ~σ = (σ, σ, σ, . . .); we will write P(n)
σ ,E(n)

σ for P(n)
~σ ,E(n)

~σ , and call a random
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permutation selected in this manner a σ-weighted permutation. In this section we

derive formulas for the mean and variance of the number of cycles of permutations

chosen from the Ewens distribution. Note that the number of cycles can be decom-

posed into a sum of independent Bernoulli random variables. Similar decompositions

are due to Arratia et al. in [ABT03, Sec. 5.2] for general σ, and Feller [Fel45, (46)]

for σ = 1; the fact that the number of cycles is normally distributed is seen in [FS90,

Example 1]. Thus this section is largely expository; the proofs are provided for the

purpose of comparison with other proofs to be given below. The asymptotic series

for E(n)
σ and V(n)

σ appear to be new.

Theorem 4.2.1. [Pit06, Exercise 3.2.3] The distribution of the random variable X

under the measure P(n)
σ is that of the sum

∑n
k=1 Zk, where the Zk are independent

random variables and Zk has the Bernoulli distribution with mean σ/(σ + k − 1).

Proof. The generating function of permutations of [n] counted by their number of

cycles is
∑n

k=1 S(n, k)uk = u(u + 1)(u + 2) · · · (u + n − 1), where S(n, k) are the

Stirling cycle numbers. Replacing u with σu and normalizing gives the probability

generating function for the number of cycles,

n∑
k=1

S(n, k)σkuk =
σu

σ

σu+ 1

σ + 1
· · · σu+ n− 1

σ + n− 1
,

and each factor is the probability generating function for a Bernoulli random variable.

Combinatorially, we can envision this Bernoulli decomposition as follows. We
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imagine forming a permutation of [n] by placing the elements 1, . . . , n in cycles in

turn. When the element k is inserted, with probability σ/(σ+ k− 1) it is placed in a

new cycle, and with probability 1/(σ+k−1) it is placed after any of 1, 2, . . . , k−1 in

the cycle containing that element. Then the probability of obtaining any permutation

with c cycles is σc/(σ(σ+1) · · · (σ+n−1)), which is exactly the measure given to this

permutation by P(n)
σ . This is an instance of the Chinese Restaurant Process [Pit06,

Sec. 3.1].

From this decomposition into Bernoulli random variables, we can derive formu-

las for the mean and variance of the number of cycles under the measure P(n)
σ . In

particular we note that since X is a sum of Bernoulli random variables with small

mean, the variance of X is very close to its mean. Let ψ denote the digamma function

ψ(z) = Γ′(z)/Γ(z); this has an asymptotic series ψ(z) = log z− 1
2
z−1− 1

12
z−2 +O(z−4)

as z → ∞. Let Hn =
∑n

k=1
1
k

be the nth harmonic number and let γ = 0.57721 . . .

be the Euler-Mascheroni constant.

Proposition 4.2.2. The expected number of cycles of a random σ-weighted permu-

tation of [n] is E(n)
σ X = σ(ψ(n + σ) − ψ(σ)); in particular if σ is a positive integer

we have

E(n)
σ X = σ log n+ (σγ − σHσ−1) + (σ2 − σ/2)n−1 +O(n−2). (4.1)

Proof. From Theorem 4.2.1 we have

E(n)
σ X =

n∑
k=1

σ

σ + k − 1
= σ

n∑
k=1

1

σ + k − 1
.
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Now, ψ(z + 1)− ψ(z) = 1/z; thus

ψ(n+ σ)− ψ(σ) = (ψ(n+ σ)− ψ(n+ σ − 1)) + · · ·+ (ψ(σ + 1)− ψ(σ))

=
1

n+ σ − 1
+

1

n+ σ − 2
+ · · ·+ 1

σ

=
n∑

k=1

1

σ + k − 1
.

This proves that E(n)
σ X = σ(ψ(n + σ) − ψ(σ)). The asymptotic series follows from

that for ψ(z) where we have used the fact that ψ(n) = Hn−1− γ when n is a positive

integer.

Proposition 4.2.3. The variance of the number of cycles of a random σ-weighted

permutation of [n] is

σ2 (ψ′(n+ σ)− ψ′(σ)) + σ(ψ(n+ σ)− ψ(σ)); (4.2)

this has an asymptotic series,

V(n)
σ X = σ log n+ (−σ2ψ′(σ)− σψ(σ)) +

4σ2 − 1

2
n−1 +O(n−2) (4.3)

The proof is similar to that of the previous proposition, noting that the variance

of a Bernoulli random variable with mean p is p− p2.

From (4.3) we can also derive for integer σ the explicit formula (not involving ψ)

V(n)
σ X = −σ2

σ+n−1∑
j=σ

1

j2
+ σ (log n+ γ −Hσ−1) +O(1/n)

which holds as n→∞. It suffices to show that

ψ′(n+ σ)− ψ′(σ) = −
σ+n−1∑

j=σ

1

j2
. (4.4)
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To see this, recall the identity ψ(x+1)−ψ(x) = 1/x; differentiating gives ψ′(x+1)−

ψ′(x) = −1/x2. Summation over x = σ, σ + 1, . . . , σ + n− 1 gives (4.4).

Finally, we recall a normal distribution result for the total number of cy-

cles [ABT03, (5.22)]. Let X̂ = X−σ log n√
σ log n

be the standardization of X. Then

limn→∞ P(n)
σ (X̂ ≤ x) = Φ(x), where Φ(x) is the cumulative distribution function

of a standard normal random variable. This follows from Theorem 4.2.1 and the

Lindeberg-Feller central limit theorem.

We have thus far looked at the total number of cycles of σ-weighted permutations.

These distributions, suitably scaled, are continuous in the large-n limit. In contrast,

looking at each cycle length separately, we approach a discrete distribution. More

specifically, the number of k-cycles of σ-weighted permutations of [n], for large n,

converges in distribution to P(σ/k), where P(λ) denotes a Poisson random variable

with mean λ; here we consider how quickly E(n)
σ Xk approaches σ/k. Recall that Xk

is a random variable, with Xk(π) the number of k-cycles of a permutation π.

Proposition 4.2.4. [AT92, (37)][Wat74] The average number of k-cycles in a σ-

weighted permutation of [n] is

E(n)
σ Xk =

σ

k

(n)k

(n+ σ − 1)k

(4.5)

where (n)k = n(n− 1) . . . (n− k + 1) is the “falling power”.

We provide a new proof in terms of generating functions.

Proof. The bivariate generating function counting σ-weighted permutations by their
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size and number of k-cycles is P (z, u) = (1 − z)−uσ exp(σ(u − 1)zk/k). The mean

number of k-cycles is given by

[zn] ∂uP (z, u)|u=1

[zn]P (z, 1)
=

[zn]σzk

k
(1− z)−uσ

[zn](1− z)−σ
=
σ

k

[zn−k](1− z)−σ

[zn](1− z)−σ

and the binomial formula gives (4.5).

When σ is an integer, a combinatorial proof can be obtained by considering σ-

weighted permutations as permutations where each cycle is colored in one of σ colors.

Proposition 4.2.5. There is an asymptotic series for E(n)
σ Xk,

E(n)
σ Xk =

σ

k

(
1− (σ − 1)k

n
+O(n−2)

)
.

Proof. The numerator and denominator of (4.5) are polynomials in n of degree k;

write the two highest-degree terms of each explicitly and divide.

Proposition 4.2.6. Fix 0 < α ≤ 1. The expected number of elements in αn-cycles

of a random σ-weighted permutation satisfies, as n→∞,

E(n)
σ Yαn = σ(1− α)σ−1 +O(n−1)

(Here we have assumed for simplicity that αn is an integer.)

Proof. Let β = 1− α. We have from Proposition 4.2.4 that

E(n)
σ Yαn = σ

(n)αn

(n+ σ − 1)αn

= σ
n!(βn+ σ − 1)!

(βn)!(n+ σ − 1)!
= σ

n!

(n+ σ − 1)!

(βn+ σ − 1)!

(βn)!

We now note that (n + r)!/n! = nr(1 + O(n−1)), for constant r as n → ∞, from

Stirling’s formula. Applying this twice with r = σ − 1 gives the result.
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It would be of interest to determine the limiting distribution of the number of

cycles with length between γn and δn for constants γ and δ. There can be at most

bγ−1c such cycles, so this random variable is supported on 0, 1, . . . , bγ−1c. Thus to

determine the limiting distribution it suffices to determine the 0th through bγ−1cth

moments of this random variable. The σ = 1 case will be treated in Section 4.9.

We can essentially integrate the result of Proposition 4.2.5 to determine the num-

ber of elements in cycles with normalized length in a specified interval. However, this

can be done in a more general framework. Recall the definition of a ∆-domain from

Section 2.3: for constants R > 1 and φ > 0 we define a ∆-domain as a set of the form

∆(φ,R) = {z : |z| < R, z 6= 1, | arg(z − 1)| > φ}.

Theorem 4.2.7. Let
∑

k σkz
k/k = σ log 1

1−z
+ K + o(1) be analytic in its intersec-

tion with some ∆-domain, for some constants σ and K. Then the probability that a

uniformly chosen random element of a random ~σ-weighted permutation of [n] lies in

a cycle of length between γn and δn approaches (1− γ)σ − (1− δ)σ as n→∞.

Note that analyticity in the slit plane suffices; this is the case φ = 0. We begin

by stating two lemmas needed in the proof.

Lemma 4.2.8. Let {σk}∞k=1 be a sequence of nonnegative real numbers with mean σ,

i. e.
∑∞

k=1 σk = σn+ o(n) as n→∞. Fix constants 0 ≤ γ < δ < 1. Then

lim
n→∞

1

n

bδnc∑
k=dγne

σk

(
1− k

n

)σ−1

= (1− γ)σ − (1− δ)σ.
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Proof. We rewrite the sum as an integral,

bδnc∑
k=dγne

σk

(
1− k

n

)σ−1

=

∫ δn

γn

(
1− k

n

)σ−1

dµ(k)

where µ(x) =
∑bxc

j=1 σj. Integrating by parts gives

(1− δ)σ−1µ(δn)− (1− γ)σ−1µ(γn)−
∫ δn

γn

µ(k)d

(
1− k

n

)σ−1

. (4.6)

Differentiation allows us to rewrite the integral in (4.6) as a Riemann integral,

∫ δn

γn

µ(k)d

(
1− k

n

)σ−1

=
1− σ

n

∫ δn

γn

µ(k)

(
1− k

n

)σ−2

dk. (4.7)

Let τ(k) = µ(k)− σk. Then the integral on the right-hand side of (4.7) becomes

1− σ

n

(∫ δn

γn

σ

(
1− k

n

)σ−2

dk +

∫ δn

γn

τ(k)

(
1− k

n

)σ−2
)
dk. (4.8)

We perform the first integral in (4.8) and note that µ(δn) ∼ σ · δn, µ(γn) ∼ σ · γn in

(4.6). This gives

1

n

∑
k

(
1− k

n

)σ−1

∼ (1− γ)σ − (1− δ)σ +
1− σ

n2

∫ δn

γn

τ(k)

(
1− k

n

)σ−2

dk. (4.9)

So it suffices to show that the final term in (4.9) is negligible, i. e.

∫ δn

γn

τ(k)

(
1− k

n

)σ−2

dk = o(n2).

Since {σk}∞k=1 has mean σ, we have
∑n

k=1 σk = σn + o(n). Thus τ(k) = o(n). On

[γn, δn], (1− k/n)σ−2 is bounded. So the integrand above is o(n), and the integral is

o(n2) as desired.
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Lemma 4.2.9. Say [zn]P (z) = Cnσ−1(1 + o(1)) uniformly in n, for some positive

constants C, σ. Then

bδnc∑
k=dγne

σk
[zn−k]P (z)

[zn]P (z)
∼

bδnc∑
k=dγne

σk

(
1− k

n

)σ−1

as n→∞, for any 0 ≤ γ < δ < 1.

Proof. From the hypothesis that [zn]P (z) ∼ Cnσ−1, we get

[zn−k]P (z)

[zn]P (z)
∼ C(n− k)σ−1

Cnσ−1
=

(
1− k

n

)σ−1

uniformly as n, k →∞ with 0 ≤ k < δn. Therefore

bδnc∑
k=dγne

σk
[zn−k]P (z)

[zn]P (z)
=

bδnc∑
k=dγne

σk

(
1− k

n

)σ−1

(1 + o(1))

=

bδnc∑
k=dγne

σk

(
1− k

n

)σ−1

+

bδnc∑
k=dγne

σk · o(1) ·
(

1− k

n

)σ−1

.

The first sum in the previous equation is Θ(n). The second sum has Θ(n) terms;

since (1 − k/n)σ−1 and σk can both be bounded above on the interval [γn, δn] each

term is o(1). Thus the second sum is o(n). So

bδnc∑
k=dγne

σk
[zn−k]P (z)

[zn]P (z)
=

bδnc∑
k=dγne

(
σk

(
1− k

n

)σ−1
)

+ o(n)

=

bδnc∑
k=dγne

(
σk

(
1− k

n

)σ−1
)

(1 + o(1))

as desired.

Proof of Theorem 4.2.7. This probability can be written as

lim
n→∞

1

n

bδnc∑
k=dγne

σk
[zn−k]P (z)

[zn]P (z)
.
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Now, recall ∑
k

σkz
k/k = σ log

1

1− z
+K + o(1)

by hypothesis. Thus the generating function P (z) of ~σ-weighted permutations is

P (z) = exp

(∑
k

σkz
k/k

)
= exp

(
σ log

1

1− z
+K + o(1)

)
= (1− z)−σeK(1 + o(1)).

Applying the Flajolet-Odlyzko transfer theorem (Corollary 2.3.7), [zn]P (z) =

Cnσ−1(1 + o(1)) for some positive real constant C. Thus P (z) satisfies the hypothe-

ses of Lemma 4.2.9. Applying that lemma, we see that this sum is asymptotic to

n−1
∑bδnc

k=dγne σk(1− k/n)σ−1; the desired result then follows from Lemma 4.2.8.

The hypotheses, and hence the conclusions, of Theorem 4.2.7 hold for many weight

sequences σ1, σ2, . . . with limn→∞
1
n

∑n
k=1 σk = σ; that is, for weight sequences aver-

aging σ. In particular, we have the following special case.

Corollary 4.2.10. Fix constants 0 ≤ γ ≤ δ ≤ 1. Let pσ(n; γ, δ) be the probability

that the element 1, in a σ-weighted permutation of [n], lies in a cycle of length in the

interval [γn, δn]. Then

lim
n→∞

pσ(n; γ, δ) = (1− γ)σ − (1− δ)σ.

Proof. We have the cycle generating function
∑∞

k=1 σz
k/k = σ log 1

1−z
; apply Theorem

4.2.7.

For example, setting σ = 1/2, γ = 0.99, δ = 1, we see that for large n, 10% of

elements of 1/2-weighted permutations are in cycles of length at least 0.99n. If we
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define the “co-length” of a cycle of a permutation to be the number of elements not

in that cycle, a cleaner statement of the theorem becomes possible. The proportion

of elements of σ-weighted permutations in cycles of co-length at most ζn is ζσ.

It would be desirable to replace the condition in the hypothesis of Theorem 4.2.7

with the less restrictive

∑
k

σkz
k

k
= σ log

1

1− z
· (1 + o(1));

it seems likely that this suffices to prove a limit law but the proof does not easily

adapt to that case.

4.3 Permutations with all cycle length of the same

parity

This section is devoted to results on random permutations in which all cycle lengths

have the same parity; that is, they are either all even or all odd. We adopt the

notation P(n)
e for the family of measures P(n)

~σ where ~σ = (0, 1, 0, 1, . . .), and similarly

P(n)
o for the family with ~σ = (1, 0, 1, 0, . . .); these are the measures corresponding to

permutations with all cycle lengths even and with all cycle lengths odd, respectively.

The results obtained here resemble those for the Ewens sampling formula with

parameter 1/2. A heuristic explanation for this phenomenon is as follows. Let us

produce a permutation of [n] from the Ewens distribution with parameter 1/2 by first

picking a permutation π uniformly at random from Sn, and then flipping a fair coin for
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each cycle of π. If all the coins come up heads we keep π; otherwise we “throw back”

the permutation π and repeat this process until we have a trial in which all coins

come up heads. The number and normalized size of cycles of permutations obtained

in this manner should be similar to those of permutations with all cycle lengths even,

since for large permutations the parity constraint is essentially equivalent to a coin

flip.

Proposition 4.3.1. The expected number of elements in k-cycles of a permutation

of [n] with all cycle lengths even is

E(n)
e Yk =

n(n− 2) · · · (n− k + 2)

(n− 1)(n− 3) · · · (n− k + 1)

if k is even, and 0 if k is odd.

Proof. By Lemma 4.1.2, we have E(n)
e Yk = [zn−k](1− z2)−1/2/[zn](1− z2)−1/2; we

apply the binomial theorem and simplify.

For example, when n = 10 we have

(
E(10)

e Y2,E(10)
e Y4, . . . ,E(10)

e Y10

)
= (10/9, 80/63, 32/21, 128/63, 256/63)

≈ (1.11, 1.27, 1.52, 2.03, 4.06)

and we observe that most entries are in the longer cycles. For n = 100 this is

illustrated in the figure above.
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Figure 4.1: E(100)
e Yk for k = 2, 4, . . . , 100

.

Proposition 4.3.2. The expected number of elements in k-cycles of a random per-

mutation of [n] with all cycle lengths odd is

E(n)
o Yk =

n(n− 2) · · · (n− k + 1)

(n− 1)(n− 3) · · · (n− k)

if n is even, and

E(n)
o Yk =

(n− 1)(n− 3) · · · (n− k + 2)

(n− 2)(n− 4) · · · (n− k + 1)

if n is odd.

Proof. The generating function of permutations with all cycle lengths odd, counted

by their number of cycles, is P (z, u) = ((1 + z)/(1 − z))u/2. We use Lemma

4.1.2 to see that the mean number of elements in k-cycles is given by E(n)
o Yk =
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[zn−k]
√

1+z
1−z

/[zn]
√

1+z
1−z

. We recall that [zn]
√

1+z
1−z

is (n−1)!!2

n!
if n is even and n!!(n−2)!!

n!
if

n is odd; substituting and simplifying gives the result.

By similar methods, we can obtain formulas for the exact number of permutations

of [n] with all cycle lengths divisible by a, and the exact expected number of k-cycles in

such permutations for integers k which are divisible by a. These permutations have

exponential generating function (1 − za)−1/a. Permutations with all cycle lengths

congruent to k mod a for some nonzero k are more difficult to deal with, as it appears

that the generating function cannot be written in an elementary form except when a

is even and k = a/2. (See [Sac97, Sec. 5.0.3] for the relevant generating functions.)

Proposition 4.3.3. (a) The number of elements of k-cycles in a permutation of [n]

with all cycle lengths odd, for fixed odd k, satisfies E(n)
o Yk = 1 + k+1

2n
+ O(n−2)

as n approaches ∞ through even values, and E(n)
o Yk = 1 + k−1

2n
+ O(n−2) as n

approaches ∞ through odd values.

(b) The number of elements of k-cycles in a permutation of [n] with all cycle lengths

even, for fixed even k, satisfies E(n)
e Yk = 1+ k

2n
+O(n−2) as n approaches infinity

through even values.

Proof. To prove (a), from Proposition 4.3.2 we have previous formulas for E(n)
o Yk

depending on the parity of n. These are fractions which have numerators and denom-

inators which are polynomials in n; we can write out the two highest-degree terms

of each polynomial and simplify. To prove (b) we proceed similarly from Proposition
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4.3.1.

Note that the expected number of elements in k-cycles of permutations with all

cycle lengths even (or odd) approaches 1 as n gets large, if k has the appropriate parity.

Assume we are dealing with permutations with all cycle lengths even. Naively, we

might add the limits of the expected number of elements in 2-cycles, 4-cycles, . . . ,

n-cycles, and expect to get n. But these are each 1; their sum is n/2. Since each

element is in a cycle, we must have
∑n

k=1 E(n)
e Yk = n. The difficulty is that the

convergence of E(n)
e Yk as n→∞ is not uniform over k. Under the correct scaling, then,

subtler phenomena can be seen; the “missing” elements end up disproportionately

in the longer cycle lengths for permutations with all cycle lengths even. We note

that similar phenomena of nonuniform convergence have previously been observed in

random mappings, for example in [FO90].

Proposition 4.3.4. Fix ε ∈ (0, 1). The expected number of elements in k-cycles in

a random permutation of [n] with all cycle lengths even satisfies uniformly

E(n)
e Yk →

(
1− k

n

)1/2

as k, n→∞ with 0 < k/n < 1− ε.

Proof. The result of Proposition 4.3.1 can be rewritten in terms of factorials as

E(n)
e Yk = 2k

(
(n/2)!

((n− k)/2)!

)2
(n− k)!

n!

and by Stirling’s approximation and routine simplifications, we have

E(n)
e Yk =

(
1− k

n

)−1/2 1 + 1
4n

+O(n−2)

1 + 1
4(n−k)

+O((n− k)−2)
. (4.10)
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Let n, k →∞ with 0 < k/n < 1− ε. Then we have 1/(4(n− k)) ∈ [(4n)−1, (4εn)−1)],

and so O((n−k)−2) = O(n−2). Furthermore 1/(4(n−k)) = O(n−1), with the constant

implicit in the O-notation being (4ε)−1. Therefore

E(n)
e Yk =

(
1− k

n

)−1/2

(1 +O(n−1))

uniformly, as k, n→∞ with 0 < k/n < 1− ε.

Furthermore, we can essentially integrate the result of Proposition 4.3.4 to de-

termine the cumulative distribution function of the length of the cycle containing a

random element of a random permutation with all cycle lengths even (or odd). This

is the content of the next theorem.

Theorem 4.3.5. Fix constants 0 ≤ γ ≤ δ ≤ 1. Let pe(n; γ, δ) be the probability

that 1 is contained in a cycle of length between γn and δn of a permutation chosen

uniformly at random from all permutations of [n] with all cycle lengths even. Then

lim
n→∞

pe(n; γ, δ) =
√

1− γ −
√

1− δ.

Since the measure Pe is invariant under conjugation, this is the probability that

an element of [n] chosen uniformly at random is in a cycle of length between γn and

δn in a random permutation of [n] with all cycle lengths even.

Proof. Note that

∑
2|k

zk

k
=

1

2
log

1 + z

1− z
=

1

2
log

1

1− z
+ log 2 + o(1)

and apply Theorem 4.2.7.
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The same is true for permutations with all cycle lengths odd; like those with all

cycle lengths even they fall in the “σ = 1/2 class”.

We now move to consider the mean and variance of the total number of cycles of

all lengths.

Theorem 4.3.6. The mean number of cycles of a randomly chosen permutation of

[n] with all cycle lengths odd is, as n→∞,

1

2
log n+

γ + 3 log 2

2
± γ + log n

8n
+O

(
log n

n2

)
where we take the + sign if n is odd and the − sign if n is even. The variance of the

number of cycles is, as n→∞,

1

2
log n+

γ + 3 log 2− 4π2

8
+O

(
log2 n

n

)
.

Proof. We have the exponential generating function counting such permutations by

size and number of cycles,
(

1+z
1−z

)u/2
. We can differentiate to obtain the mean and

variance of the number of cycles. These are given by

µn :=
[zn]1

2

√
1+z
1−z

log 1+z
1−z

[zn]
√

1+z
1−z

, σ2
n :=

[zn]1
4

√
1+z
1−z

log2 1+z
1−z

[zn]
√

1+z
1−z

+ µn − µ2
n.

Let fr(z) =
√

1+z
1−z

logr 1+z
1−z

for r = 0, 1, 2 and let ar(n) = [zn]fr(z) for r = 0, 1, 2.

Then we have

µn =
a1(n)

2a0(n)
, σ2

n =
a2(n)

4a0(n)
+ µn − µ2

n (4.11)

and we need to find asymptotic series for the ar(n) as n→∞. We observe that a0(n)

is the number of permutations of [n] with all cycle lengths odd, which is (n− 1)!!2/n!

100



if n is even and n!!(n − 2)!!/n! if n is odd; Stirling’s formula gives an asymptotic

expansion, depending on the parity of n. To find a series for a1(n) as n → ∞, we

expand f1(z) =
√

1+z
1−z

in a series with terms which are half-integral powers of 1− z.

From this we derive a series for
√

1+z
1−z

log 1+z
1−z

with terms of the form (1 − z)i−1/2Lj

where L = log 1/(1 − z). The function being expanded is analytic in the complex

plane slit along the real half-line {z ∈ R : z ≥ 1}; by Theorem 2.3.6, an error of

O((1− z)i−1/2L) in the series for f1(z) leads to an error O(n−i−1/2 log n) in the series

for a1(n). We can thus transfer an asymptotic expansion for f1(z) near z = 1 to give

an expansion for a1(n) as n→∞, and similarly for f2(z) and a2(n). Combining these

series as specified by (4.11) gives the result.

We observe that this is (log 2) + o(1) more than the number of cycles of a permu-

tation of [n] with all cycle lengths even.

The following two results give a decomposition of the number of cycles of permu-

tations with all cycle lengths even into a sum of Bernoulli random variables.

Theorem 4.3.7. The generating function of permutations of [2n] with all cycle

lengths even, counted by their number of cycles, is

p2n(u) = [u(u+ 2)(u+ 4) · · · (u+ (2n− 2))] · (2n− 1)!! (4.12)

Proof. The bivariate generating function for permutations with all cycle lengths even,

counted by their size and number of cycles, is (1− z2)−u/2. Let pk(u) be the desired
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generating function. Then we have

(1− z2)−u/2 = p0(u) + p1(u)z + p2(u)
z2

2!
+ · · ·

and it is clear that pk is the zero polynomial for odd k. For even k, the binomial

theorem gives

(1− z2)−u/2 = 1 +

(
−u/2

1

)
(−z2) +

(
−u/2

2

)
(−z2)2 + · · ·

and so we have p2n(u) = (2n)!
(−u/2

n

)
by comparing coefficients; this can be expanded

to give the expression above.

A combinatorial proof is also possible. Recall that we can write a permutation

π of [n] in terms of its inversion table, a sequence of integers a1, a2, . . . , an, with

ai = |{j : j < i, π(j) > π(i)}|. The number of zeros in the sequence (a1, . . . , an) is

the number of left-to-right maxima of π. The “fundamental correspondence” between

permutations written in cycle notation and in one-line notation takes permutations

with k cycles to those with k left-to-right maxima; furthermore, permutations with all

cycle lengths even are taken to those with all left-to-right maxima in odd positions,

and conversely. Thus it suffices to show that pn(u) is the generating function of

permutations with all left-to-right maxima in odd positions, counted by their number

of maxima; this is done by considering the inversion table.

Theorem 4.3.8. The number of cycles Cn of a random permutation of [2n] with all

cycle lengths even, as n→∞, is asymptotically normally distributed with

E(Cn) =
1

2
log n+

(
1

2
γ + log 2

)
+O(n−1) (4.13)
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and

V(Cn) =
1

2
log n+

(
1

2
γ + log 2− π2

8

)
+O(n−1) (4.14)

Proof. Let n = 2m. From Theorem 4.3.7, we have Cm =
∑m

k=1Xm,k where the

Xm,k are independent Bernoulli random variables with P(Xm,k = 1) = 1/(2k − 1).

The formula (4.13) for the expectation follows from the asymptotic series for the

harmonic numbers. The variance is given by

VCm =
m∑

k=1

(
1

2k − 1
−
(

1

2k − 1

)2
)

= ECm −
m∑

k=1

1

(2k − 1)2
.

and we need to consider the second sum. We have
∑m

j=1
1
j2 = −ψ′(m+ 1) + π2/6, so

VCm = ECm −
(
−ψ′(2n+ 1) +

1

4
ψ′(n+ 1) +

π2

8

)
.

But ψ′(m) = O(m−1), so in fact we get VCm = ECm − π2

8
+ O(1/m); from this and

(4.13) we get (4.14). Asymptotic normality follows from the Lindeberg-Feller central

limit theorem (Theorem 2.4.3).

There is not such a simple decomposition for permutations with all cycle lengths

odd. However, it appears that the polynomials counting permutations of [n] with

all cycle lengths odd by their number of cycles have only pure imaginary roots. If

this is true, then the number of cycles of a random permutation of [n] with all cycle

lengths odd can be decomposed into a sum of bn/2c independent {0, 2}-valued ran-

dom variables, plus 1 if n is odd. It may be of interest to study the zeros of these

polynomials.
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4.4 Boltzmann sampling

We have at this point seen substantial similarities between permutations with all

cycle lengths having the same parity and permutations with cycle weights 1/2. This

suggests that an average of weights is in some sense a more fundamental parameter

than the individual weights. This has been anticipated by the notion of a function of

logarithmic type [FS90], which has been used in the study of permutations [Han94].

Let ∆0(ρ, η) = {z : |z| < ρ + η, z 6∈ [ρ, ρ + η]}. A function G(z) is called logarithmic

if it is of the form

G(z) = a log
1

1− z/ρ
+R(z)

for some constant multiplier a and function R(z), where R(z) is analytic in ∆0 and

satisfies R(z) = K + o(1) for some constant K as z → ρ in ∆0, and ρ is the unique

dominant singularity of G on its circle of convergence. In [FS90, Prop. 1] structures

having components enumerated by a function of logarithmic type G(z) are considered;

for such structures of size n, the expected number of cycles is a log n + O(1), as is

the variance. However, the structures considered in this chapter have not all had

components counted by functions of logarithmic type. For example, the components

of permutations with all cycle lengths even are counted by the exponential generating

function 1
2
log 1

1−z2 , which has singularities at z = ±1 and thus does not have a unique

dominant singularity.

The following conjecture, in the light of these averaging phenomena, seems nat-

ural. It is supported by Theorem 4.4.3, an analogous result on “Boltzmannized”
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permutations.

Conjecture 4.4.1. Let ~σ = (σ1, σ2, . . .) be a sequence of nonnegative real numbers

with mean α, that is, with limn→∞
1
n

(
∑n

k=1 σk) = α. Then permutations of [n] selected

according to the weights ~σ have an asymptotically Gaussian number of cycles as n→

∞, with mean and variance asymptotic to α log n.

Definition 4.4.2. Let ~σ = (σ1, σ2, . . .) be a weighting sequence, and let x be a positive

real parameter. Let |π| denote the size of the ground set of a permutation π. Then

we define the ~σ-weighted Boltzmann measure with parameter x on permutations, a

probability measure on
⋃∞

k=0 Sk, by

P~σ,x(π) =
w~σ(π) · x|π|

|π|!

exp
(∑

k≥1 σkxk/k
)

(See Definition 4.1.1 for the weight w~σ(π).)

For any choice of ~σ and x, P~σ,x is a probability measure. It suffices to show that

P~σ,x has total mass 1. But
∑

k≥1 σkx
k/k is the weighted generating function of cycles,

and we can apply the exponential formula. Thus P~σ,x is a straightforward weighted

generalization of the Boltzmann measure on labelled objects studied in Chapter 3.

We also retain the formulas from Proposition 3.3.1 for the expected size and the

variance of the size of the objects chosen according to this measure. Let C(x) be the

exponential generating function of a labelled combinatorial class, and N the size of a

random object chosen from that class according to the Boltzmann measure. Then

E~σ,x(N) =
x d

dx
C(x)

C(x)
,E~σ,x(N

2) =

(
x d

dx

)2
C(x)

C(x)
.
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We now assemble a sequence of lemmas. These lemmas will be used to prove the

following theorem, which is the main result of this section.

Theorem 4.4.3. Let ~σ = (σ1, σ2, . . .) be a weighting sequence with mean α. Let

x = x(µ) be chosen so that E~σ,x(N) = µ. Let X be a random variable denoting the

number of cycles of a permutation. Then E~σ,x(X) = V~σ,x(X) ∼ α log µ as x→ 1− or

µ→∞.

The main analytic result needed follows.

Lemma 4.4.4. [PS98, Exercise I.88] Let b0, b1, . . . be positive real numbers, such that∑∞
n=0 bn is divergent, and

∑
k≥0 bkt

k is convergent for 0 ≤ t < 1. Then

lim
n→∞

a0 + a1 + · · ·+ an

b0 + b1 + · · ·+ bn
= s implies lim

t→1−

∑
k≥0 akt

k∑
k≥0 bkt

k
= s.

Lemma 4.4.5. Let σ1, σ2, σ3, . . . be a sequence of real numbers such that

lim
n→∞

1

n

n∑
k=1

σk = α.

Then
∑∞

k=1 σkx
k = α

1−x
+ o((1− x)−1).

Proof. Apply Lemma 4.4.4 with ak = σk, bk = 1.

Lemma 4.4.6. Let {σk}∞k=1 be a sequence of nonnegative real numbers, bounded above,

such that
∑n

k=1 σk ∼ αn as n → ∞, for some constant α > 0. Then
∑n

k=1
σk

k
∼

α log n as n→∞.
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Proof. We begin by showing that if
∫ n

1
f(x) dx ∼ n as n → ∞ for some function f

such that f(x)/x is integrable on [1,∞), then
∫ n

1
f(x)

x
dx ∼ log n as n → ∞. Let

F (x) =
∫ n

1
f(x) dx. We integrate

∫ n

1
f(x)

x
dx by parts, getting∫ n

1

f(x)

x
dx =

F (n)

n
− F (1)

1
+

∫ n

1

F (x)

x2
dx.

Clearly F (1) = 0, and F (n) ∼ n by assumption, so∫ n

1

f(x)

x
dx = 1 +

∫ n

1

F (x)

x2
dx+ o(1)

Since F (x) ∼ x as x→∞, the integrand satisfies F (x)/x2 ∼ 1/x, and so∫ n

1

F (x)

x2
dx ∼

∫ n

1

1

x
dx = log n,

proving the claim.

Now, we need to check that this statement about integrals translates into an

analogous one about sums. Let {σk}∞k=1 be as in the hypothesis, and let f(x) = σbxc.

Then we want to show that∫ n+1

1

f(x)

x
dx−

n∑
k=1

σk

k
= o(log n)

as n→∞. We have∫ n+1

1

f(x)

x
dx−

n∑
k=1

f(k)

k
=

n∑
k=1

(∫ k+1

k

f(x)

x
dx− f(k)

k

)
=

n∑
k=1

f(k)

(
log

(
1 +

1

k

)
− 1

k

)
and so, since | log(1 + 1/k)− 1/k| ≤ 1/2k2 for positive integer k,∣∣∣∣∣

∫ n+1

1

f(x)

x
dx−

n∑
k=1

f(k)

k

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
k=1

f(k)

2k2

∣∣∣∣∣ .
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Since {f(k)}∞k=1 is bounded, the sum on the right-hand side is convergent. We have∫ n+1

1
f(x)/x dx ∼ log n, so

∑n
k=1 f(k)/k ∼ log n as well. Thus we have proven the

lemma for α = 1. Multiplying through by α gives the desired result.

Lemma 4.4.7. Let σ1, σ2, σ3, . . . be a sequence of positive real numbers such that

limn→∞
1
n

∑n
k=1 σk = α. Then

∞∑
k=1

σkx
k

k
= α log

1

1− x
+ o

(
log

1

1− x

)
(4.15)

Proof. Applying Lemma 4.4.6 to the hypothesis, limn→∞
1

log n

∑n
k=1

σk

k
= α. We apply

Lemma 4.4.4 with ak = σk/k, bk = 1/k. This gives us

lim
n→∞

∑n
k=0 σk/k

1 +Hn

= lim
x→1−

∑
k≥1 σkx

k/k∑
k≥1 x

k/k
.

Now,
∑

k≥1 x
k/k = log(1/(1− x)), and 1 +Hn ∼ log n, so we have

lim
n→∞

1

log n

n∑
k=0

σk

k
= lim

x→1−

∑
k≥1 σkx

k/k

log(1/(1− x))
.

Thus the right-hand side here has value α, proving (4.15).

Proof of Theorem 4.4.3. Note that for the Boltzmann measure with parameter x and

weight sequence ~σ, we have C(x) = exp
(∑

k≥1 σkx
k/k
)
. Thus the distribution of

sizes N under this measure has expectation

E~σ,x(N) = x
d

dx

(∑
k≥1

σkx
k

k

)
=
∑
k≥1

σkx
k

Furthermore, the Boltzmann distribution P~σ,x can be obtained by taking P(σkx
k/k)

cycles of length k for each k ≥ 1 and forming uniformly at random a permutation with
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the resulting cycle type. The mean and variance of the number of cycles chosen from

the distribution P~σ,x is thus exactly
∑

k≥1 σkx
k/k. Since we have Ex(N) ∼ α/(1− x)

as x→ 1− by Lemma 4.4.5, we can solve for x to see that 1− α
Ex(N)

∼ x as x→ 1−.

Therefore

∑
k≥1

σkx
k/k ∼ α log

1

1− x
∼ α log

1

1−
(
1− α

Ex(N)

) = α log
Ex(N)

α
∼ α log Ex(N)

which is the desired result.

It would be desirable to translate Theorem 4.4.3 into a result about permutations

of a fixed size selected uniformly at random; this is one possible way of proving

Conjecture 4.4.1. Note that P~σ,x is a mixture of the various P(n)
~σ . It is often possible

to prove results about a family of measures Pλ, parametrized by λ, which are mixtures

of well-understood measures P(n), where we draw from P(n) with probability e−λλn/n!;

this goes by the name of analytic de-Poissonization [JS98, Szp01]. Informally, we pick

from P(N) where N is Poisson with parameter λ. In the case described here we can

get results on permutations chosen from P(N) where N is the size of objects from a

Boltzmann distribution; thus techniques of “analytic de-Boltzmannization” will be

necessary to achieve this goal.

4.5 Periodic sequences of weights

Many of the results of Section 4.3 can be easily generalized to random permutation

models with periodic weighting sequences. In particular, consider the case where
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the weight sequence is ~σ = (σ, τ, σ, τ, . . .) – that is, where cycles receive a weight

determined only by their parity. These have the class decomposition Set(σCyce(Z)+

τCyco(Z)). The exponential generating function counting ~σ-permutations is

exp

(
τ

(
z +

z3

3
+
z5

5
+ · · ·

)
+ σ

(
z2

2
+
z4

4
+
z6

6
+ · · ·

))
=

(1 + z)(τ−σ)/2

(1− z)(τ+σ)/2
.

This function has singularities at z = 1, and at z = −1 if τ − σ is not a positive

even integer. By Theorem 2.3.10 we can analyze each singularity separately. Around

z = 1 the function resembles 2(τ−σ)/2

(1−z)(τ+σ)/2 . The contribution of this singularity to the

sum of the weights of all permutations of [n] is therefore asymptotic to 2(τ−σ)/2[zn](1−

z)−(τ+σ)/2n!, or

2(τ−σ)/2

Γ((τ + σ)/2)
n(τ+σ)/2−1n!.

Around z = −1 the function resembles (1 + z)(τ−σ)/2/2(τ+σ)/2; the contribution from

this singularity to the nth coefficient is therefore asymptotic to 2−(τ+σ)/2[zn](1 +

z)(τ−σ)/2. This is an alternating sequence with nth term having absolute value of

order n(τ−σ)/2−1, and is therefore negligible compared to the previous term unless

σ = 0. In this case, however, we are actually dealing with permutations with all cycle

lengths even.

Thus the sum of all weights of ~σ-permutations is

2(τ−σ)/2

Γ((τ + σ)/2)
n(τ+σ)/2−1n!(1 +O(n−σ))

More generally, consider ~σ-weighted permutations for an r-periodic sequence ~σ.
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Proposition 4.5.1. Let ~σ be an r-periodic sequence with mean σ, and let τs = σs−σ.

The total weight of all ~σ-weighted permutations of [n] is asymptotic to

n!
nσ−1

Γ(σ)
exp

(
−1

r

r∑
s=1

τsψ(s/r)

)

as n→∞.

Proof. Such permutations have the generating function exp
∑

k≥1 σkz
k/k. We con-

sider the coefficients [zn]
(
exp

∑
k≥1 σkz

k/k
)
. The dominant singularities of this func-

tion are at the rth roots of unity. In particular at z = 1, this function behaves like

(1− z)−σeK , where K =
∑

k≥1
(σk−σ)

k
. For ease of notation let τk = σk − σ. Now

n−1∑
k=0

1

kr + s
=

1

r

(
ψ
(
n+

s

r

)
− ψ

(s
r

))
and therefore

rn∑
k=1

τk
k

=
1

r

r∑
s=1

τsψ(n+ s/r)− 1

r

r∑
s=1

τsψ(s/r).

As n→∞ the first sum on the right-hand side is O(n−1). This can be seen from the

fact that ψ(n+ α) = log n+O(n−1) as n→∞ and that
∑r

s=1 τs = 0. Therefore

rn∑
k=1

τk
k

= −1

r

r∑
s=1

τsψ(s/r) +O(n−1)

and at last
∞∑

k=1

τk
k

= −1

r

r∑
s=1

τsψ(s/r).

The asymptotics are thus those of [zn](1 − z)−σeK ; recalling that [zn](1 − z)−σ ∼

nσ−1/Γ(σ) gives the result.
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Finally, to write explicit formulas for the number of ~σ-weighted permutations

when ~σ is periodic, we can use Gauss’s digamma theorem [Knu, vol. 1, p. 94] for

evaluating ψ at rational arguments:

ψ(p/q) = −γ − log(2q)− π

2
cot

pπ

q
+ 2

dq/2e−1∑
k=1

cos
2πpk

q
log

(
sin

πk

q

)
. (4.16)

These explicit formulas are particularly appealing when the trigonometric functions

in (4.16) have simple values. In the case with 3-periodic weights, let ~σ = (σ + a, σ +

b, σ + c, σ + a, σ + b, σ + c, . . .) with a + b + c = 0. Then the total weight of all

~σ-permutations of n is asymptotic to

nσ−1

Γ(σ)
n!3(a+b)/2 exp

(
1

18

√
3π(a− b)

)
.

In the 4-periodic case, with ~σ = (σ + a, σ + b, σ + c, σ + d) and a+ b+ c+ d = 0, the

total weight is asymptotic to

nσ−1

Γ(σ)
n!2(3a+2b+3c)/4 exp

(π
8
(a− c)

)
.

And in the 6-periodic case, the total weight is asymptotic to

nσ−1

Γ(σ)
n!2(a+c+e)/33(a+b+d+e)/4 exp

(
(3a+ b− d− 3e)

π
√

3

36

)
.

Example 4.5.2. The probability that a permutation has all its cycle lengths congruent

to 1 or 5 mod 6 can be obtained from the last of these formulas. The weight vector is

~σ = (1, 0, 0, 0, 1, 0, . . .) with period 6. So we have σ = 1/3, the mean of these numbers.

We have a = e = 1− σ = 2/3 and b = c = d = f = 0− σ = −1/3. This gives

[zn] exp

 ∞∑
k=1

k≡±1 (mod 6)

zk

k

 ∼ n−2/3

Γ(2/3)
21/331/6.
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In practice this is difficult to observe; a full asymptotic expansion will include terms

which oscillate modulo 6 and decay very slowly.

From these enumerations it is possible to prove analogues of some of the results

of previous sections. For example an analogue of Theorem 4.2.6, which states that

E(n)
σ Yαn ∼ σ(1 − α)σ−1, holds, where σ is now the mean weight. An analogue of

Theorem 4.2.7 – the integrated version of Theorem 4.2.6 – likely also holds, as do

results on the normal distribution of the number of cycles.

4.6 Permutations with reciprocal weights

Consider weighted permutation models with cycle weights σk. Then a recent theorem

of Betz et al. [BUV09, Thm. 3.1] states:

Theorem 4.6.1 (Betz, Ueltschi, Velenik). Assume that σn−jσj/σn ≤ cj for all n and

for 1 ≤ j ≤ n/2, for constants cj satisfying
∑

j≥1 cj/j < ∞. Let `1 be the length of

the cycle containing 1. Then

lim
m→∞

lim
n→∞

P(l1 > n−m) = 1.

We consider the particular model with σk = 1/k. Then we have σn−jσj/σn =

n/(j(n− j)); recalling that n ≥ 2j, we may take cj = 2/j. Thus
∑

j≥1 cj/j = π2/3 <

∞. Therefore the conclusion of the theorem holds with these weightings; that is,

almost all indices belong to a single giant cycle.
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Betz et al. ask if short cycles occur at all; their Theorem 3.2 states that under the

conditions of the previous theorem, with probability bounded away from zero there

are no short cycles. They also show that there exists some λ0 > 0 such that for any

λ ∈ (0, λ0), random permutations of [n] with cycle weights σj = λ/j have cycles of

length 1 with probability bounded away from zero. However, due to the generality of

their paper they do not make these bounds explicit.

These permutations have generating function exp(
∑

k z
k/k2) = expL(z), and the

total number of cycles in all such permutations (with the permutations counted ac-

cording to their weight) has generating function L(z) expL(z). Unfortunately the

dilogarithm L(z), customarily expressed as an analytic continuation of this sum,

causes some difficulty as it has a branch cut starting at z = 1 and going infinitely to

the right. Thus the generating functions expL(z) and L(z) expL(z) are problematic

for singularity analysis. Graham, Knuth, and Patashnik [GKP94, pp. 464-466 and

Exercise 9.23] give the formula

bn := [zn] expL(z) = eπ2/6

(
n+ 2 log n+O(1)

n3

)
The expected number ofm-cycles of a permutation of [n] chosen with these weights

is

lim
n→∞

[zn] zm

m2 exp
(∑

k z
k/k2

)
[zn] exp (

∑
k z

k/k2)
=

1

m2

bn−m

bn
.

Now, bn−1/bn = 1 + O(1/n) as n→∞, and so bn−m/bn = 1 + O(1/n) as n→∞ for

any positive integer m. Thus we see that the expected number of m-cycles in a large

permutation is 1/m2.
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Proposition 4.6.2. The limiting distribution of the number of k-cycles in weighted

permutations with σk = 1/k is Poisson with mean 1/k2.

Proof. The generating function exp(L(z)+(u−1)zk/k2) counts weighted permutations

with their k-cycles marked. The probability that such a permutation has exactly m

cycles of length k is given by

[znum] exp(L(z) + (u− 1)zk/k2)

[zn] expL(z)
.

The asymptotics of the denominator are known. The numerator is in fact

1

m!k2m
[zn−km] exp(L(z)− zk/k2).

and so the desired limiting probability is

1

m!k2m
lim

n→∞

[zn−km] exp(L(z)− zk/k2)

[zn] exp(L(z)
.

Now, [zn] exp(L(z)− zk/k2) = Θ(n−2) and so the numerator is slowly varying. Thus

this limit is the same as

1

m!k2m
lim

n→∞

[zn] exp(L(z)− zk/k2)

[zn] exp(L(z)
.

By the following lemma, this limit is e−1/k2
, so

Pn(Xk = m) =
1

m!k2m
e−1/k2

= P(P(1/k2) = m).

Lemma 4.6.3.

lim
n→∞

[zn] exp(L(z)− zk/k2)

[zn] expL(z)
= e−1/k2

.
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Proof. We follow the proof that [zn] expL(z) ∼ eπ2/6/n2 given by Graham, Knuth,

and Patashnik. Let H(z) = exp(L(z)− zk/k2). We begin with the equation H(z) =

exp
∑

k 6=j 1/k2 and differentiate both sides. Equating coefficients in the result gives

the recurrence

nhn =
∑

k<n,k 6=n−j

hk

n− k

Now, let G(z) = expL(z) =
∑

n≥0 gnz
n. It is known that gn = O(n−2 log2 n). Since

0 ≤ hn ≤ gn, we have hn = O(n−2 log2 n) as well. At this point we can write

nhn =
∑

k<n,k 6=n−j

hk

n− k

=
∑
k<n

hk

n− k
− hn−j

j

=
1

n

∑
k≥0

hk −
1

n

∑
k≥n

hk +
1

n

∑
k<n

khk

n− k
− hn−j

j
.

The first sum is H(1) = exp(π2/6 − 1/j2). The second and third sums are

O((log n)2/n) and O((log n)3/n) by corresponding bounds on gk given in [GKP94].

The term hn−j/j is O(n−2 log2 n). Thus we have nhn = n−1 exp(π2/6 − 1/j2) +

O(n−2 log3 n), which gives hn ∼ exp(π2/6 − 1/j2)n−2. (More accurate bounds are

possible but not needed for our purposes; the earlier bounds on hn were just scaffold-

ing.) Division gives the desired limit.

This naturally leads to the conjecture that the expected number of cycles in such

permutations is
∑

m≥1 1/m2 = π2/6. However, these cycles are in general not enough

to fill the n-element space. The typical structure of such permutations appears to

be Poisson(π2/6) “short” (essentially O(1) in length) cycles and one “long” cycle of
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length n − O(1). More generally, we conjecture that whenever the series
∑

k≥1 σk/k

converges, the number of cycles of a random ~σ-weighted permutation converges in

distribution to 1 + P(
∑

k≥1 σk/k).

4.7 Permutations with roots

One model of random permutations which is not a weighted model, but which has

properties in common with many weighted models, are the permutations with square

roots.

Proposition 4.7.1. A permutation σ has a square root – that is, σ = τ 2 has a

solution – if and only if the numbers of cycles of σ that have each even length are

even numbers.

Proof. Consider a permutation τ . Squaring τ takes each cycle of odd length in τ to a

different cycle of odd length, and each cycle of even length to two cycles of half that

length. A cycle of even length in τ 2 is therefore the result of splitting a cycle of twice

its length in τ into two cycles. So cycles of each even length come in pairs, and the

total number of cycles of even length is even.

Given a permutation σ having an even number of cycles of each even length, we

can construct a square root τ of σ. If (a1, a2, . . . , a2m+1) is a cycle in σ, then let

(a1, am+1, a2, am+3, · · · , a2m+1, am+1) be a cycle in τ . If (a1, . . . , a2k) and (b1, . . . , b2k)

are cycles in σ of the same length, then let (a1b1a2b2 · · · a2kb2k) be a cycle in τ .
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Note that permutations can have multiple square roots; this construction just

gives one of them.

At this point it is simple to give the generating function for the number of permu-

tations having a square root. These permutations form the class Set(Cyco(Z)) ×∏∞
k=1 Sete(Cyc2k(Z)) and therefore have the exponential generating function(

exp

(
∞∑

j=0

z2j+1

2j + 1

))
∞∏

k=1

cosh

(
z2k

2k

)
=

√
1 + z

1− z

∞∏
k=1

cosh
z2k

2k
.

Pouyanne [Pou02] has shown more generally that a permutation σ ∈ Sn has an

mth root – that is, that σ = τm has a solution – if and only if its number of l-cycles

is a multiple of l∞ ∧m := limn→∞ gcd(ln,m). We see that l∞ ∧m = 1 only when l

and m are relatively prime. So in the general case, permutations having mth roots

are unrestricted in their cycles of length relatively prime to m.

Pouyanne then shows that the probability that a random permutation has an mth

root approaches, as n→∞, πmn
φ(m)/m−1 where

πm =
1

Γ(φ(m)/m)

∏
k|m

k−µ(k)/k
∏
l≥1

gcd(l,m) 6=1

el∞∧m

(
1

l

)
.

Here µ is the number-theoretic Mobius function and φ is the Euler totient function.

The probability that a random permutation has all its cycle lengths relatively prime

to m is also proportional to nφ(m)/m−1, and so there is some nondegenerate (i. e.

neither 0 nor 1) limiting probability that a permutation with an mth root has all

cycle lengths relatively prime to m.

Proposition 4.7.2. The expected number of j-cycles in a permutation of [n] having
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an mth root, for j relatively prime to m, approaches 1/j as n→∞ with j fixed.

Proof. The generating function counting permutations with mth roots by their size

and number of j-cycles is

P (z, u) = exp

(
(u− 1)zj

j

)
P (z)

where P (z) is the generating function counting permutations by their size and number

of j-cycles. The mean number of j-cycles is found by differentiating, and is

[zn] ∂uP (z, u)|u=1

[zn]P (z, 1)
=

1

j

[zn−j]P (z)

[zn]P (z)
.

The coefficients [zn]P (z) are slowly varying as a function of n, giving the desired

result.

However, the scaling has been chosen poorly here. Making the correct choice of

scaling we have

Proposition 4.7.3. The expected number of elements of αn-cycles in a permutation

of [n] admitting an mth root, where αn is relatively prime to m, is asymptotic to

(1− α)φ(m)/m−1 as n→ 0.

Proof. We proceed as in the previous proof; the mean number of αn-cycles is

1

αn

[z(1−α)n]P (z)

[zn]P (z)
.

Recalling that [zn]P (z) ∼ πmn
φ(m)/m−1 and simplifying gives the desired result.

If instead we consider those cycle lengths the occurrence of which is restricted, we

get a much different result.
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Proposition 4.7.4. The expected number of j-cycles in a permutation of [n] having

an mth root, where gcd(j,m) > 1, approaches the limit

1

j

e′j∞∧m(1/j)

ej∞∧m(1/j)

as n→∞. Here ed(z) =
∑

d≥0 z
nd/(nd)! and ′ denotes differentiation.

Proof. The generating function for permutations with mth roots, with j-cycles

marked, is

Pm(z, u) =

∏
k|m

(1− zk)−µ(k)/k

 ∏
gcd(l,m)≥1

el∞∧m(zl/l)

(ej∞∧m(uzj/j)

ej∞∧m(zj/j)

)
.

Differentiating, we find

[zn]∂u Pm(z, u)|u=1 =
1

j
[zn−j]

(
e′j∞∧m(zj/j)

ej∞∧m(zj/j)

)
Pm(z, 1).

So it suffices to show that

[zn]

(
e′j∞∧m(zj/j)

ej∞∧m(zj/j)

)
Pm(z, 1) ∼

e′j∞∧m(1/j)

ej∞∧m(1/j)
[zn]Pm(z, 1)

We denote the left-hand side by [zn]P̃m(z). Then this follows from the proof

on [Pou02, p. 9]. In particular, if we write Cm(z) =
∏

k|m(1 − zk)−µ(k)/k and

Rm(z) =
∏

gcd(l,m)≥1 el∞∧m(zl/l), so Pm(z) = Cm(z)Rm(z). Similarly, write R̃m(z) =

e′j∞∧m(zj/j)/ej∞∧m(zj/j) · Rm(z), then P̃m(z) = Cm(z)R̃m(z). Let pn, cn, rn, p̃n, r̃n

denote the coefficients of the corresponding (uppercase) generating functions. Then

p̃n =
∑

k cn−kr̃k. We want to show that π̃m = κmR̃m(1). It suffices to show that

limn→∞
∑n

k=0 cn−k/cn · rk =
∑

n≥0 rn, which in fact follows only from properties of

Cm(z) (not Rm(z)).
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In the particular case m = 2, e2(z) = cosh z, and so we get that the expected

number of j-cycles in a permutation having a square root is 1/j tanh 1/j when j is

even. The expected value of a random variable X with P(λ) distribution, conditioned

on X taking even value, is∑
2|n

ne−λλn

n!∑
2|n

e−λλn

n!

=
e−λλ sinhλ

e−λ coshλ
= λ tanhλ.

For contrast, the square of a random permutation has a much different structure.

Let Yk be the number of k-cycles in the square of a permutation chosen uniformly at

random. Then EnYk = (1/k)(J2 - kK + Jk ≤ n/2K). This holds since Yk = Xk + 2X2k

if k is odd, and 2X2k if k is even. Recalling that EnXk = 1
k
Jk ≤ nK gives the desired

result. It follows that if f(α) is the piecewise linear function going from (0, 0) to

(1/2, 3/4) to (1, 1), then as n→∞,

1

n
En

(
βn∑

k=αn

kYk

)
→ f(β)− f(α).

That is, the probability that in the square of a permutation chosen uniformly at

random, a uniform random element of {1, . . . , n} lies in a cycle of length in [αn, βn]

approaches f(β)− f(α). Furthermore, we can easily see that the number of cycles of

odd length in a permutation is asymptotically normally distributed with mean and

variance (1/2) log n, and the number of cycles of even length has the same distribution.

The number of cycles in σ2 is the number of odd-length cycles of σ, plus twice the

number of even-length cycles; thus the number of cycles in the square of a random

permutation is asymptotically normal with mean (3/2) log n and variance (5/2) log n.
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This is more cycles than a uniform random permutation, while a random permutation

which is a square has less cycles than a uniform random permutation, about (log n)/2.

This is a consequence of the fact that permutations with many cycles have more square

roots than permutations with few cycles.

4.8 Sets of lists

One interesting case is sets of lists, permutations of rooted cycles, or fragmented per-

mutations. These are all names for the combinatorial class specified by Set(Seq(Z)).

Such objects have the generating function exp(z/(1− z)). If we instead consider the

objects in which each sequence has weight σ, then they have the generating function

exp(σz/(1 − z)). In the weighted permutation model, these correspond to permuta-

tions with weighted cycles in which k-cycles have weight σk.

We can compute from Wright’s theorem (Theorem 2.3.12) the number of these

objects. We have

[zn] exp

(
σz

1− z

)
= e−σ[zn] exp

(
σ

1− z

)
(1 +O(n−1/2))

and this satisfies the hypotheses of Wright’s theorem with β = 0,Φ(z) = z. Thus we

find

[zn] exp

(
σ

1− z

)
=

exp(2
√
σn+ σ/2)σ1/4

2
√
πn3/4

.

and so

[zn] exp

(
σz

1− z

)
=

exp(2
√
σn− σ/2)σ1/4

2
√
πn3/4

.
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Now to find mean cycle counts, we note that the generating function for σ-weighted

sets of lists with lists of size k marked – the combinatorial class Set(σ(Seq(Z) +

(µ− 1)Seqk(Z))) – is F (z, u) = exp(σz/(1− z)) exp(σ(u− 1)zk). By differentiating,

we find that

EnXk =
[zn]∂u F (z, u)|u=1

[zn]F (z, 1)
=
σ[zn]zk exp

(
σz

1−z

)
[zn] exp

(
σz

1−z

) = σ
[zn−k] exp

(
σz

1−z

)
[zn] exp

(
σz

1−z

)
where En denotes probabilities with respect to the σ-weighted measure on sets of lists,

and Xk is the number of k-cycles. From this we can compute asymptotic formulas

for EnXk in the cases where k is constant, a constant multiple of n, or a constant

multiple of
√
n.

Proposition 4.8.1. We have

EnXk = σ − σ3/2kn−1/2 +O(n−1)

as n→∞ with k held constant.

Proof. Let fn = [zn] exp(z/(1 − z)). Then we have EnXk = σfn−k/fn. After some

simplification we get

EnXk = σ
exp(2

√
σ)(

√
n− k −

√
n)(

n−k
n

)3/4
(1 +O(n−1).

(A word on the relative error is in order: Wright’s theorem actually gives a full

asymptotic series for fn in descending powers of n−1/2.) The denominator is in fact

1 + O(n−1), and this gives EnXk = σ exp(2
√
σ(
√
n− k −

√
n). The exponent is

−
√
σ/nk +O(n−3/2), and simplification gives the result.
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In particular, as k → ∞ the number of components of size k approaches the

constant σ.

Similarly, we have that EnXαn = σf(1−α)n/fn. A simple calculation shows that

EnXαn = σ(1− α)−3/4 exp(2
√
σn(

√
1− α− 1))(1 +O(n−1/2)).

Ignoring the (1− α)−3/4 factor, we see that the number of cycles of length n dies off

exponentially fast with n.

The most interesting case comes with the correct choice of scaling, k = t
√
n.

Proposition 4.8.2.

EnXt
√

n = σ exp(−t
√
σ)

(
1 +

3t

4
√
n

+O(n−1)

)
.

Proof. We have the quotient

EnXt
√

n = σ
fn−t

√
n

fn

= σ
exp(2

√
σn(1− t/

√
n)1/2

(1− t/
√
n)3/4

1 + a1(n− t
√
n)−1/2 +O(1/n)

1 + a1n−1/2 +O(1/n)

and now we can simplify the exponential. Note that
√
n(1 − t/

√
n)1/2 =

√
n(1 −

t/2
√
n + O(1/n)). Therefore the exponential is equal to exp(−t

√
σ)(1 + O(1/n)).

This is the dominant term. The denominator (1 − t/
√
n)3/4 is easily seen to be

1− 3t/4n−1/2 +O(n−1). The fractional error factor is 1 +O(n−1). Division gives the

result.

This naturally leads us to believe that the expected number of cycles in a σ-

weighted set of lists is about
√
σn. If we ignore the error terms, EnXt

√
n ≈ σe−t

√
σ.
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So we have EnXk ≈ σe−k
√

σ/n where k is of order
√
n. Integrating with respect to k

gives the result. This is not a proof, but we can prove analogous results.

Proposition 4.8.3. The mean number of cycles in a σ-weighted set of lists is asymp-

totic to
√
σn, as n→∞.

Proof. The generating function for σ-weighted sets of lists, marked by their size and

number of components, is exp(σuz/(1 − z)). Differentiating, the mean number of

components in a σ-weighted set of lists of [n] is

f−1
n [zn]

σz

1− z
exp

(
σz

1− z

)

The coefficient here is

σe−σ[zn]
z

1− z
exp

σ

1− z

and by Wright’s theorem this is asymptotic to σ3/4e−σ/2 1
n1/42

√
π

exp(2
√
σn). Division

by the known form of fn gives the desired result.

To put this in context, note that the number of sets of lists on [n] having k parts is(
n−1
k−1

)
n!/k!; these are the Lah numbers Ln,k [Com74, p. 135]. A combinatorial proof of

this count is as follows. To construct a set of k lists, first list all n elements in a single

list, and then cut into k pieces by choosing k−1 of the possible n−1 cut points. This

can be done in n!
(

n−1
k−1

)
ways. But each element appears k! times, so there are n!

k!

(
n−1
k−1

)
queues in total. The total weight of σ-weighted sets of lists on [n] with k parts is

σkLn,k. Let Mk = σkLn,k. Then we note that Mn,k+1/Mn,k = σ(n−k)/(k2 +k). Thus
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the sequence Mn,1, . . . ,Mn,n is unimodal, with maximum where σ(n−k)/(k2+k) = 1;

this occurs near k =
√
σn.

Sets of lists are an example of what we might call square-root combinatorial struc-

tures, by analogy with logarithmic combinatorial structures. For objects of size n,

these have on the order of
√
n components, and the typical size of a component is

√
n.

Other examples of these include compositions of random involutions, with the com-

ponents being cycles, and integer partitions. All of these have generating functions

which are, loosely speaking, the exponential of some function with a pole.

4.9 Bulk results

In this section we will consider the number of cycles of length between γn and δn in a

permutation of [n] selected uniformly at random. Recall that the number of k-cycles

in a permutation of [n], for a fixed k, converges to a Poisson distribution with mean

1/k as k → ∞. If instead of holding k constant we let it vary with n, the number

of αn-cycles in permutations of [n] approaches zero as n → ∞ with α fixed. So to

investigate the number of cycles of long lengths, we must rescale and look at many

cycle lengths at once. The expectation of the number of cycles with length in this

interval is
∑δn

k=γn 1/k, which approaches the constant log δ/γ as n grows large. We

will see that the number of cycles converges to a well-defined limiting distribution.

We recall from Proposition 3.2.1 that if k1, k2, . . . , ks are distinct integers in [1, n],
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and r1, . . . , rs are positive integers, then

E

(
s∏

i=1

(
X

(n)
ki

)
ri

)
=

s∏
i=1

1

kri
i

if n ≥
∑s

i=1 kiri, and zero otherwise.

In particular this provides a proof that the limits µk = limn→∞X
(n)
k are the

moments of a Poisson random variable,with mean 1/k. Our major tool is the following

theorem, which expresses the rth factorial moment of the number of cycles of a random

permutation of [n] with length in [γn, δn] as a certain r-fold integral.

Theorem 4.9.1. Fix 0 ≤ γ < δ ≤ 1. Let X(n) be the number of cycles in a random

permutation of [n] having length in the interval [γn, δn]. Then

lim
n→∞

E(X(n))r =

∫
z1+...+zr≤1

zi∈[γ,δ]

1

z1 · · · zr

dz1 · · · dzr.

Proof. Let X
(n)
k be the number of k-cycles of a random permutation of [n]. Then

X(n) =
∑δn

k=γnX
(n)
k and we can take the expectations of rth factorial moments to get

E
(
X(n)

)
r

= E

( δn∑
k=γn

X
(n)
k

)
r

 .

This sum can be expanded using the multinomial theorem for falling powers. We get

E
(
X(n)

)
r

= E

 ∑
lγn+···+lδn=r

(Xγn)lγn · · · (Xδn)lδn

(
r

lγn, · · · , lδn

)
and we can bring the expectation inside the sum. The termwise expectations are

known from Proposition 3.2.1, and so we have

E(X(n))r =
∑

lγn+···+lδn=rPδn
k=γn

klk≤n

[(
r

lγn, · · · , lδn

) δn∏
k=γn

(
1

k

)lk
]
.
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Now, we consider the multinomial expansion(
δn∑

k=γn

1

k

)r

=
∑

lγn+···+lδn=r

[(
r

lγn, · · · , lδn

) δn∏
k=γn

(
1

k

)lk
]
.

The expansion has a term 1/(k1 . . . kr) for each r-tuple (k1, . . . , kr) in [γn, δn]r. This

can be interpreted as a Riemann sum for the r-fold integral

∫ δn

γn

· · ·
∫ δn

γn

1

w1 · · ·wr

dw1 · · · dwr.

The restriction
∑

k klk ≤ n cuts off that part of the region of summation where

w1 + · · ·+ wr > n. Thus the actual sum (4.9) is a Riemann sum for

∫
. . .

∫
1

w1 · · ·wr

dw1 · · · dwr

where the r-fold integral is over w1 + . . . + wn ∈ [γn, δn], w1 + . . . + wr ≤ n. The

change of variables zi = wi/n gives the desired result.

Proposition 4.9.2. Fix α > 1/2. As n→∞, the probability that a randomly chosen

permutation of [n] has a cycle of length at least αn approaches − logα.

Proof. We apply Theorem 4.9.1 to get

lim
n→∞

E(X(n)) =

∫ 1

α

1

z
dz = − logα.

A permutation of [n] can have at most one cycle of length longer than n/2, so the

probability of having such a cycle is equal to the expected number of them.

This is the simplest example of our general method. We know that the distribution

of X is concentrated on two values; thus knowing E(X(n))0 and E(X(n))1 suffices to
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give the distribution of X. In general, if we know that X is concentrated on k values,

finding E(X(n))0,E(X(n))1, . . . ,E(X(n))k−1 gives a system of k linear equations in k

unknowns which can be solved to determine the distribution of X. In order to make

stating results easier, we make the following definition.

Definition 4.9.3. We say a random variable X has quasi-Poisson(r, λ) distribution

if E((X)k) = λk for k = 0, 1, . . . , r and X is supported on {0, 1, . . . , r}.

The kth factorial moment of a Poisson(λ) random variable is λk. So in a sense, the

quasi-Poisson random variables are trying to be Poisson, subject to an upper limit on

their value. Let πi(r, λ) be the probability that a quasi-Poisson(r, λ) random variable

has value i. Our knowledge of the moments allows us to set up a system of equations

to find πi(r, λ). The solution is given in the following theorem.

Theorem 4.9.4. The probability that a quasi-Poisson(r, λ) random variable has value

i is

πi(r, λ) =
r∑

j=i

(
j

i

)
1

j!
(−1)j−iλj.

We begin by recalling the following lemma.

Lemma 4.9.5. Let M = Mn, N = Nn be (n + 1) by (n + 1) matrices such that

Mij =
(

j
i

)
, Nij =

(
j
i

)
(−1)j+i, where the rows and columns of M and N are indexed by

0, 1, . . . , n. Then MN = I, the identity matrix.

For a proof, see [Sta99, p. 66-67].
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Proof of Theorem 4.9.4. The factorial moments specified in the definition of quasi-

Poisson random variables give

1

λ

...

λr


=



(0)0 (1)0 · · · (r)0

(0)1 (1)1 · · · (r)1

...

(0)r (1)r · · · (r)r





π0(r, λ)

π1(r, λ)

...

πr(r, λ)


. (4.17)

The kth entry when the right-hand side of (4.17) is
∑r

k=0(k)iπk(r, λ), which is the

expectation of (X)i when X is quasi-Poisson. This matrix is obtained from the Mr

of Lemma 4.9.5 by multiplying all the entries in column i by i!. By Lemma 4.9.5 its

inverse is obtained from Nr by dividing all the entries in row j by j!. Thus, we have

Br(1, λ, . . . , λ
r)T = (π0(r, λ), π1(r, λ), . . . , πr(r, λ))T

where Br = N−1
r . Thus (Br)ij =

(
j
i

)
1
j!
(−1)j+i and this is the desired result in matrix

form.

The sum (4.9.4) giving πi(r, λ) consists of the first r − i nonzero terms of the

Maclaurin series for (zi/i!)e−z, evaluated at z = λ. Thus if r is large, then πi(r, λ)

approximates the corresponding probability for Poisson random variables. The quasi-

Poisson(r, 1) distribution is well-known under another name in the study of permu-

tations. It is the distribution of the number of fixed points of a permutation of [r].

To show that a sequence of random variables converges to a given distribution,

we will use the method of moments. In particular, given a sequence X1, X2, . . . of
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random variables, if the limits µk = limn→∞(Xn)k exists for each nonnegative integer

k and the sequence µ1, µ2, . . . characterizes a distribution, then the Xn converge in

distribution to that limiting distribution. (See Section 2.4.)

Theorem 4.9.6. Fix γ, δ such that 1
k+1

≤ γ < δ ≤ 1
k

for some integer k. (Alterna-

tively, bδ−1c+1 = dγ−1e.) Let X(n) be a random variable on Sn with uniform measure,

with X(n)(π) equal to the number of cycles of the permutation π with length in [γn, δn].

Then as n → ∞, X(n) converges in distribution to the quasi-Poisson(k, log δ/γ) dis-

tribution.

Proof. It suffices to show that limn→∞ E((X(n))r) = (log δ/γ)r.. We apply Theorem

4.9.1; the desired limit is

∫
z1+...+zr≤1

zi∈[γ,δ]

1

z1 · · · zr

dz1 · · · dzr

and this integral is actually over an r-dimensional box [γ, δ]r, since the condition

z1 + · · ·+zr ≤ 1 is always satisfied. The integral factors, giving the desired result.

For example, from this theorem one can compute that in a random permutation

of [n], for n large, the probabilities of having 0, 1, 2 or 3 cycles of length between n/4

and n/3 are approximately 0.7497, 0.2168, 0.0295, 0.0040.

One shortcoming of Theorem 4.9.6 (and, implicitly, Theorem 4.9.2), which the

reader may have noted, is that we require γ and δ to be in the same interval of the

form [ 1
k+1

, 1
k
] for some integer k. This is not accidental; the expressions for the limiting

probabilities become much more complicated if this is not the case. Such expressions
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can still be found, for example, in the case where 1/3 ≤ γ ≤ 1/2 ≤ δ ≤ 1. This

distribution is supported on {0, 1, 2}; its kth moments qk(γ, δ) satisfy q0(γ, δ) = 1,

q1 = log δ
γ
, and

q2(γ, δ) = log
1− δ

γ
log

δ2

(1− δ)γ
− log δ log(1− δ)−Li2(1− δ)+Li2(δ)+ (log(1− δ))2

if γ + δ < 1, and

q2(γ, δ) = − log γ log(1− γ)− Li2(γ) + Li2(1− γ) + (log γ)2

if γ + δ ≥ 1. From these one can find explicit formulas for the probabilities pk(γ, δ)

that a permutation has k cycles of length between γn and δn by solving a system of

linear equations.

In the case of the Ewens distribution, the following conjecture seems reasonable:

Conjecture 4.9.7. The expected number of cycles of length in [γn, δn] of a permu-

tation of [n] chosen from the Ewens distribution approaches

λ =

∫ δ

γ

1

x
(1− x)σ−1 dx

as n → ∞. Furthermore, in the case where 1/(k + 1) ≤ γ < δ < 1/k for some

positive integer k, the distribution of the number of cycles converges in distribution

to quasi-Poisson(k, λ).

We previously showed that the proportion of elements of a random permutation

of n selected according to the Ewens distribution which are in cycles of length in

[γn, δn] approaches (1 − γ)σ − (1 − δ)σ as n gets large, and with σ = 1/2 the same
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is true for permutations of n selected uniformly from all those with all cycle lengths

even, or from all those with all cycle lengths odd. It seems reasonable to conjecture

that this correspondence should hold at least so far as to give that these classes of

permutations satisfy the previous conjecture with σ = 1/2, and perhaps for other

logarithmic combinatorial structures.

4.10 Connections to stochastic processes

Many of our results on the cycle structure of random permutations can be explained

by renewal theory. Recall the renewal central limit theorem from Section 2.4. By

suitable reparametrizations, we can rephrase many of our results in such terms. Recall

the limit law for the length of the cycle containing 1 in a Ewens-θ permutation. As

n approaches ∞, the probability that this cycle is of length between γn and δn

approaches (1 − γ)θ − (1 − δ)θ. Alternatively, the probability that the complement

of the cycle containing 1 has length between λn and µn approaches µθ − λθ. The

cumulative density function of the normalized colength of the cycle containing 1 is

therefore f(x) = xθ.

Thus, the probability that the normalized colength is less than x is xθ. The

probability that the negative logarithm of the normalized colength is at least z is

therefore e−zθ. We recognize, then, that the negative logarithm of the normalized

colength approaches an exponential random variable with mean 1/θ as n→∞. Such

a random variable has variance 1/θ2.

133



Once we remove the cycle containing 1, what remains is a Ewens-θ permutation

on a smaller set, and thus satisfies the same limit law. The negative logarithm of the

normalized length remaining after the first k cycles (sorted by their minimal element)

are stripped off therefore has distribution which is the sum of k exponential-1/θ

random variables.

Now, we have found all the cycles of the permutation when the normalized length

gets below 1/n, or alternatively when its negative logarithm gets above log n. We

can predict when this occurs using the renewal central limit theorem. We apply the

renewal central limit theorem with Yi exponential with mean 1/θ. This gives

Nlog n − θ log n√
θ log n

d→ N(0, 1).

By reparametrizing in other ways, we can derive similar results for other random

permutation models. Consider sets of lists; for full generality we consider the model

in which cycles of length k have multiplicative weight σk. Recall that the expected

number of t
√
n-lists in a random set of σ-weighted lists is

σe−t
√

σ

(
1 +

3t

4
n−1/2 +O(n−1)

)
.

The expected number of elements in t
√
n-lists in such a random set is therefore

σt
√
ne−t

√
σ(1 + o(1)) and in particular the probability that an element chosen uni-

formly at random is in a t
√
n-list is σtn−1/2e−t

√
σ(1 + o(1)). As with profiles of per-

mutations, this can be integrated. First, letting x = t
√
n, this is

σx

n
e−x

√
σ/n.
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Integrating, the probability that a random element is in a cycle of length at least t
√
n

is ∫ ∞

t
√

n

σx

n
e−x

√
σ/n dx.

Letting u = x
√
σ/n and simplifying, this is

∫∞
t
√

σ
ue−u du. Finally, let u = v

√
σ; then

we can rewrite this as
∫∞

v
vσe−v

√
σ dv The integrand is the PDF of a Γ(2, 1/

√
σ)

random variable, which has mean 2/
√
σ and variance 2/σ; denote this distribution

by X. Therefore the length of the cycle containing 1, divided by
√
n, approaches in

distribution X as n→∞..

So consider
√
n −

√
n−X

√
n. If we assume that X

√
n is much smaller than n,

and approximate the square root by a linear function near n, the distribution of this

looks like that of X/2, which has mean 1/
√
σ and variance 1/(2σ). Consider the

process which starts at
√
n and subtracts a random variable with distribution X/2

at each step; how long does this process take to reach 0? By the renewal central

limit theorem, this time is asymptotically normally distributed with mean
√
nσ and

variance
√
nσ/2.

4.11 Connections to number theory

Finally, there are many connections between the cycle structure of permutations and

the prime factorizations of integers. This analogy has been pointed out by [Gra09],

from a number-theoretic point of view; here we look at the analogy from the combi-

natorialist’s perspective. We begin by recalling the Erdős-Kac theorem: informally,
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this theorem states that integers near n have a number of prime factorizations which

is normally distributed, with mean and variance log log n. Somewhat more formally,

we have:

Theorem 4.11.1. [EK40] If ω(n) is the number of distinct prime factors of n, then

for any fixed a < b,

lim
x→∞

1

x
#

{
n ≤ x : a ≤ ω(n)− log log n√

log log n
≤ b

}
=

1√
2π

∫ b

a

e−t2/2 dt.

The same is true if we consider the number of prime factors counted with multi-

plicity.

Now, recall that the number of cycles of a permutation of n is asymptotically nor-

mally distributed with mean and variance log n. If we consider the natural logarithm

of a number to be its “size”, then we see that an integer of size n (that is, an integer

near en) has number of prime factors normally distributed with mean and variance

log n.

Indeed, a wide variety of facts about permutations are echoed by facts about prime

factorizations, and conversely. Since the usual methods of proof in combinatorics and

in analytic number theory are different, some results will be closer to the surface in

one subject than the other.

For example, consider the usual probabilistic interpretation of the prime number

theorem: integers near n have “probability” 1/ log n of being prime. That is, integers

of “size” x have probability 1/x of being prime. The permutation analogue is that

permutations of n have probability 1/n of being cycles, which is exactly true.
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Also note that the expected number of cycles in a permutation of [n] which are

longer than αn is asymptotic to − logα as n → ∞. Since the expected number of

k-cycles in a permutation of n, with 1 ≤ k ≤ n, is 1/k, the expected number of cycles

longer than αn is Hn − Hbαnc, where Hn =
∑n

k=1 is the nth harmonic number. As

n → ∞ this approaches − logα from the usual asymptotic series for the harmonic

numbers. We also see that the expected number of prime factors of an integer n

which are greater than nα is − logα. The asymptotic density of positive integers n

with kth largest factor smaller than n1/α is ρk(α), where we have L0(α) = Jα > 0K

and

Lk(α) = Jα ≥ kK
∫ α

k

Lk−1(t− 1)
dt

t
,

and 1− ρk(α) =
∑∞

n=0

(−k
n

)
Ln+k(α) [Rie94, p. 162]. The density of positive integers

with kth largest factor larger than n1/α is therefore 1 − ρk(α), and so the expected

number of factors larger than n1/α is
∑

k≥1(1−ρk(α)). Therefore the expected number

of such factors is ∑
k≥1

∑
n≥0

(
−k
n

)
Ln+k(α).

Letting n+ k = j we can rewrite this sum as

∑
j≥1

j−1∑
n=0

(
n− j

n

)
Lj =

∑
j≥1

Lj

(
j−1∑

n=−0

(−1)n

(
j − 1

n

))

and the inner sum is 0 except when j = 1, when it is 1. So the expected number of

factors larger than n1/α is L1(α); this is logα.

Similarly, the Dickman function, as defined by [Dic30], tells us the distribution

of the largest prime factor of a random integer. Let ψ(x, y) denote the number of
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integers less than or equal to x with all prime factors less than or equal to y. Then

ψ(x, xu) ∼ xρ(1/u) as x → ∞, where ρ is the function defined by ρ(u) = 1 for

0 ≤ u ≤ 1 and ρ(u) = 1
u

∫ u

u−1
ρ(t) dt for all u > 1. In particular ρ(u) = 1 − log u for

1 ≤ u ≤ 2. This result has been extended in [KP77], where it is shown that there are

∼ ρk(u)x integers with kth largest prime factor less than x1/u, where ρk(u) = 1 for

u ≤ 1, and

ρk(u) = 1−
∫ u

1

(ρk(t− 1)− ρk−1(t− 1))
dt

t
.

They also showed that ρk(u) is the probability that the kth longest cycle in a random

permutation of N letters has length less than N/u. This extends work of [LS66] on

the length of the longest cycle.

The results of Section 4.9 also are connected to number theory. The number of

cycles in a permutation of [n] of length between γn and δn is analogous to the number

of prime factors of an integer near n between nγ and nδ. The case γ = 0 (that is,

integers with all factors less than nδ) was considered by Dickman [Dic30], and that of

δ = 1 (all factors greater than nγ) by Buchstab [Buc49]; the general case was treated

by Friedlander [Fri76]. There do not seem to be results considering the probability

that an integer near n has a specified number of prime factors in [nγ, nδ].

Instead of looking at the sizes of cycles of prime factors, we can look at multiplic-

ities. The “probability” that an integer is squarefree is 6/π2 = 1/ζ(2); that is, the

number of squarefree integers less than n which are squarefree is asymptotic to 6n/π2.

The analogue of a squarefree integer is a permutation with no cycle length repeated.
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The probability that a random permutation of [n] has no repeated cycle lengths is e−γ

where γ is the Euler-Mascheroni constant [FFG+06]. These probabilities are given

by the infinite products

∏
p≥1

(
1− 1

p2

)
,
∏
k≥1

(
1 +

1

k

)
e−1/k

respectively, where the former is over primes and the latter is over all integers. The

result in the squarefree case can be predicted from the “Cramer model” of prime

factorizations, in which integers are assumed to be divisible by p with probability

1/p and divisibility by each prime is independent; in the distinct-cycle-length case,

we can predict the result from the fact that a random permutation has P(k) cycles

of length k, since (1 + 1/k)e−1/k is the probability that a P(1/k) random variable is

either 0 or 1.

Finally, we can seek analogues of our results on the parity of cycle lengths occurring

in the factorizations of integers. The analogue of parity of cycle lengths is not parity

of primes. Perhaps the most natural way to divide the primes in half is to split them

into classes congruent to 4n±1 or to 6n±1. In this case we can consider the following

theorem of Spearman and Williams.

Theorem 4.11.2. [SW07, Thm. 1.1, case λ = 1]. Let S := S(l1, l2, . . . , lr, k), be the

set of integers with all prime factors congruent to one of l1, l2, . . . , lr modulo k, and

let 0 < ε < 1. Then there exists a positive constant C such that

∑
n≤x
n∈S

1 =
r

φ(k)
Cx(log x)r/φ(k)−1 +O((log x)r/φ(k)−2+ε)
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where the constant implicit in the O notation depends at most on ε, k, l1, . . . , lr, λ.

The constant C is a certain product over Dirichlet characters modulo k which we

do not give explicitly. The version of the theorem we state here is for the “count-

ing” sums
∑

n≤x,n∈S 1; in fact Spearman and Williams considered sums of the form∑
n≤x
n∈S

nα for all α ≥ −1. This theorem has a probabilistic interpretation: the proba-

bility that an integer near x has all its prime factors congruent to one of l1, l2, . . . , lr

modulo k is proportional to (log x)r/φ(k)−1. That is, integers of “size” n have all their

prime factors in one of the allowed residue classes with probability proportional to

nr/φ(k)−1.

Now, r/φ(k) is the relative density of these primes in the set of all primes, by the

prime number theorem for arithmetic progressions. So this is exactly an analogue

of results in Section 4.5, in which we show that a permutation of [n] has probability

proportional to nr/s−1 of having all its cycle lengths in one of r specified residue classes

modulo s. In particular, the number of integers less than x with all prime factors

congruent to 1 mod 4, or to 3 mod 4, are both Θ(x/
√

log x); these are analogous to

results on permutations with all cycle lengths of the same parity.

Finally, Landau [Lan08] showed that the number of integers less than x that can be

written as a sum of two squares, denoted by S(x), satisfies limx→∞
√

log x/x·S(x) = K

where K is a constant. Probabilistically, numbers near x have probability 1/
√

log x

of being expressible as a sum of two squares. We recall that a positive integer can

be written as a sum of two squares if and only if all primes of form 4k + 3 occur to
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an even power in its prime factorization. So positive integers which can be written

as sums of two squares are analogous to permutations in which cycles of even length

occur with even multiplicity – that is, to permutations with square roots. Pouyanne

[Pou02] gives an asymptotic expression for the probability that a permutation of [n]

has an mth root, for any fixed m as n → ∞; for m = 2 this is asymptotic to C/
√
n

for a constant C.
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Chapter 5

Cycle structure of compositions of

involutions

5.1 Introduction

In this chapter we study the cycle structure of compositions of involutions. Recall

that an involution is a permutation with all cycles having length 1 or 2. Let an be

the number of involutions in the symmetric group Sn. Then as n→∞,

an ∼
√
n!e

√
n(8πen)−1/4. (5.1)

This form involving
√
n! is due to [FS09, p. 583]; see [MW55] for the result in

another form, and [Pem09, Example 3.2] for details of the asymptotic analysis by the

saddle-point method. The factor
√
n! is much faster-growing than e

√
n(8πen)−1/4. So

in a logarithmic sense the number of involutions of [n] is approximately the square
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root of the number of permutations of [n]. Thus the number of pairs of involutions

of [n] is logarithmically near n!. This suggests identifying permutations with pairs

of involutions. A natural way to combine two involutions to form a permutation is

composition, so we study compositions.

We then proceed to represent involutions graph-theoretically as partial matchings;

thus compositions of two involutions can be identified with graphs having 2-colored

edges, where each vertex has at most one incident edge of each color. The components

of such graphs are paths and cycles, so we easily find generating functions involving

them. This is our principal tool for extracting information on the cycle structure

of these graphs and the corresponding permutations. In particular, if σ and τ are

random involutions of [n], then as n→∞:

• The distribution of the number of k-cycles of τ ◦ σ converges in distribution to

P(1) + 2P(1/2k) (Theorem 5.3.1);

• The mean number of cycles of τ ◦ σ (of all lengths) is
√
n + 1

2
log n + O(1)

(Theorem 5.5.4);

• If σ and τ are constrained to be fixed-point-free, then the distribution of the

number of cycles of τ ◦σ is asymptotically normal with mean log n and variance

2 log n (Proposition 5.6.2).

Next, we consider the number of factorizations of a permutation into involutions.

The mean number of factorizations into two involutions of a permutation π ∈ Sn
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chosen uniformly at random – that is, solutions to π = τ ◦σ, with τ and σ involutions

of [n] – is e2
√

n/
√

8πen(1+o(1)). We derive a formula (Theorem 5.7.1) for the number

of factorizations of π ∈ Sn into two involutions, in terms of the cycle type of π. This

is a product over cycle lengths. In a model of random permutations in which there

are P(1/k) cycles of length k for k = 1, . . . , n, the number of factorizations of a

random permutation π is lognormally distributed (Theorem 5.7.5). If P∗n denotes this

probability measure, F (π) the number of factorizations of π, and Φ the standard

normal cdf, then

lim
n→∞

P∗n
(

logF (π)− 1
2
(log n)2

1
3
(log n)3

≤ x

)
→ Φ(x).

In particular the median number of factorizations of π is near exp((log n)2/2), much

smaller than the mean. This is one of many indications that the measure on Sn coming

from compositions of involutions chosen uniformly at random is much different from

the uniform measure on Sn.

After this, we consider pattern avoidance in involutions. Stanley-Wilf limits for

various classes of pattern-avoiding permutations are known; in those cases where a

Stanley-Wilf limit for the corresponding pattern-avoiding involutions exists, the for-

mer is the square of the latter. In the simplest case, that of 21-patterns or inversions,

it is also possible to enumerate involutions on [n] by their number of inversions; we

compare the distribution of the number of inversions in involutions with the number

of inversions in ordinary permutations.

Finally, we asymptotically enumerate permutations with all cycle lengths in a finite
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set S; involutions are the case S = {1, 2}. Call a permutation with all cycle lengths

in S an S-permutation. Let p
(S)
n be the probability that a permutation of [n] selected

uniformly at random is an S-permutation. Then limn→∞
log p

(S)
n

log n!
= −1/(maxS); a

refinement of this is Theorem 5.10.1 below. In particular the number of k-cycles

of a typical S-permutation is near 1
k
nk/(max S), generalizing the result that a typical

involution of [n] has
√
n fixed points.

5.2 Graph-theoretic decomposition

An involution σ can be represented as a partial matching on the set [n], where k

and l are matched if σ(k) = l (and therefore σ(l) = k). We can view this matching

as a graph, by drawing an edge between k and l when σ(k) = l. A pair of partial

matchings or involutions, (σ, τ), can be identified with a graph on the vertex set [n]

with 2-colored edges, where we color the edges solid or dotted according to whether

they are from σ or from τ . We write σ ∪ τ for this graph, and refer to it as a

superposition; we write τ ◦ σ for the corresponding permutation.

Figure 5.1 illustrates such a superposition, where the solid edges represent the

matching or involution σ and the dotted edges represent the matching or involution

τ , with

σ = (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13)(14 15)(16 17)(18 19),

τ = (1 4)(2 3)(5)(6 7)(8)(9)(10 11)(12 13)(14 19)(15 16)(17 18).

To read the product permutation from the figure, start at any vertex, follow the solid
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Figure 5.1: Two matchings on 19 vertices.

edge at that vertex and then the dotted edge at that vertex. (If only one of those

edges exists, follow it; if neither exists, the original vertex is a fixed point.) In this

example, we have

τ ◦ σ = (1 3)(2 4)(5 7 8 6)(9 11 13 12 10)(14 16 18)(15 17 19).

Theorem 5.2.1. The trivariate generating function for pairs of partial matchings

(σ, τ), counted according to the size of the ground set (indicated by the variable z) and

number of paths and cycles in σ ∪ τ (indicated by u and v respectively), exponential

in z and ordinary in u and v, is

Q(z, u, v) =
exp(uz/(1− z))

(1− z2)v/2
(5.2)

That is, n![znukvl]Q(z, u, v) is the number of pairs of partial matchings on n vertices

with k paths and l cycles.

Proof. We enumerate the possible connected components of a pair of partial match-

ings and apply the exponential formula.

The connected components of such a graph are cycles of even length and paths,

with the edges alternating in color. These are the only possible components since
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if colors are ignored, all vertices must have degree at most two. We note that the

degenerate path (a single vertex) and the degenerate cycle (two vertices connected

by a solid edge and a dotted edge) are both possible components. We consider the

length of a path to be its number of vertices, so a single vertex is a path of length 1.

First we count the possible labelled cycles. Since the edges must alternate in color,

only cycles of even length are possible. Now, an unlabelled cycle with even length n,

like the cycle on the right in Figure 5.2, can be labelled in n! ways. But there are

n symmetries of this cycle that take solid edges to solid edges, corresponding to the

dihedral group with n elements. So there are (n−1)! possible labelled cycles of length

n, for each even n, and none for odd n. Thus the exponential generating function

(egf) for properly colored cycles is

1!
z2

2!
+ 3!

z4

4!
+ 5!

z5

6!
+ · · · = z2

2
+
z4

4
+
z6

6
+ · · · = 1

2
log

1

1− z2
.

Next we count labelled paths with edges alternating color. If such a path has

an even number of edges, like the leftmost path in Figure 5.2, then there are n!

ways to label it – each permutation of [n] corresponds to a labelling, by writing that

permutation (in one-line notation) starting at the end of the path with a solid edge. If

there are an odd number of edges, as in the middle path in Figure 5.2, then the ends

of the path are indistinguishable. We first choose whether the two terminal edges of

the path are solid or dotted (they must be the same color); then there are only n!/2

ways to label a solid-dotted-solid path or a dotted-solid-dotted path. So there are

n! paths with n vertices, with vertices having distinct labels in [n] and edges having
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Figure 5.2: Unlabelled paths of length four and five, and an unlabelled cycle of length

four.

alternating colors. The egf for properly colored paths is z/(1− z).

The generating function of components marked according to their type (path or

cycle) is therefore u · z
1−z

+ v · 1
2
log 1

1−z2 , and applying the exponential formula gives

(5.2).

We quickly derive two corollaries more relevant to permutation enumeration.

Corollary 5.2.2. The exponential generating function of pairs of involutions is

P (z) = exp(z/(1− z))/
√

1− z2.

Proof. Take the specialization u = 1, v = 1 in Theorem 5.2.1. This gives the ex-

ponential generating function for pairs of partial matchings, which we identify with

pairs of involutions.

Corollary 5.2.3. The semi-exponential generating function of pairs of involutions

(σ, τ), counted by the size of the ground set and the number of permutation cycles in

the composition τ ◦ σ, is

R(z, u) =
exp

(
uz

1−z

)
(1− z2)u2/2

,

Proof. Consider a pair of perfect matchings (σ, τ). Each connected component of the

corresponding graph σ∪τ gives rise to either one or two cycles in τ ◦σ. Each 2k-cycle
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in the graph σ ∪ τ gives rise to two k-cycles in the permutation τ ◦ σ, corresponding

to half of the vertices. Each k-path in σ ∪ τ gives rise to a k-cycle in τ ◦ σ. To count

by permutation cycles, then, we need znukvl in Q(z, u, v) to be mapped to znuk+2l;

thus we take the specialization R(z, u) = Q(z, u, u2) in Theorem 5.2.1.

5.3 Asymptotic distribution of the number of k-

cycles

In this section we show

Theorem 5.3.1. The distribution of the number of k-cycles of the composition of

a pair of random involutions of [n] converges in distribution to the distribution of

Ak + 2Bk as n→∞, where Ak and Bk are independent, Ak is Poisson with mean 1,

and Bk is Poisson with mean 1/(2k).

We need the following more general result. Recall that a sequence {bn} is slowly

varying if limn→∞ bn−1/bn = 1.

Lemma 5.3.2. Let P (z, u) be the generating function

P (z, u) =
∑

n,k≥0

Pn,k
zn

n!
uk

where Pn,k is the number of objects in a combinatorial class P of size n with some

parameter χ equal to k. Assume P (z, u) = Q(z)eR(z,u) with R a polynomial, [zn]Q(z)

is slowly varying as n→∞, and R(1, t) is the factorial moment generating function
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of some distribution which is determined by its moments. For each n, let Pn(χ =

k) = Pn,k/
∑

k Pn,k define a probability distribution on the positive integers. Then

as n → ∞, the sequence of distributions of χ on Pn converges in distribution to the

distribution with factorial moment generating function expR(1, t).

Proof. Let j be the degree of R in the variable u. We can show by induction that

∂r
uP (z, 1) = P (z, 1)Tr(z), where Tr(z) is a polynomial of degree jr. Then we have

En((χ)r) =
[zn] ∂r

uP (z, u)|u=1

[zn]P (z, 1)
=

[zn]P (z, 1)Tr(z)

[zn]P (z, 1)
.

Now, limn→∞ [zn−s]P (z, 1)/[zn]P (z, 1) = 1 from the condition on slow variation. Then

[zn]P (z, 1)Tr(z)

[zn]P (z, 1)
=

jr∑
s=0

[zs]Tr(z)
[zn−s]P (z, 1)

[zn]P (z, 1)

and taking limits as n→∞ gives

lim
n→∞

[zn]P (z, 1)Tr(z)

[zn]P (z, 1)
= Tr(1).

So limn→∞ En((χ)r) = Tr(1). Now let F (t) = R(1, t). The rth factorial moment of

the distribution with factorial mgf F (t) is F (r)(1). This is ∂r

∂ur expR(z, u)
∣∣
z=u=1

and

we recall that ∂r
uQ(z) expR(z, u)|u=1 = P (z, 1)Tr(z) by definition. Therefore we have

∂r

∂ur
expR(z, u)

∣∣∣∣
z=u=1

=
P (1, 1)Tr(1)

Q(1)
= Tr(1)

which is what we wanted.

Proof of Theorem 5.3.1. First, find the semi-exponential generating function for com-

positions of involutions, with k-cycles marked. That is the generating function for
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superpositions of partial matchings, as found in the proof of Theorem 5.2.1, with

paths of length k singly marked and cycles of length 2k doubly marked. This gives

P (z, u) =
exp(z/(1− z))√

1− z2
exp

(
(u− 1)zk + (u2 − 1)

z2k

2k

)

and we apply Lemma 5.3.2. The slow variation hypothesis holds since [zn] exp(z/(1−

z))/
√

1− z2 = a2
n/n! = e2

√
n(8πen)−1/2(1+ o(1)). We have R(z, u) = exp((u− 1)zk +

(u2−1)z2k/(2k)); this is the factorial moment generating function of Ak +2Bk, which

follows from the fact that Poisson(λ) has factorial mgf exp(λ(t − 1)). Finally, we

recall that if the moment generating function of a random variable has positive radius

of convergence, then the random variable is determined by its moments [Bil95, Thm

30.1]. Ak + 2Bk has mgf exp(et − 1 + (e2t − 1)/2k), which is entire.

The sum of Poissons given in Theorem 5.3.1 is quite natural. There are two types

of components in superpositions of partial matchings on [n] that can lead to k-cycles

of the corresponding permutations: paths of length k (which induce one permutation

k-cycle) and cycles of length 2k (which induce two permutation k-cycles). For large n

and fixed k, the expected number of k-paths approaches 1 and the expected number

of 2k-cycles approaches 1/k. Furthermore, the sites in which individual cycles can

appear are each rare, so it is not surprising to see an independent Poisson distribution

for each type of component.
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5.4 Partial matchings with a specified number of

fixed points

In this section we consider superpositions of partial matchings, σ ∪ τ , where σ is

chosen uniformly from all partial matchings on [n] with k fixed points, and τ is

chosen uniformly from all partial matchings with l fixed points.

Proposition 5.4.1. The expected number of r-paths in σ ∪ τ is

kl
(n−k

2
)(r−1)/2(

n−l
2

)(r−1)/22
r−1

(n)r

(5.3)

if r is odd, and

(k(k − 1)(n−k
2

)r/2−1(
n−l
2

)r/2 + l(l − 1)(n−k
2

)r/2(
n−l
2

)r/2−1)2
r−1

2(n)r

(5.4)

if r is even.

Proposition 5.4.2. The expected number of r-cycles in σ ∪ τ , is(
n−k

2

)
r/2

(
n−l
2

)
r/2

2r

r(n)r

(5.5)

for even r.

These statements can be easily verified. For odd paths, we compute the probability

that a path occurs which traverses the edges 1, 2, . . . , r in that order, and multiply

by the number of possible paths. The argument is similar for even paths, except we

must handle the cases where the two ends of the path are fixed points in σ and fixed
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points in τ separately. Finally, we do this for cycles; the most interesting feature is

the factor of r in the denominator which arises from the symmetry of cycles. This

model of random involutions, with n→∞ and k, l varying with n in such a way that

k + l = Ω(1) and k + l = o(n) simultaneously, has been considered in [RV09] in the

context of dynamical systems.

Corollary 5.4.3. The expected number of paths of length r in σ∪τ , the superposition

of two randomly selected perfect matchings on [n], where σ and τ each have pn fixed

points, is asymptotic to p2(1 − p)r−1 as n → ∞. The expected number of cycles of

length r (if r is even) approaches (1− p)r/r as n→∞.

Corollary 5.4.4. Let r = O(
√
n) as n → ∞. Then the mean number of r-paths in

σ ∪ τ , where σ and τ are randomly selected involutions with
√
n fixed points each, is

asymptotic to exp(−r/
√
n) as n→∞, and the mean number of r-cycles is asymptotic

to exp(−r/
√
n)/r.

These follow from Propositions 5.4.1 and 5.4.2 by making appropriate substitu-

tions, and applying Stirling’s formula in the case of Corollary 5.4.4. The number of

r-paths decays exponentially in r.

Finally, we can translate Corollary 5.4.4 back into the terminology of involutions.

To get a better sense of the scaling behavior of cycle sizes, we look at the expected

number of α
√
n-cycles of a composition of two random involutions. The expected

number of k-cycles is
(
bn−k + 1

2k
bn−2k

)
/bn, where bn = [zn] exp(z/(1 − z))/

√
1− z2.

Recall that bn ∼ e2
√

n(8πen)−1/2. Let k = α
√
n grow with n. We can compute
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that bn−α
√

n/bn ∼ e−α as n → ∞; this is the limit of the number of α
√
n-cycles

as n → ∞. Recall that such square-root scaling is typical of structures counted by

generating functions which are the exponential of a function with a simple pole, the

simplest example of which are the “fragmented permutations” (permutations with

rooted cycles) or “sets of lists” counted by exp(z/(1 − z)), and discussed in Section

4.8.

5.5 The total number of cycles

The function R(z, u) given in Corollary 5.2.3 will be our jumping-off point for

asymptotic results on cycle structure. We will need Theorem 2.3.12 to derive

asymptotic results. We begin by observing that applying Theorem 2.3.12(a) with

Φ(z) = e−z/
√

1 + z, β = −1/2 gives [zn]P (z) = 1√
8πen

exp(2
√
n)(1 + O(n−1/2)). This

is consistent with the known number of involutions in (5.1).

Proposition 5.5.1. The mean number of components which are paths in a superpo-

sition of two partial matchings on [n] selected uniformly at random is
√
n+O(1).

Proof. The bivariate generating function counting superpositions of partial matchings

by size and number of paths is Q(z, u, 1) = exp(uz/(1 − z))/
√

1− z2, obtained by

setting the variable which marks cycles in Theorem 5.2.1 equal to 1. From Proposition

2.1.2, the mean number of components which are paths in a superposition of two
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partial matchings is

[zn]Qu(z, 1, 1)

[zn]Q(z, 1, 1)
=

[zn] z
(1−z)

√
1−z2 exp(z/(1− z))

[zn] exp(z/(1− z))
. (5.6)

Applying Theorem 2.3.12(a) with β = −3/2,Φ(z) = e−1z/
√

1 + z gives

[zn]
z

(1− z)
√

1− z2
=

exp(2
√
n)√

8πe
(1 +O(n−1/2)).

Since Q(z, 1, 1) = P (z), the denominator in (5.6) is exp(2
√
n)/

√
8πen ·(1+O(n−1/2)),

giving the desired result.

Proposition 5.5.2. The mean number of components which are cycles in a super-

position of two partial matchings on [n] selected uniformly at random is 1
4
log n −

1
2
log 2 +O(n−1/2 log n).

Proof. The bivariate generating function counting superpositions of partial matchings

by size and number of cycles is Q(z, 1, v) = exp(z/(1 − z))(1 − z2)−v/2, obtained by

setting the variable marking paths in Theorem 5.2.1 equal to 1.

By Proposition 2.1.2, then, the mean number of cycles is given by

[zn]∂vQ(z, 1, 1)/[zn]Q(z, 1, 1). The numerator is

[zn]
1

2
exp

(
z

1− z

)
log

(
1

1− z2

)
(1− z2)−1/2

and we can write the logarithm as a sum to get

[zn]∂vQ(z, 1, 1) = [zn]
1

2e
exp

(
1

1− z

)
log

(
1

1− z

)
(1− z2)−1/2

+ [zn]
1

2e
exp

(
1

1− z

)
log

(
1

1 + z

)
(1− z2)−1/2.
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The asymptotics of each term can be derived from Theorem 2.3.12. For the first term,

we have k = 1, β = −1/2,Φ(z) = 1/(2e
√

1 + z); thus the first term is

log n exp 2
√
n√

n

1

27/2
√
eπ

(1 +O(n−1/2)).

The second term, with k = 0, β = −1/2,Φ(z) = 1/(2e
√

1 + z) log(1/(1 + z)), is

exp 2
√
n√

n

− log 2

25/2
√
eπ

(1 +O(n−1/2)).

Putting these together, the mean number of cycles is given by

exp 2
√

n√
n

(
log n

27/2
√

eπ
− log 2

25/2
√

eπ
+O

(
log n√

n

))
1

23/2
√

eπn
exp(2

√
n)(1 +O(n−1/2))

which simplifies to the desired result.

Proposition 5.5.3. The mean number of elements in cycles in a superposition of

two random partial matchings of [n] is 1
2

√
n+O(1).

Proof. The generating function counting pairs of matchings by their size and number

of elements in cycles is

S(z, u) = exp

(
z

1− z
+
u2z2

2
+
u4z4

4
+
u6z6

6
+ · · ·

)
=

exp(z/(1− z))√
1− u2z2

.

By now the pattern of proof is clear; we want

[zn]Su(z, 1)

[zn]S(z, 1)
=

[zn] z2

(1−z2)3/2 exp(z/(1− z))

[zn] exp(z/(1− z))/
√

1− z2
.

The denominator is known. The numerator can be found from Theorem 2.3.12 with

k = 0, β = −3/2,Φ(z) = z2/(e(1 + z)3/2).
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Theorem 5.5.4. The mean number of cycles in a composition of two uniform random

involutions on [n] is
√
n+ 1

2
log n+O(1).

Proof. A superposition of partial matchings with k paths and l (graph) cycles is iden-

tified with a composition of involutions having k+2l (permutation) cycles. Therefore,

the mean number of cycles in a composition of two uniform random involutions is the

sum of:

• the mean number of paths in a superposition of partial matchings, from Propo-

sition 5.5.1, and

• twice the mean number of cycles in a superposition of partial matchings, from

Proposition 5.5.2.

Proposition 5.5.5. The probability that a superposition of two partial matchings of

[n] selected uniformly at random has no cyclic components is
√

2n−1/4 +O(n−3/4) as

n→∞.

Proof. Partial matchings with no cyclic components have generating function

Q(z, 1, 0) = exp(z/(1− z)); thus the probability in question is

[zn] exp
(

z
1−z

)
[zn] exp

(
z

1−z

)
/
√

1− z2

By Theorem 2.3.12 the numerator is e2
√

n/(2n3/4
√
eπ)(1+O(n−1/2)); the denominator

is e2
√

n/
√

8πen(1 +O(n−1/2)), giving the desired result.
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5.6 Fixed-point-free involutions

Proposition 5.6.1. The number of pairs of fixed-point-free involutions (σ, τ) on [2n]

such that π = τ ◦ σ has 2ck k-cycles for each k is the same as the number of permu-

tations of [2n] which have ck 2k-cycles for each k, and no cycles of odd length.

Proof. We construct a bijection between the two sets. Given such a pair of fixed-

point-free involutions, the graph of σ ∪ τ consists of ck graph cycles of length 2k,

with the edges alternately solid and dotted. From each graph cycle we construct a

permutation cycle. We need only make a choice of direction, say by starting at the

smallest element and following the solid edge out of that element. This operation is

clearly reversible; given a permutation with only even cycles we can reconstruct the

graph σ ∪ τ of a pair of fixed-point-free involutions.

For example, the pair of involutions σ = (12)(34)(56), τ = (16)(23)(45), with

τ ◦ σ = (135)(264), corresponds to a graphical 6-cycle; this cycle can be read as the

permutation (123456).

Proposition 5.6.2. The number of cycles in a composition of two fixed-point-free

involutions on [2n] chosen uniformly at random has the distribution of 2
∑n

k=1Xk,

where Xk is Bernoulli with mean 1/(2k − 1) and the Xk are independent.

Proof. From Theorem 4.3.7, the distribution of the number of cycles of a permutation

of [2n] with all cycle lengths even is that of
∑n

k=1Xk, where Xk is Bernoulli with mean

1/(2k−1) and the Xk are independent. From Proposition 5.6.1, there are exactly the
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same number of permutations of [2n] with 2j cycles, all of even length, as there are

pairs of fixed-point-free involutions (σ, τ) ∈ S2n × S2n with τ ◦ σ having j cycles.

Note that the expected number of cycles in a composition of two fixed-point-

free involutions of [2n] is 2H2n − Hn = log n + (2 log 2 + γ) + O(n−2), which differs

from the expected number of cycles in a random permutation of [2n] by log 2 +

O(n−1). However, compositions of fixed-point-free involutions do not “look like”

random permutations. Most obviously, since cycles come in pairs of the same length,

a composition of fixed-point-free involutions of [n] has no cycles longer than n/2.

Cycle lengths satisfy the following limit law.

Proposition 5.6.3. Fix constants 0 ≤ γ ≤ δ ≤ 1/2. Let pi(n; γ, δ) be the prob-

ability that 1 is contained in a cycle of τ ◦ σ of length between γn and δn, where

σ and τ are fixed-point-free involutions on [n] chosen uniformly at random. Then

limn→∞ pi(n; γ, δ) =
√

1− 2γ −
√

1− 2δ.

Proof. Call a permutation with all cycle lengths even an E-permutation, and a compo-

sition of fixed-point-free involutions an I-permutation. The number of 2k-cycles in E-

permutations of [n] is half the number of k-cycles in I-permutations of [n], by Propo-

sition 5.6.1. In particular the number of elements of 2k-cycles in E-permutations of

[n] and the number of elements of k-cycles in I-permutations of [n] are equal. So

the probability that a random element of a random I-permutation of [n] is in a cycle

of length in [γn, δn] is equal to the probability that a random element of a random

E-permutation of [n] is in a cycle of length in [2γn, 2δn]. By Theorem 4.3.5, the latter
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probability approaches
√

1− 2γ −
√

1− 2δ as n→∞.

Proposition 5.6.4. Fix ε ∈ (0, 1/2). The expected number of elements in k-cycles

in a composition of two random fixed-point-free involutions of [n] converges uniformly

to (1− 2k/n)−1/2 as k/n→∞ with 0 < k/n < 1/2− ε.

Proof. By Proposition 5.4.2 the expected number of elements in r-cycles in a super-

position σ ∪ τ of fixed-point-free perfect matchings is

(n/2)!2

((n− r)/2)!2
2r (n− r)!

n!
.

In the case r = αn, this is asymptotic to 1/
√

1− α as n→∞, with uniform conver-

gence over 0 < α < 1; this is shown in Proposition 4.3.4, where the same expression

occurs in relation to permutations with all cycle lengths even. Noting that elements

in r-cycles in a pair of perfect matchings give rise to elements in r/2-cycles of the

corresponding permutation gives the desired result.

5.7 The number of factorizations of a permutation

into involutions

Let π ∈ Sn be a permutation, and let λ, µ be partitions of the integer n. The problem

of determining the number of solutions to π = τ ◦ σ in which σ has cycle type λ

and τ has cycle type µ has been called the “class multiplication problem” by Stanley

[Sta09]. One case of substantial prior interest has been the case in which π is a full
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cycle and λ, µ are generic; see for example [Bia04, Irv06, PS02]. Bóna and Flynn

[BF08] asked for the probability that two fixed elements of [n] lie in the same cycle of

the product of two random n-cycles; this is 1/2 if n is odd, as shown in [Sta09]. We

note that this also requires at least one of the permutations involved to be an n-cycle.

Involutions, we will see, are another extreme case of the class multiplication problem;

furthermore the techniques used here to enumerate factorizations of permutations

into involutions are purely enumerative, as opposed to the more algebraic approaches

of previous work.

The square of the number of involutions of [n] is a bit larger than n!; we have

a2
n ∼ n! · e2

√
n

√
8πen

.

The mean number of factorizations of a random permutation into a product of invo-

lutions is just the second factor. The number of factorizations can be as large as an

for the identity permutation, since id = σ2 for any involution σ, and as small as n−1

for those permutations which consist of an (n− 1)-cycle and a 1-cycle.

Theorem 5.7.1. Define the function

f(r, k) =

br/2c∑
j=0

r!

(r − 2j)!j!2j
kr−j.

Let π be a permutation of [n] with ck cycles of length k, for each k. Then

F (π) =
n∏

k=1

f(ck, k)

is the number of factorizations of π into two involutions, i. e. the number of solutions

of π = τ ◦ σ with σ and τ involutions.
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We remark that f(r, k) is the number of partial matchings of [r] with k-colored

components. This interpretation is key to the proof, which works by pairing up some

of the k-cycles and then assigning one of k partial factorizations to each unpaired

k-cycle or pair of k-cycles.

We begin with the following special case.

Lemma 5.7.2. The number of ways to factor an n-cycle π into two involutions is n.

Proof. Without loss of generality let π = (123 · · ·n). We construct a corresponding

pair of partial matchings (σ, τ). This must be a path of length n, since cycles in σ∪ τ

give rise to pairs of permutation cycles. So we consider an unlabeled path of length n

with alternating solid and dotted edges, and attempt to label it. If n is odd, we begin

by labelling some vertex by 1. Then follow the solid edge at that vertex, followed by

the dotted edge at the next vertex, to determine the site of 2; repeat to determine the

sites of 3, 4, and so on. The remaining vertices can therefore be labelled in exactly

one way. If n is even, then there are only n/2 inequivalent sites at which to begin

this process, but there are two ways to color the unlabelled path.

For example, the cycle (1234) has the factorizations

(σ, τ) = ((1)(24)(3), (12)(34)), ((13)(2)(4), (14)(23)),

((12)(34), (2)(13)(4)), ((14)(23), (24)(1)(3)).

These correspond to the labelled paths illustrated in Figure 5.7.
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Figure 5.3: Factorizations of (1234) into involutions.

This is also a special case of the following theorem of Goupil and Schaeffer for the

number of factorizations of an n-cycle into permutations of types λ and µ.

Theorem 5.7.3. [GS98, Thm. 2.1] Let `(λ) denote the number of parts of the

partition λ; let (n1, . . . , nk) � n mean n1 + . . . + nk is a composition of n. Let

λ = (λ1, . . . , λl) and µ = (µ1, . . . , µm) be any two partitions of n with g(λ, µ) = g,

where `(λ)+ `(µ) = n+1−2g(λ, µ). Then the number of factorizations of an n-cycle

into a permutation of type λ and a permutation of type µ is

cnλµ =
n

zλzµ22g

∑
g1+g2=g

(l+2g1−1)!(m+2g2−1)!
∑

(i1,...,il)�g1
(j1,...,jm)�g2

∏
r

(
λr

2ir + 1

)∏
r

(
µr

2jr + 1

)

where zλ =
∏

i αi!i
αi for a partition λ = 1α1 · · ·nαn.

Proof of Lemma 5.7.2 from Theorem 5.7.3. We observe that if the product of two

involutions of type λ and µ is to be a single n-cycle, if n = 2k+ 1, then λ and µ each

have type 2k1; if n = 2k, either λ has type 2k−112 and µ has type 2k, or vice versa.

First we consider the case where n = 2k + 1 is odd. We thus have λ1 = · · · =

λk = µ1 = · · · = µk = 2, λk+1 = µk+1 = 1. In this case, we compute g(λ, µ) = 0,

zλ = zµ = k!2k. Thus the outer sum has the single term g1 = g2 = 0, and the inner

double sum also has the single term i1 = · · · = il = j1 = · · · = jm = 0. The formula
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of Theorem 5.7.3 thus becomes

c2k+1
λµ =

2k + 1

k!24k
(k!)(k!)

[(
2

1

)k(
1

1

)]2

= 2k + 1.

In the case where n = 2k is even, note that Theorem 5.7.3 is symmetric under

interchanging λ and µ. So it suffices to compute c2k
λµ in the case λ = 2k−112, µ = 2k

and double the result. Here we have zλ = 2k(k − 1)!, zµ = 2kk!, and again g = 0;

again the outer sum has the single term g1 = g2 = 0 and the inner double sum has

the single term corresponding to the pair of empty compositions. We get

c2k
λµ =

2k

4k(k − 1)!k!
k!(k − 1)!

(
2

1

)k−1(
1

1

)k(
2

1

)k

= k.

The actual number of factorizations is c2k
λµ + c2k

µλ = 2c2k
λµ = 2k, as desired.

Lemma 5.7.4. The number of ways to factor a permutation π of [2n] consisting of

two n-cycles into two involutions σ, τ , such that the corresponding graph σ ∪ τ is a

2n-cycle, is n.

Proof. Without loss of generality, let π = (1, 2, . . . , n)(n + 1, n + 2, . . . , 2n) in cycle

notation. We draw a graphical cycle with 2n vertices, with edges alternately solid and

dotted. Label some arbitrary vertex with 1; follow solid and dotted edges alternately

around the cycle to place 2, 3, . . . , n. Then label some arbitrary unlabeled vertex

with n + 1 and follow solid and dotted edges alternately around the cycle to place

n+2, . . . , 2n. There are 2n2 ways to carry out this procedure. However, the unlabeled

2n-cycle with alternately colored edges has 2n symmetries. So there are (2n2)/(2n) =

n distinct labellings; each one corresponds to a factorization.
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Figure 5.4: Factorizations of (123)(456) into involutions, which correspond to graph-

ical 6-cycles.

Proof of Theorem 5.7.1. Given an arbitrary permutation π to be factored into invo-

lutions with π = τ ◦σ, we can consider the cycles of each length separately. Consider

the cycles of length k; assume there are r of these. We pair up some of the k-cycles

with each other, representing that they come from the same cycle in the graph σ ∪ τ .

Those cycles which remain unpaired arise from paths, not cycles, in σ ∪ τ . We then

factor each unpaired cycle according to Lemma 5.7.2, and each pair of cycles accord-

ing to Lemma 5.7.4. If there are j pairs of cycles, then there are r−2j unpaired cycles,

and thus r − j total components to factor; thus the number of such factorizations,

once the cycles are paired up, is kr−j. The number of ways to find j disjoint pairs of

cycles, with order irrelevant, is(
r
2

)(
r−2
2

)
. . .
(

r−2j+2
2

)
j!

=
r!

(r − 2j)!j!2j
.

Summing over j gives the function f(r, k) defined in the theorem.

For example, consider the factorizations of the permutation π = (12)(345) into

involutions. We have f(1, k) = k, and so the number of factorizations of π into
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involutions is F (π) = f(1, 2)f(1, 3) = 2 · 3 = 6. We note that (12) = τ ◦ σ, where τ

and σ are involutions, has the solutions

(σ, τ) ∈ {((12), id), (id, (12))}. (5.7)

Similarly, (345) has factorizations

(σ, τ) ∈ {((35), (45)), ((34), (35)), ((45), (34))}. (5.8)

We can combine the factorizations in (5.7) and (5.8) to get the factorizations of π:

(σ, τ) ∈ {((12)(35), (45)), ((12)(34), (35)), ((12)(45), (34)),

= ((35), (12)(45)), ((34), (12)(35)), ((45), (12)(34))}.

Finally, we can consider the distribution of the number of factorizations of a

random permutation of [n] into involutions. We consider the following probability

model, which we call the sharp-cutoff model. Let Xk = P(1/k) for k = 1, 2, . . . , n,

where n is a positive integer parameter. Let m = X1 + 2X2 + · · ·+ nXn, and take a

permutation of [m] with Xk cycles of length k for each k, chosen uniformly at random

from all permutations of that cycle type. We denote the corresponding measure on the

set of all permutations by P∗n. Then E (
∑n

k=1 kXk) = n. This model generates each

permutation of [m] having all cycle lengths less than or equal to n with probability

e−Hn/m!, where Hn =
∑n

k=1 1/k is a harmonic number; in particular for each m ≤ n,

each permutation of [m] occurs with the same probability.
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Theorem 5.7.5. As n→∞,

lim
n→∞

P∗n
(

log(F (π))− 1
2
(log n)2

1
3
(log n)3

≤ x

)
→ Φ(x)

Proof. First, we show that E(log f(Xk, k)) = log(k)/k + O(k−3). Let µk =

E(log f(Xk, k)). We can write the expectation as a sum over possible values of Xk,

giving

µk = e−1/k
∑
r≥1

1

r!kr
log f(r, k). (5.9)

We can derive an asymptotic series for log f(r, k) from the Taylor series for log(1+x)

around x = 0; this gives an asymptotic series for the rth term in (5.9), which is of order

k−r log k. Adding these gives µk = (log k)/k + (1/2k3) + O(k−4). Similarly let hk =

E((log f(Xk, k))
2); then in like manner we can derive the series h(k) = (log k)2/k +

(log k)2/k2 + 2 log k/k3 + O(k−4). The variance is given by σ2
k = V(log f(Xk, k)) =

h(k)− µ2
k, and we find σ2

k = (log k)2/k + 2 log k/k3 +O(log k/k4).

Next we show that
∑n

k=1 µk ∼ (log n)2/2 and
∑n

k=1 σ
2
k ∼ (log n)3/3 as n → ∞.

We have µk = (log k)/k+O(k−3). Now,
∑n

k=1(log k)/k ∼
∫ n

1
(log k)/k dk = 1

2
(log n)2,

where the asymptotic equality can be justified by the Euler-Maclaurin summation

formula. Expanding the big-O notation, |µk−(log k)/k| ≤ Ck−3 for some constant C,

so
∑∞

k=1 µk − (log k)/k converges. Therefore
∑n

k=1 µk ∼
∑n

k=1(log k)/k ∼ 1
2
(log n)2.

The proof for
∑n

k=1 σ
2
k is similar. Note that

∑n
k=1 µk = E(logF (π)) and

∑n
k=1 σ

2
k =

V(logF (π)). Finally, we apply Lyapunov’s central limit theorem (Theorem 2.4.2)

to show that logF (π) is asymptotically normal. We will take δ = 1, and Yk =

log f(Xk, k). As previously shown, s2
n ∼ (log n)3/3, so s3

n ∼ (log n)9/2/(3
√

3). We
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also observe E(|Yk|3) is finite for each k. To check (2.4), first note that

E(|Yk − EYk|3) =
∑
r≥1

[
(log f(r, k)− EYk)

3P(Xk = r)
]
+ (EYk) P(Xk = 0).

Since EYk is positive, this is less than[∑
r≥1

(log f(r, k))3P(Xk = r)

]
+ (EYk) P(Xk = 0).

The first term in this equation is in fact E(Y 3
k ). (The sum giving E(Y 3

k ) should

naturally be over r ≥ 0, but f(0, k) = 1 and so the r = 0 term does not contribute

to the sum.) Therefore we have

E(|Yk − EYk|3) ≤ E(Y 3
k ) + (EYk)P(Xk = 0) ≤ E(Y 3

k ) + E(Yk).

But E(Y 3
k ) ∼ (log k)3/k and EYk ∼ (log k)/k as k → ∞. so E(|Yk − EYk|3) ∼

(log k)3/k. Therefore we have

1

s3
n

n∑
k=1

E(|Yk − EYk|3) ∼
33/2

(log n)9/2

(log n)4

4
=

33/2/4√
log n

and in particular this goes to 0 as n→∞, so (2.4) is satisfied. Therefore the standard-

ization of logF (π) converges in distribution to the standard normal, as desired.

It is natural to suspect that the distribution of the number of factorizations of a

permutation of fixed size, chosen uniformly at random, also has a lognormal distribu-

tion. Generating large numbers of random permutations lends some support to such

a conjecture. The mean of the logarithm of the number of factorizations of a ran-

dom permutation appears to be near (log n)2/2; the variance appears to be of order
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(log n)3, but with a smaller constant than in Theorem 5.7.5, between about 0.1 and

0.2. This seems plausible, as permutations from the sharp-cutoff model vary in size,

and this variation in size contributes to the variation in number of factorizations.

Finally, we can refine Theorem 5.7.1 to count the number of factorizations π = τ◦σ

where σ and τ are involutions with s and t fixed points, respectively. This requires

determining all the possible unlabeled graphs on [n] with properly 2-colored edges

which can be labeled to give two involutions which compose to a permutation with

the cycle type of π, and then counting the labellings which actually give π. This is

impractical for large s and t. The fixed-point-free case, though, is straightforward.

Proposition 5.7.6. Let c1, c2, . . . , cn be nonnegative even integers with
∑n

k=1 kck =

n. Then the number of factorizations of a permutation π of type 1c1 . . . ncn into two

fixed-point-free involutions is
n∏

k=1

(ck − 1)!!kck/2

where we adopt the convention (−1)!! = 1.

Proof. The graph σ ∪ τ corresponding to such a factorization consists of ck cycles

of length 2k, for each k. The permutation k-cycles can be paired up into graphical

cycles in (ck−1)!! ways. Each pair of permutation k-cycles thus obtained can be used

to label a graphical cycle in any of k ways, following Lemma 5.7.4. Thus the number

of ways to arrange the elements of k-cycles of π in the graphical representation is

(ck − 1)!!kck/2. The total number of factorizations is just the product over cycle

lengths.
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We note that if any of the ck are odd, then π has no factorizations into fixed-

point-free involutions. Furthermore, the proportion of permutations of [n] having all

ck even (that is, an even number of cycles of each length) is Θ(n−2).

5.8 Pattern avoidance

To provide further evidence that involutions are in some sense a “square root” of

permutations, we consider pattern avoidance in permutations. (A useful introduction

to pattern avoidance is [Bón04, Ch. 4-5].)

Let π ∈ Sn and σ ∈ Sm be permutations. The pattern σ is said to occur in the

permutation π, or π is said to contain σ, if there exist 1 ≤ ρ(1) < . . . ρ(m) ≤ n

such that π(ρ(i)) < π(ρ(j)) if and only if σ(i) < σ(j). That is, there is some

subsequence of π (written in the one-line notation) that has the same order type as

σ. For example, the permutation 5721364 contains the pattern 312, as indicated

by the bolded elements. If the pattern σ does not occur in π, then π is said to be

σ-avoiding. For example, the permutation 2431765 is 312-avoiding.

Let Sn(π) denote the set of π-avoiding permutations of [n]. We say two patterns

π and ρ are Wilf-equivalent if |Sn(π)| = |Sn(ρ)| for all n ≥ 0. The Stanley-Wilf

conjecture (now the Marcus-Tardos theorem [MT04]) on pattern avoidance gives the

possible growth rates of sequences {|Sn(π)|}n≥0. Stanley and Wilf conjectured, and

Marcus and Tardos proved, that for each pattern π, |Sn(π)| is bounded above by Cn,

for some constant C depending on π. We call the smallest such C the growth rate
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of the pattern π and denote it by L(π). Arratia [Arr99] has shown that the Marcus-

Tardos theorem is equivalent to the existence of the limit limn→∞ |Sn(π)|1/n, which

equals L(π), for all patterns π.

Now let In(π) denote the set of π-avoiding involutions of [n]. Then we can define

the involutory growth rate of a pattern, Li(π) = limn→∞ |In(π)|1/n. This limit may not

exist in general, but it does in some special cases, leading to the following conjecture.

Conjecture 5.8.1. Let π be a permutation pattern. Then Li(π) exists and Li(π)2 =

L(π).

Table 5.1 shows In(π), Sn(π), and the ratio of their squares in cases when both

are known. We note in particular that the conjecture is true for all patterns of

length at most 3. We also note that Wilf-equivalence of two patterns is not the same

as “involutory Wilf-equivalence”. In particular |Sn(πr)| = |Sn(π)|, where πr is the

reversal of π, but it is not necessarily true that |In(πr)| = |In(π)|. Counterexamples

include π = 132 and π = 12345; we have |In(12345)| ∼ (π3/8)4nn−3 [Reg81] but

In(54321) ∼ 32
π

4nn−3 [BM03].

The pattern 1342 has growth rate 8 and the pattern 12453 has growth rate (1 +

√
8)2 [Bón05]; the latter is the first known example of a pattern with non-integer

growth rate. Let π = π1π2 . . . πn be a pattern, and let π′ = 1(π1 + 1) · · · (πn + 1)

be another pattern. Bóna has shown [Bón05, Lemma 5.4] that if L(π) = g2, then

L(π′) = (g + 1)2. In other words, this operation raises the square root of the growth

rate by 1; thus there is some precedent for studying
√
L(π). Perhaps in general
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π In(π) Sn(π) In(π)2/Sn(π)

12 . . . k ∼ ak(k − 1)n

(1/n)(k−1)(k−2)/4

∼ bk(k − 1)2n

(1/n)k2/2−k

∼ ckn
−1+k/2

[Reg81, 4.5 Case 1],

[Ges90]

[Reg81, 4.5 Case 2]

1234, 2143,

3412, 4321,

1243

Mn ∼
√

27
4π

3nn−3/2 ∼ 81
√

3
16π

9nn−4 4
√

3
9
n

[EM04] [Wes90, Cor. 3.1.7]

shows patterns are

Wilf-equivalent

123, 132,

213, 321

(
n

bn/2c

)
∼ 2n/

√
πn Cn ∼ 4n/

√
πn3

√
n/π

[SS85]

231, 312 2n−1 [SS85] Cn ∼ 4n/
√
πn3

√
π
16
n3/2

54321 Cdn/2eC1+bn/2c ∼ 32
π

4n

n3 225/23π−3/216nn−15/2 1
24

√
2
π
n3/2

[BM03] [Reg81] and symmetry

Table 5.1: Table of patterns for which the ordinary and involutory growth rates are

both known. Cn andMn are the Catalan and Motzkin numbers, respectively; ak, bk, ck

are constants depending on k.
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Figure 5.5: The graph of the involution 146253 ∈ S6, and the reverse-complement-

invariant involution 132546 ∈ S6.

Li(π
′) = Li(π) + 1.

Conjecture 5.8.1 can be restated probabilistically. The probability that a random

permutation of [n] is π-avoiding seems to be the square of the probability that a

random involution of [n] is π-avoiding, multiplied by some asymptotically subexpo-

nential factor. (In the few known cases this factor is Cn−k for some real constant

C and nonnegative rational number k.) Thus involutions are, in general, more likely

to avoid patterns than ordinary permutations. This is because an involution is, in a

sense, half a permutation. The RSK algorithm [Sta99] takes a permutation π to a

pair of Young tableaux (P,Q); if π is an involution then P = Q, so involutions can be

identified with individual Young tableaux. The “graph” of a permutation π is the set

of points {(i, π(i)) : 1 ≤ i ≤ n} and an involution can be specified by fixing only the

points on or below the diagonal, identifying involutions with half-graphs. See Figure

5.5 for an illustration of the graph of an involution.

173



Finally, Egge has studied permutations with graphs which are symmetric under

other reflections or rotations [Egg07]. One might hope these lead to further general-

izations of Conjecture 5.8.1. For example, consider the reverse complement map on

permutations, π → πrc, which takes π1 . . . πn to (n + 1 − πn) . . . (n + 1 − π1); this

map corresponds to rotation of the graph of π by a half-rotation. Involutions invari-

ant under the reverse complement are therefore invariant under both rotation by a

half-rotation and reflection over the diagonal, and so are determined by one-fourth of

their graph. See Figure 5.5 for an example of such a permutation; note that the per-

mutations can be reconstructed from any of the four quadrants into which the dotted

lines split the diagram. The number of 132-avoiding, rc-invariant involutions of [2n]

or [2n+ 1] is 2n [Egg07, Cor. 3.5]. Up to polynomial factors this is the fourth root of

the Catalan number C2n or C2n+1, which is the number of 132-avoiding permutations.

Wulcan [Wul02] has enumerated involutions avoiding generalized patterns, includ-

ing all the generalized patterns of length 3; at this point no systematic review of the

growth rates of the corresponding patterns in permutations has been undertaken.

5.9 Inversions in involutions

A well-known result from the folklore is the asymptotic distribution of the number

of inversions in a random permutation of [n]. For a permutation σ, these are pairs

i, j such that i < j and σ(i) > σ(j). The distribution can be found by noting

that the distribution of the number of inversions of a permutation of [n] is that of
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U1 + U2 + · · · + Un, where Uk is a uniform random variable on {0, 1, . . . , k − 1}. We

have EUk = (k − 1)/2 and VUk = (k2 − 1)/12. Thus

E(U1 + . . .+ Un) =
n2 − 1

4
,V(U1 + . . .+ Un) =

2n3 + 3n2 − 5n

72
.

We can check that the distribution is normal using the Lyapunov theorem; alterna-

tively, Bóna [Bón08, Thm. 10] has proven that the standardization of the number of

occurrences of a fixed pattern in a random permutation of n converges to the standard

normal, and inversions are just 21-patterns.

Theorem 5.9.1. The mean number of inversions in an involution of [n] chosen

uniformly at random is 1
2

(
n
2

)
− an−3/an

(
n
3

)
, where an is the number of involutions of

[n].

Proof. It will suffice to count the number of involutions σ of [n] for which σ(i) > σ(j),

for each i, j satisfying 1 ≤ i < j ≤ n. These involutions arise in four ways.

1. (ij) is a cycle of σ. There are an−2 ways to complete this to get an involution.

2. i is a fixed point of σ and j is not. To build an involution, first we fix σ(j).

Since σ(i) = i and σ(j) = k, in order to have an inversion we must have k < i.

There are thus i − 1 ways to choose k. There are then an−3 ways to construct

an involution on the remaining n− 3 elements.

3. j is a fixed point, and i is not. We begin by fixing k = σ(i); we must have j < k

and so there are n− j ways to choose k. We then must construct an involution

on the remaining n− 3 elements, in one of an−3 ways.
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4. Neither i nor j are fixed points. Let σ(i) = k, σ(j) = l. There are
(

n−2
2

)
ways

to pick k, l so that σ(i) > σ(j). There are then an−4 ways to complete (ik)(jl)

to an involution on [n].

The number of involutions with an inversion at (i, j) – that is, with i < j and

σ(i) > σ(j) – is therefore

an−2 + an−3(n+ i− j − 1) + an−4

(
n− 2

2

)
.

Now, recall the recurrence an = an−1 + (n − 1)an−2, which we rewrite in the

form an−2 = (an − an−1)/(n − 1). In the case where j = i + 1, then, the number of

involutions with an inversion at (i, j) is

an−2 + an−3(n− 2) + an−4
(n− 2)(n− 3)

2

= an−2 + an−3(n− 2) +
an−2 − an−3

n− 3

(n− 2)(n− 3)

2

= an−2
n

2
+ an−3

n− 2

2

= an−2
n

2
+
an−1 − an−2

n− 2

(
n− 2

2

)
=

1

2
(an−1 + (n− 1)an−2) =

1

2
an.

Therefore the number of involutions with an inversion at (i, j) is

1

2
an − an−3(j − i− 1).

The total number of inversions among all involutions of [n] is therefore

1

2
an

(
n

2

)
− an−3

∑
1≤i<j≤n

j − i− 1 =
1

2
an

(
n

2

)
− an−3

(
n

3

)
.

Dividing by an gives the mean number of inversions.
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We note that an−3

an
∼ n−3/2. Thus the mean number of inversions of an involution

is nearly n3/2/6 less than the mean number of inversions of a permutation; this is one

standard deviation below the mean.

Let bn = 1
2
an

(
n
2

)
− an−3

(
n
3

)
be the total number of inversions in involutions of n.

Let cn =
∑

σ∈Sn,σ2=1(inv(σ))(inv(σ)− 1). For future use, we can find the generating

function of the bn.

Proposition 5.9.2. The bn have exponential generating function

∑
n≥0

bn
zn

n!
=
z2(6 + 4z + 3z2)

12
ez+z2/2.

Proof. This is a simple calculation. We have

∑
n≥0

1

2

(
n

2

)
an
zn

n!
=

1

4

∑
n≥2

anz
n

(n− 2)!
=

1

4

∑
n≥0

an+2
zn+2

n!
=
z2A′′(z)

4

and ∑
n≥0

an−3

(
n

3

)
zn

n!
=

1

6

∑
n≥3

an−3z
n

n!
=

1

6
z3A(z).

Putting these together gives

∑
n≥0

bn
zn

n!
=

1

4
z2A′′(z)− 1

6
z3A(z) =

z2(6 + 4z + 3z2)

12
ez+z2/2

as desired.

This is an example indicating that involutions are not especially good at avoiding

patterns; the probability of an inversion in any site is asymptotically 1/2, as for

ordinary permutations. However, the variance is larger, so the probability of having

177



very few inversions is large compared to that for ordinary permutations, and the

probability of having very many inversions is large as well.

In particular, we have the following:

Theorem 5.9.3. The variance of the number of inversions of an involution of [n]

chosen uniformly at random is asymptotic to n3/18 as n→∞.

Our starting point for this proof is the following proposition of Dukes:

Proposition 5.9.4 (Dukes). [Duk07, Prop. 2.8] Let In(q) =
∑

σ∈Sn,σ2=1 q
inv(σ). Then

In+2(q) = In+1(q) + (q + q3 + · · ·+ q2n+1)In(q) (5.10)

with I0(q) = I1(q) = 1.

These polynomials are q-analogues of the Hermite polynomials, as shown by

Désarménien [Dés82].

Proof of Theorem 5.9.3. We observe that an = In(1), bn = I ′n(1), cn = I ′′n(1). Differ-

entiating (5.10) twice, we get

I ′′n+2(q) = I ′′n+1(q) + (q + q3 + · · ·+ q2n+1)′′In(q)

+ 2(q + q3 + · · ·+ q2n+1)′I ′n(q) + (q + q3 + · · ·+ q2n+1)I ′′n(q).

Substituting q = 1 gives the recurrence

I ′′n+2(1) = I ′′n+1(1) +
5n+ 9n2 + 4n3

3
In(1) + 2(n2 + 2n+ 1)I ′n(1) + (n+ 1)I ′′n(1).
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We can rewrite this as

cn+2 = cn+1 +
5n+ 9n2 + 4n3

3
an + 2(n2 + 2n+ 1)bn + (n+ 1)cn. (5.11)

Finally, we multiply through by zn/n! and sum over n ≥ 0. Let C(z) =
∑

n≥0 z
n/n!

denote the exponential generating function of {cn}. Thus cn+2 and cn+1 in (5.11)

become C ′′(z) and C ′(z) respectively. The term involving an becomes

5(z∂z) + 9(z∂z)
2 + 4(z∂z)

3

3
A(z) =

z(18 + 60z + 58z2 + 45z3 + 12z4 + 4z5)

3
ez+z2/2.

The term involving bn becomes

(2(z∂z)
2 + 4(z∂z) + 2)Bz =

z2(54 + 106z + 165z2 + 89z3 + 53z4 + 10z5 + 3z6)

6
ez+z2/2.

The term involving cn becomes (z∂z + 1)C(z) = zC ′(z) + C(z).

So we get the differential equation

C ′′(z) = C ′(z) + P (z)ez+z2/2 + zC ′(z) + C(z)

where

P (z) =
36z + 174z2 + 222z3 + 255z4 + 113z5 + 61z6 + 10z7 + 3z8

6
.

We have the initial conditions C(0) = C ′(0) = 0, since C(0) = c0, C
′(0) = c1. Write

C in the form C(z) = Q(z) exp(z + z2/2). Then our differential equation can be

rewritten as

Q′′(z) + (1 + z)Q′(z) = P (z)
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by differentiating and dividing through by exp(z + z2/2). Now, write Q = q0 + q1z +

q2z
2 + · · · ; then we have

(2q2 + q1)+(6q3 + q1 +2q2)z+(12q4 +2q2 +3q3)z
2 +(20q5 +3q3 +4q4)z

3 + · · · = P (z).

In addition, the initial conditions C(0) = C ′(0) become Q(0) = Q′(0) = 0, and so

q0 = q1 = 1. This gives q2 = 0, q3 = 1, and so on; eventually we find q9 = q10 = q11 =

0. Since the zn coefficient of P (z), which is an eighth-degree polynomial, is a linear

combination of qn, qn+1, qn+2, it follows that all higher qk are zero; so Q is itself an

eighth-degree polynomial. This gives the solution

C(z) =
z3(240 + 520z + 304z2 + 220z3 + 40z4 + 15z5)

240
ez+z2/2.

Therefore we can write cn in terms of the an as

cn = (n)3an−3 +
13

6
(n)4an−4 +

19

15
(n)5an−5 +

11

12
(n)6an−6 +

1

6
(n)7an−7 +

1

16
(n)8an−8.

Now, rewrite the recurrence an = an−1 + (n− 1)an−2 as an−2 = (an − an−1)/(n− 1).

Thus we can rewrite an−8 in terms of an−6 and an−7; iterating this process eventually

gives the formula

cn =
1

240
(2388n−1269n2+10n3+15n4)an+

1

240
(−1164n−572n2+612n3−20n4)an−1.
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We can write bn in such a way as well:

bn =
1

2

(
n

2

)
an − an−3

(
n

3

)
=

1

2

(
n

2

)
an −

an−1 − an−2

n− 2

(
n

3

)
=

1

2

(
n

2

)
an − an−1 − an−2

n(n− 1)

6

=
1

2

(
n

2

)
an −

n(n− 1)

6
an−1 +

n(n− 1)

6
an−2

=
1

2

(
n

2

)
an −

n(n− 1)

6
an−1 +

n(n− 1)

6

an − an−1

n− 1

=
1

2

(
n

2

)
an −

n(n− 1)

6
an−1 +

n

6
an − an−1

=

(
1

2

(
n

2

)
+
n

6

)
an −

(
n(n− 1)

6
+
n

6

)
an−1

=
3n2 − n

12
an −

n2

6
an−1.

Combining the formulas for bn and cn in terms of an, an−1, we get

σn
2 =

cn
an

+
bn
an

−
(
bn
an

)2

= − 1

36
n4q2

n +

(
−97

20
n− 51

20
n2 +

227

90
n3

)
qn +

(
148

15
n− 227

45
n2 +

1

12
n3

)
where qn = an−1/an.

Now, qn ∼ n−1/2 as n→∞, so the asymptotically dominant terms are the terms

in n4q
2
n and n3; we have

σ2
n = − 1

36
n4q2

n +
1

12
n3 +O(n5/2) = − 1

36
n3 +

1

12
n3 +O(n5/2) =

1

18
n3 +O(n5/2)

as desired.

Dukes also counts fixed-point-free involutions by number of inversions. Let Jn(q)

be the polynomial counting fixed-point-free involutions of [n] by number of inversions;
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then

Jn+2(q) = (q + q3 + · · ·+ q2n+1)Jn(q) (5.12)

with J0(q) = 1. Probabilistically, this means that the number of inversions of a ran-

dom fixed-point-free involution of [2m] is given by the sum Ym = X1+· · ·+Xm, where

the Xk are independent, and Xk is a uniform random variable on {1, 3, 5, · · · , 4k+1}.

We have EXk = 2k + 1 and VXk = (2k+1)2−1
3

. The number of inversions of a random

fixed-point-free involution of n = 2m therefore has mean

n/2∑
k=1

(2k + 1) =
n2 + 4n

4

and variance
n/2∑
k=1

(2k + 1)2 − 1

3
=
n(n+ 2)(n+ 4)

18
.

So we have, asymptotically, the same mean and variance as in the general case of

involutions.

Finally, we can give combinatorial derivations of the generating polynomials (5.10)

and (5.12). The fixed-point-free case (5.12) is the simpler of the two. We will construct

a bijection between the set J2n+2 of fixed-point-free involutions of [2n+2] and 2n+1

copies of the set J2n of fixed-point-free involutions of [2n]. We denote elements of

one of the copies by (σ, r) where σ ∈ J2n and r ∈ {2, 3, . . . , 2n + 2}. Then f :

J2n×{2, . . . , 2n+2} → J2n+2 operates as follows, given σ ∈ J2n, r ∈ {2, . . . , 2n+2}:

• Write σ in cycle notation as (a1a2)(a3a4) · · · (a2n−1a2n).

• Let a′k = ak + 1 for 1 ≤ k ≤ r − 2, and a′k = ak + 2 for r − 1 ≤ k ≤ 2n.
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• Take f(σ, r) = (1r)(a′1a
′
2)(a

′
3a

′
4) · · · (a′2n−1a

′
2n).

For example, f((13)(26)(45), 4) = (14)(25)(38)(67). Essentially, to find f(σ, r) we

insert the cycle (1r) into σ and rename the elements of σ accordingly. Now, we

compute inv(f(σ, r)). The inversions of f(σ, r) come in three types:

• Inversions inherited from σ; there are inv(σ) of these.

• Inversions which have r as the element appearing first. There are r−1 of these,

since r appears before all of 1, 2, . . . , r − 1.

• Inversions which have 1 as the element appearing second. There are r − 1 of

these, since 1 appears in the rth position.

But the second and third types overlap; the inversion formed by r and 1 is counted

twice. Therefore inv(f(σ, r)) = inv(σ)+2r−3. Therefore, for σ ∈ J2n, the permuta-

tions f(σ, 2), · · · , f(σ, 2n+2) have 1, 3, · · · , 4n+1 more inversions than σ. So the gen-

erating polynomial of the f(σ, r) by number of inversions is exactly (q+q3+· · ·+q4n+1)

times the generating polynomial of the σ by number of inversions, which is what we

wanted to show.

For the case of involutions in general, we will construct a bijection between the

set In+2 of involutions of [n + 2] and the union of In+1 and n + 1 copies of [n]. We

can break up the set In+2 into those involutions of [n+2] that fix 1 and those that do

not. Those that fix 1 clearly are in bijection with In+1, and furthermore this bijection

fixes the number of inversions. Those that do not fix 1 are in bijection with n + 1
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copies of In, following the previous paragraph.

5.10 The number of permutations with all cycle

lengths in some finite set

The fact that the number of involutions of [n] is approximately
√
n! can be generalized

to permutations with cycle lengths lying in any finite set. We call a permutation with

all cycle lengths lying in the set S an S-permutation. The logarithmic asymptotics

of S-permutations are governed by the largest element of S.

Theorem 5.10.1. Let S be a finite set of positive integers, with m = maxS, and

such that the elements of S do not all have a common factor. Let n!p
(S)
n be the number

of S-permutations of [n]. Then

p(S)
n n!1/m ∼ CSn

−1/2+1/2m exp(fS(n1/m))

for some polynomial fS of degree m − 1 and constant CS which can be explicitly

computed. In particular,

lim
n→∞

log p
(S)
n

log n!
= −1/m.

The condition gcdS = 1 is a technical one required so that exp(
∑

s∈S z
s/s) is

Hayman-admissible.

Proof. We apply Hayman’s method (Theorem 2.3.5) to the generating function f(z) =
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exp
(∑

s∈S z
s/s
)
. We have

p(S)
n ∼ f(rn)

rn
n

√
2πb(rn)

where a(z) =
∑

s∈S z
s, rn is the positive real root of a(z) = n, and b(z) =

∑
s∈S sz

s.

Using the Lagrange inversion formula, we can find an asymptotic series for rn in

descending powers of n1/m. (See [Wil86] for details.) From this we can determine

the leading-term asymptotic behavior of f(rn) and rn
n; we get f(rn) = exp(n/m +

c1n
(m−1)/m + · · · + cmn

0 + O(n−1/m)) and rn
n = nn/m exp(d1n

(m−1)/m + d2n
(m−2)/m +

· · ·+ dmn
0 +O(n−1/m)) for constants ck, dk depending on S. Finally, b(rn) ∼ mn. So

p(S)
n ∼ exp(n/m+ c1n

(m−1)/m + · · ·+ cmn
0 +O(n−1/m)

nn/m exp(d1n(m−1)/m + · · ·+ dmn0 +O(n−1/m)

and applying Stirling’s approximation gives the result.

To illustrate the theorem, consider S = {1, 2, 3}, so rn is the positive real root of

z+ z2 + z3 = n. This has asymptotic series rn = n1/3− 1
3
− 2

9
n−1/3 + 7

81
n−2/3 +O(1/n)

for large n, which can be computed by a method of undetermined coefficients.

From this we can find the leading terms rn
n ∼ nn/3 exp(−n2/3/3 − 5n1/3/18) and

f(rn) ∼ exp(n/3 + n2/3/6 + 5n1/3/9− 5/18). Thus

p(S)
n ∼

exp
(

n
3

+ 1
2
n2/3 + 5

6
n1/3 − 5

18

)
nn/3

√
6πn

and finally

p(S)
n · n!1/3 ∼ (e52639π6)−1/18n−1/3 exp

(
1

2
n2/3 +

5

6
n1/3

)
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Corollary 5.10.2. The expected number of cycles of length k in an S-permutation

chosen uniformly at random, where k ∈ S and m = maxS, is nk/m/k · (1 + o(1)) as

n→∞.

This has also been shown by Benaych-Georges [BG07] and Timashev [Tim08].

Proof. Let an = n!p
(S)
n be the number of S-permutations of [n]. The generating

function of S-permutations by their size and number of k-cycles is

G(S)(z, u) = exp

((∑
s∈S

zs/s

)
+ (u− 1)zk/k

)
.

The mean number of k-cycles in S-permutations of [n] is therefore

[zn]
(

∂
∂z
G(S)(z, u)

∣∣
u=1

)
[zn]G(S)(z, 1)

=
[zn] 1

k
zkG(S)(z, 1)

[zn]G(S)(z, 1)
=

1

k

pn−k

pn

.

Now, p
(S)
n−1/p

(S)
n ∼ (n − 1)!−1/m/n!−1/m = n1/m, the subexponential factor in Theo-

rem 5.10.1 being slowly varying. So the mean number of k-cycles is asymptotic to

1
k
(n1/m)k, as desired.

The Boltzmann sampler for S-permutations provides an explanation for Corollary

5.10.2. To generate random S-permutations, we fix a positive real parameter x and

then pick a cycle type by taking P(xk/k) cycles of length k for each k ∈ S. The cycles

themselves are then populated with elements uniformly at random. Fixing x to be

the positive root of
∑

k∈S z
k = n – that is, x = rn – gives permutations of expected

size n, and all S-permutations of the same size are equally likely to be generated.

The expected number of k-cycles of a permutation generated by this process is rk
n/k.
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To make this connection more precise, we can derive asymptotic series for the

number of S-permutations of [n], as n → ∞; these lead to asymptotic series for the

expected number of k-cycles in such permutations. We consider the case of involu-

tions. We begin with the leading-term asymptotics for the number of involutions,

an = f(n)(1 + o(1)), where

f(n) = 2−1/2e−1/4(n/e)n/2e
√

n(1 + o(1)).

We also have the recurrence relation an = an−1 + (n− 1)an−2, which we can write as

an−1/an+(n−1)an−2/an = 1. Now, an = f(n)(1+An−1/2+O(1/n)) for some constant

A. This is true since the exponential of a Hayman-admissible function is what is

called HS-admissible (after Harris and Schoenfeld [HS68]), as shown by Odlyzko and

Richmond [OR85, Thm. 4]. An HS-admissible function admits an asymptotic series

in descending powers of βn [HS68, Thm. 1], where in this case βn = un/2 + u2
n

and un is the positive root of z + z2 = n + 1; this can be rewritten as a series in

descending powers of n1/2. We can bootstrap this to find an asymptotic series, by

plugging an = f(n)(1 + An−1/2 +O(1/n)) into the recurrence relation. This gives

f(n−1)
“
1+ A√

n−1
+O(1/n)

”
+(n−1)f(n−2)

“
1+ A√

n−2
+O(1/n)

”
f(n)

= 1 (5.13)

We can derive an asymptotic series for f(n− 1)/f(n), which begins

f(n− 1)

f(n)
= n−1/2 − 1

2
n−1 +

3

8
n−3/2 − 13

48
n−2 +O(n−5/2)

and similarly

f(n− 2)

f(n)
= n−1 − n−3/2 +

3

2
n−2 − 5

3
n−5/2 +

53

24
n−3 +O(n−7/2).
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These can be used to derive an asymptotic series for the left-hand side of (5.13). The

series begins

1 +
1

24
(24A− 7)n−3/2 +O(n−2)

but we know that this must be 1; thus A = 7/24. Repeating the process with

an = f(n)(1 + (7/24)n−1/2 +Bn−1 +O(n−3/2) gives

1 +
1152B + 119

576
n−2 +O(n−5/2) = 1

and so we get B = −119/1152. Continuing in this way, we can derive the series

an = f(n) ·
(

1 +
7

24
n−1/2 − 119

1152
n−1 − 7933

414720
n−3/2

+
1967381

39813120
n−2 − 57200419

1337720832
n−5/2 +

6340449533

687970713600
n−3 +O(n−7/2)

)
with relative error O(n−7/2). From this, we can derive series for the mean and variance

of the number of fixed points of an involution; these are

n1/2 − 1/2 +
3

8
n−1/2 − 1

8
n−1 − 1

128
n−3/2 +

3

32
n2 − 85

1024
n−5/2 +O(n−3)

and

n1/2 − 1 +
5

8
n−1/2 − 1

4
n−1 − 13

128
n−3/2 +

1

4
n−2 +O(n−5/2).

respectively.

Now, consider the Boltzmann sampler for involutions, tuned to have average size

n. The expected size of the Boltzmannized involutions with parameter x is x + x2;

thus x is the positive solution of x+ x2 = n, namely x = (
√

1 + 4n− 1)/2. This has

the asymptotic series

n1/2 − 1/2− 1

8
n−1/2 +

1

128
n3/2 − 1

1024
n−5/2 +O(n−7/2)
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which can be found either by the binomial theorem, or as a Puiseux series. This is

both the mean and variance of the number of fixed points of Boltzmann-x involutions,

since the number of fixed points is Poisson with mean x.

In the case of Boltzmann samplers for involutions, tuned to give average size x,

the mean and variance of the number of fixed points are the same. But when we

consider involutions proper, the variance of the number of fixed points is smaller than

the mean, by 1/2 + O(n−1/2). Conditioning the size of the permutation compresses

the distribution by some small but non-negligible amount.
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Chapter 6

Partitions

We now move on to some more number-theoretic results, from the theory of integer

partitions. The first application of the Boltzmann sampling methodology to integer

partitions appears to come from Fristedt [Fri93]. We recall that the Boltzmann sam-

pler for partitions of integers has Xj parts equal to j, where P(Xj = k) = xjk(1−xk).

In Fristedt’s paper this appears as an ad hoc trick. Some later authors found it

useful: for example Corteel, Pittel, Savage, and Wilf use it in the paper [CPSW99]

which considers the expected number of parts of different multiplicities in partitions,

and Vershik and collaborators in [Ver96, DVZ00] use this to determine the limiting

shape of the Young diagram of a partition. We continue in this tradition, proving

such results for the Boltzmannized models themselves. In Section 6.1 we will prove

Boltzmannized analogues of various classical results on random partitions. In Sec-

tion 6.2 we will define “rational classes” of partitions. These are certain classes of
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partitions with restrictions on the multiplicities of the parts, which are enumerated

by functions q satisfying log q(n) ∼ log p(An), where A is a rational number; this ap-

pears to be a fairly strong restriction on the set of allowed multiplicities. In Section

6.3 we extend the results of the previous section, on partitions with restricted part

multiplicities, to more general classes, for which we obtain similar relations but with

irrational constants A. In Section 6.4 we use partition identities which enumerate sets

of partitions, one of which is a subset of the other, to determine some limiting prob-

abilities in partitions. These limiting probabilities can be connected to Boltzmann

samplers for such partitions and to the combinatorics of words. Finally, in Section

6.5 we consider some probabilistic aspects of overpartitions, which are partitions in

which the last occurrence of each part can be barred, and examine the statistics of a

family of weighted objects which interpolate between partitions and overpartitions.

6.1 Recovering classical results from Boltzmann

samplers

We have seen previously, in Chapter 3, that the mean number of parts of a partition

into distinct parts drawn from the Boltzmann sampler with parameter x is asymptotic

to (1 − x)−1 log 2, as x → 1−. The mean size of partitions drawn from the same

distribution is asymptotic to (1− x)−2(π2/12), as x→ 1−.

We set N = (1− x)−2(π2/12), and solve for 1− x; this gives 1− x =
√
π2/12N .
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Substituting this into the asymptotic form for the number of parts gives√
12N

π2
log 2, or

2
√

3 log 2

π
N.

This is, in fact, the mean number of parts of a partition into distinct parts; see [EL41].

We can proceed similarly for unrestricted partitions. The Boltzmann sampler

for ordinary partitions has Px(Pk = j) = xjk(1 − xk). The distribution of sizes of

Boltzmann-x partitions is therefore the distribution of
∑

k≥1 kPk, and the mean size

is
∑

k≥1
kxk

1−xk . We can approximate this by the corresponding integral

∫ ∞

0

kxk

1− xk
dk

and making the change of variables u = xk, this is

1

(log x)2

∫ 0

1

log u

1− u
du. (6.1)

The dilogarithm is given by the sum and integral

Li2(z) =
∞∑

k=1

zk

k2
=

∫ 0

z

log(1− t)

t
dt

and will be very useful in this chapter. By making the change of variables t = 1− u,

we see that (6.1) becomes (log x)−2Li2(1). Since Li2(1) =
∑∞

k=1 k
−2 = π2/6, we

finally have that the mean size of Boltzmann-x partitions is π2/6 · (1− x)−2. Setting

N equal to this and solving for 1− x gives 1− x = π/
√

6N .

The mean number of parts of a Boltzmann-x partition can be found similarly; it

is of course
∑

k≥1 EPk =
∑

k≥1 x
k/(1− xk). Again approximating by an integral, and
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making the change of variables u = xk, this is∫ 0

x

u

1− u

du

u log x
=

1

log x

∫ 0

x

du

1− u
=

log 1− x

log x
.

As x → 1−, this is asymptotic to 1
1−x

log 1
1−x

. Letting 1 − x = π/
√

6N , this mean

number of parts is
√

3N/2π2 logN , which is indeed the asymptotic mean number of

parts of a partition of N [EL41]. The mean number of distinct parts, in contrast,

is asymptotic to
√

6N/π [EL41, Wil83]. The sum
∑

k≥1 P(Pk ≥ 1) =
∑

k≥1 x
k gives

the number of distinct parts; this is of course x/(1− x), which with 1− x = π/
√

6N

has the expected asymptotics. We can then ask how many of these parts occur with

multiplicity m, as in [CPSW99]; the expected number of such parts in the Boltzmann-

x model is

∑
k≥1

P(Pk = m) =
∑
k≥1

xmk(1− xk) =
∑
k≥1

xmk −
∑
k≥1

x(m+1)k =
xmk

1− xmk
− x(m+1)k

1− x(m+1)k
.

Now, with N →∞ and 1− x = π/
√

6N , we see that xmk/(1− xmk) ∼
√

6N/πm as

m → ∞; the second term is treated similarly, so the expected number of parts with

multiplicity m is
√

6N/π(1/m − 1/(m + 1)), or 1/(m(m + 1)) times the number of

parts. This is the content of [CPSW99, Thm. 3].

Proceeding a bit further, we can recover the limiting shape of the Young diagram

of a partition. Vershik and collaborators [DVZ00, Ver96] have shown that most integer

partitions have a well-defined “profile”. The outer boundary of the Young diagram

of a random partition of n, scaled by a factor of
√
n, tends to the continuous plane

curve given by exp(−αx) + exp(−αy) = 1, where α = π/
√

6. In particular we note

that this limiting shape is unchanged when x and y are interchanged.
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Fix N = π2/6 · (1 − x)−2. We will show that the expected number of parts in

a Boltzmann-sampled partition which are greater than r
√
N is asymptotic to s

√
N ,

where r and s satisfy e−αr + e−αs = 1. Fix a positive real constant r. Then the

expected number of parts in a Boltzmann-x partition which are greater than r
√
n is

given by the sum
∑

k≥r
√

n EPk, which is approximated by the integral∫ ∞

r
√

n

xk

1− xk
dk.

We note that r
√
n = rπ/

√
6 · (1−x)−1. Now, we make the change of variables u = xk

to get ∫ xrπ/(
√

6(1−x))

0

du

(1− u) log x
.

As x→ 1−, the upper limit of this integral approaches exp(−rπ/
√

6). So we replace

the upper limit with this, and integrate. We get, as x→ 1−,

∑
k≥r

√
n

EPk ∼
− log

(
1− exp(−rπ/

√
6)
)

1− x
.

Now, recalling that 1− x = π/
√

6n, we get

∑
k≥r

√
n

EPk ∼ − log(1− e−rπ/
√

6)

√
6n

π
.

In particular, if f(r) = Ex(number of parts greater than r
√
n)/

√
n, then we have

exp(−π/
√

6 · r) + exp(−π/
√

6 · f(r)) = 1, as desired.

Some other results are more straightforward. For example, from the Boltzmann

sampler for partitions into distinct parts, the probability that a partition contains a

part k, in the large-n limit, is 1/2, and that the probabilities of containing various

parts are independent. This is in fact true for fixed-size partitions as well:
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Proposition 6.1.1. Fix positive integers j1, . . . , jr, k1, . . . , kt, with none equal. The

probability that a partition of n into distinct parts contains none of j1, . . . , jr and all

of k1, . . . , kt approaches 2−(r+t) as n→∞.

Proof. We note that the generating function for partitions into distinct parts having

none of the parts j1, . . . , jr is

∞∑
k=1

1− zk

1− z2k
×

r∏
i=1

1− zji

1− z2ji
.

The associated Dirichlet series is therefore

α(s) = (1− 2−s)(ζ(s)−
r∑

i=1

j−s
i ).

Now, α(s) has dominant pole at 1/2 with residue 1; furthermore α(0) = 0 and

α′(0) = (log(2))(−1/2−r). Thus it follows from Meinardus’ theorem that the number

of such partitions is asymptotic to

2−r 33/4

12
n−3/4 exp(π

√
n/3). (6.2)

In particular, the r = 0 case is just that of partitions into distinct parts, so this

asymptotic form is 2−r times the number of partitions of n into distinct parts. This

proves the result in the case where t = 0. In the case where t > 0, note that the

number of partitions of n into distinct parts, which do not contain any of j1, . . . , jr

and do contain k1, . . . , kt, is the same as the number of partitions of n− (k1 + · · ·+kt)

which do not contain any of j1, . . . , jr, k1, . . . , kt. The latter has the asymptotic form

of (6.2) with r replaced by r + t, since pd(n) ∼ pd(n− C) for any constant C.
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In contrast, for ordinary partitions, we have:

Proposition 6.1.2. The probability that an ordinary partition of n chosen uniformly

at random has none of the parts j1, . . . , jr is asymptotic to j1 . . . jr(π/
√

6n)r as n→

∞.

Proof. Note that such partitions have the associated Dirichlet series

α(s) = ζ(s)− (j−s
1 + · · ·+ j−s

r ).

This has a simple pole of residue A = 1 at ρ = 1. Thus, applying Meinardus’ theorem,

the partitions are asymptotically counted by Cnκ exp(K
√
n) where K = π

√
2/3,

κ =
α(0)− 3/2

2
=

(−1
2
− r
)
− 3

2

2
= −1− r

2

and, noting that α′(0) = −1
2

log(2π) + log j1 + · · ·+ log jr,

C = eα′(0)(4π)−1/2

(
π2

6

) 3+r
4

=
j1 · · · jr
π
√

8

(
π2

6

) 1+r
2

Dividing this by the asymptotic form p(n) ∼ exp(π
√

2n/3)/(4n
√

3) for the number

of ordinary partitions gives the desired result.

Now, partitions selected according to the Boltzmann distribution with parameter

x have probability (1−xj1)(1−xj2) · · · (1−xjr) of having none of the parts j1, . . . , jr.

As x→ 1− this is asymptotic to j1j2 . . . jr(1−x)r. If we choose x to generate partitions

of expected size about n – that is, if we take 1 − x = π/
√

6n – then we recover an

analogue of the above result.
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Proposition 6.1.3. Let f(z) be the generating function of a finite multiset S which

includes zero. The expected number of different parts having multiplicity m in a

Boltzmann-x partition with part multiplicities chosen from S is asymptotic to

1

1− x

∫ 1

0

vm−1

f(v)
dv

and their sum is asymptotic to

1

(1− x)2

∫ 1

0

−mvm log v

f(v)
dv

as x→ 1−.

Proof. The expected number of different parts having multiplicity m in such a parti-

tion is given by
∑

k≥1
xmk

f(xk)
. This can be approximated by the integral

∫∞
0

xmk

f(xk)
dk and

making the change of variables v = xk, this becomes −1
log x

∫ x

0
vm−1

f(v)
dv. As x approaches

1, we can replace −1/(log x) with 1/(1− x) to get the integral above. Similarly, the

expected sum of all the parts with multiplicity m is given by∫ ∞

1

mkxmk

f(xk)
dk ∼ 1

(1− x)2

∫ 1

0

−mvm log v

f(v)
dv.

In the particular case where f(z) = 1+ z+ z2 we can obtain explicit results. Here

the expected number of parts of multiplicity 1 is asymptotic to

1

1− x

∫ 1

0

1

1 + v + v2
dv =

1

1− x

π
√

3

9

and the expected number of parts of multiplicity 2 is asymptotic to

1

1− x

∫ 1

0

v

1 + v + v2
dv =

1

1− x

(
−π

√
3

18
+

1

2
log 3

)
.
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The expected sum of all parts having multiplicity 1 can be written in terms of dilog-

arithms and is about 0.7813(1− x)−2; the expected sum of the multiplicity-2 parts is

about 0.3153(1−x)−2. These add up to π2

9
(1−x)−2. In general we see that the parts

of multiplicity 1 predominate. This is true even though the “critical” Boltzmann

sampler for such partitions consists of taking each part to have multiplicity 0, 1, or 2

with equal probability.

6.2 Rational classes of partitions

Recall the asymptotic formula for the number of integer partitions of n: p(n) ∼

1
4n
√

3
exp(π

√
2n/3). Many classes of partitions have size p(n) satisfying log p(n) ∼

π
√
A · 2n/3. We will say that such a class of partitions is “in the A class”.

Thus we suspect that partitions are a “square-root structure” in the sense of

Chapter 4. Indeed, the generating function
∏

k≥1 1/(1− xk) grows like

P (x) = exp

(
π2

6(1− x)
(1 + o(1))

)

as x→ 1− along the real axis, thus resembling the “exponential-of-a-pole” generating

functions previously seen. However in this case the circle is a natural boundary for

the generating function.

Now recall the result that the number of partitions of n into odd parts and into

distinct parts are the same. There are many bijective proofs of this fact, which is

originally due to Euler; see [Pak06, Sec. 3] for these bijections, perhaps the most

198



appealing of which is Glaisher’s bijection. Let λ = 1m13m3 · · · be a partition with

odd parts. Then let ϕ(λ) contain the part i · 2r if and only if mi written in binary

has 1 in the rth position.

In fact, the Boltzmann samplers for partitions into odd parts and into distinct

parts are particularly well-behaved with respect to this bijection. Boltzmann-x par-

titions into odd parts satisfy Po
x(Pk = j) = xjk(1 − xk) for each odd k, where

Pk is the number of k-parts. Boltzmann-x partitions into distinct parts satisfy

Pd
x(Pk = 1) = xk/(1 + xk). So in the distinct case, we have for example

Pd
x(P3 = 1, P12 = 1, P6 = P24 = P48 = · · · = 0) =

x15

(1 + x3)(1 + x6)(1 + x12) · · ·

=
x18

(1− x3)−1)
= x15 − x18

and similarly Po
x(P3 = 5) = x15 − x18. More generally, the probability that a

Boltzmann-x partition into distinct parts has its parts of form k · 2r summing to

jk is the same as the probability that a Boltzmann-x partition into odd parts has j

parts equal to k.

The generating function proof is perhaps one of the best-known generating func-

tion arguments. Partitions into distinct parts are counted by Pd(z) =
∏

k≥1(1 + zk).

We can rewrite 1+zk as (1−z2k)/(1−zk), so Pd(z) =
∏

k≥1
1−z2k

1−zk . Among the factors

in the denominator, 1 − zj is cancelled out by a factor in the numerator if j is even

but survives if j is odd, so

Pd(z) =
∏
k≥1

k≡1 (mod 2)

1

1− zk
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and the right-hand side here is clearly the generating function for partitions with all

parts odd.

This is the first of many results in which partitions with certain restrictions on the

multiplicities of their parts are equinumerous with partitions with certain restrictions

on the allowed parts. In the case of partitions with unrestricted multiplicity, Andrews

[And69] defined the notion of an Euler pair. This is a pair of sets (S1, S2) such that

for all natural numbers n, the number of partitions of n into distinct parts taken from

S1 is equal to the number of partitions of n into S2. Andrews shows that (S1, S2) is

an Euler pair if and only if 2S1 ⊂ S1 and S2 = S1 − 2S1. In particular, if S1 is a set

with asymptotic density α, then S2 has asymptotic density α/2.

We also take inspiration from Subbarao’s identity:

Theorem 6.2.1 (Subbarao). [Sub71] The number of partitions of n into parts with

multiplicities 2, 3, or 5 is equal to the number of partitions of n into parts congruent

to 2, 3, 6, 9, or 10 mod 12.

Proof. The generating function of partitions with parts of multiplicities 2, 3, or 5 is∏
n≥1(1+z2n +z3n +z5n). We can factor this polynomial to get

∏
n≥1(1+z2n)(1+z3n)

and we would like to write this polynomial as a product of terms of the form 1− zk.

This can be rewritten as the quotient

∏
n≥1

(1− z4n)(1− z6n)

(1− z2n)(1− z3n)
.

We now ask how many times the factor 1 − zk appears in this product, counting

appearances in the denominator as positive and in the numerator as negative. The
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number of such appearances is J2|kK + J3|kK− J4|kK− J6|kK. This function is periodic

with period 12, and from direct computation is 1 if k is congruent to 2, 3, 6, 9 or 10

mod 12 and 0 otherwise.

Thus partitions with parts having multiplicity 2, 3, or 5 are in the “5/12 class”.

It is natural to ask how the coefficient 5/12 can be extracted from the set {2, 3, 5}.

Theorem 6.2.2. Let b1, b2, . . . be an m-periodic sequence of integers. Then P (z) =∏
k≥1(1− zk)−bk satisfies

log ([zn]P (z)) ∼ π

√
2

3

m∑
k=1

b1 + · · ·+ bm
m

.

In the case where all the bk are equal to 1 or 0, then P (z) trivially counts the

number of partitions with all parts lying in some set of congruence classes modulo m.

Proof. We will apply Meinardus’ theorem. We have, for 1 ≤ k ≤ m,

∑
n≡k(m)

n−s =
∑
a≥0

1

(am+ k)s
= m−s

∑
a≥0

1

(a+ k/m)s
= m−sζ(s, k/m)

where ζ is the Hurwitz zeta function. This gives the associated Dirichlet series

α(s) = m−s

m∑
k=1

bkζ(s, k/m).

The residue of ζ(s, v) as a function of s, at s = 1, is 1. Therefore α(s) has residue

m−1
∑m

k=1 bk at 1; call this number A. Note that A is the average of the bk. Thus we

can apply Meinardus’ theorem to see that the coefficients of P satisfy log([zn]P (z)) ∼

Kn1/2, where

K = (1 + ρ−1)(AΓ(ρ+ 1)ζ(ρ+ 1))1/(ρ+1) = 2

(
1

m

m∑
k=1

bk ·
π2

6

)1/2
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as desired.

In particular, we see that if the sequence of {bk} is periodic, then the partitions

enumerated by
∏

k≥1(1 − zk)−bk are in the A class, where A is the mean of the bk.

In the case where bk is a periodic sequence of 0s and 1s, and thus
∏

k≥1(1 − zk)−bk

counts partitions with all parts lying in a union of arithmetic progressions, the class of

that set of partitions is just the density of the corresponding arithmetic progression.

Nathanson [Nat00] has given an alternate proof of the latter fact.

Now we will consider partitions with restricted multiplicities. Let M =

(M1,M2,M3, . . .) be a sequence of multisets of nonnegative integers, with each set

including 0. Then the product

∏
j≥1

∑
k∈Mj

xjk


is the generating function of partitions with the number of parts equal to j in the set

Mj, which we will callM-partitions. We will show that if the sequenceM1,M2,M3, . . .

is periodic, and each of its members fall in a certain class of “rational sets”, then M

is a rational class of partitions.

Definition 6.2.3. We call a set M a rational set if its generating function
∑

m∈M zm

can be written in the form
∏r

k=1(1− zk)−bk . The weight of the set M , denoted w(M),

is the sum
∑

k≥1 bk/k.

Note that we have defined the product to be finite.

Some examples of rational sets occurring in partition problems are the following:

202



Empty partitions. These have M = {0}, with generating function 1; thus

M = {0} is rational with weight 0.

Unrestricted partitions. These have M = Z+, with generating function 1/(1−

z). Thus the set Z+ is rational with weight 1.

Partitions with all parts having multiplicity less than r. In this case

M = {0, 1, . . . , r − 1}, and so M has generating function

1 + z + · · ·+ zr−1 =
1− zr

1− z
.

Thus M = {0, 1, . . . , r− 1} is rational with weight 1− 1/r. In particular, if r = 2, we

are considering partitions into distinct parts, and the weight is 1/2.

Overpartitions, or signed partitions. These are partitions in which the last

occurrence of each part can be overlined. Thus we have M = {0, 1, 1, 2, 2, 3, 3, . . .},

with generating function

1 + 2z + 2z2 + 2z3 + · · · = 1 + z

1− z
=

(1− z2)

(1− z)2

and thus b1 = 2, b2 = −1, and the rational weight of the set is 3/2. The signed

partitions introduced by Andrews [And07], which are partitions in which some parts

may be negative integers but parts +k and −k cannot both occur, fall in the same

class.

Partitions with designated summands. These partitions defined in [ALL02]

are partitions in which exactly one occurrence of each part must be overlined. These

have the multiplicity multiset M = 0111223344 · · · (with exponents indicating multi-
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plicity in M), with generating function

g(z) = 1 +
∑
k≥1

kzk = 1 +
z

(1− z)2
=

1− z + z2

(1− z)2
=

(1− z6)

(1− z)(1− z2)(1− z3)

and therefore have rational weight 5/3.

If instead we require that at most one occurrence of each part is overlined, then we

have M = 011223 · · · , with generating function 1/(1− z)2, and in fact such partitions

are in bijection with pairs of ordinary partitions.

Singleton-free partitions. Partitions with no parts appearing exactly once have

g(z) = 1 + z2 + z3 + z4 + · · · = 1 +
z2

1− z
=

1 + z3

1− z2
=

(1− z6)

(1− z2)(1− z3)

and thus have rational weight 1/2+1/3− 1/6 = 2/3. More generally, partitions with

no part appearing with any multiplicity 1, 3, . . . , 2r − 1 have multiplicity generating

function

g(z) = 1 + z2 + · · ·+ z2r−2 + z2r + z2r+1 + z2r+2 + · · ·

=
1− z2r

1− z2
+

z2r

1− z
=

1− z4r+2

(1− z)(1− z2r+1)

and therefore have weight 1/2 + 1/(2r + 1)− 1/(4r + 2) = (r + 1)/(2r + 1).

Dilations of rational sets. Let M be a rational set. Then aM , the set obtained

from M by multiplying every element by k, is also a rational set. It has weight

w(aM) = w(M)/a. To see this, note that if the generating function of M is gM(z) =∏
k≥1(1− zk)−bk , then the generating function of aM is gaM(z) =

∏
k≥1(1− zak)−bk .

For example, the set M = {0, r} is a rational set with weight 1/(2r).
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Convolutions of rational sets. Let M and N be rational sets. Let their

convolution be the set M ⊗N = {m+n : m ∈M,n ∈ N}, counted with multiplicity.

Then M ⊗ N is a rational set, with weight w(M) + w(N). This is true because the

generating function of M ⊗ N is the product of the generating functions of M and

N .

For example, the set {0, 2} and {0, 3} are rational sets, with weights 1/2 and 1/3

respectively. Therefore the set {0, 2, 3, 5}, their convolution, is rational with weight

5/12.

We claim the following theorem:

Theorem 6.2.4. Let M1,M2, . . . be a sequence of rational sets of nonnegative in-

tegers, each containing zero. Assume this sequence is r-periodic. Let pM(n) be the

number of partitions of n in which the multiplicity of j is an element of Mj for each

j. Then log pM(n) ∼
√
n× π

√
2A/3 as n→∞, where A = (w(M1) +w(M2) + · · ·+

w(Mr))/r is the average of the weights.

Proof. Let f(z) =
∑

n≥0 pM(n)zn be the generating function of M -partitions. It

suffices to show that f(z) =
∏

k≥1(1− zk)−ck where the sequence {ck} is periodic and

has mean A.

Let the generating function of Mi be
∏∞

k=1(1− zk)−bik . Since Mi is a rational set,

only finitely many of the bik are different than zero for any given i.
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We then have the generating function

f(z) =
r∏

i=1

∏
j≡i(r)

∏
k≥1

(1− zjk)−bik .

We would like to know the opposite of the sum of the exponents with which 1−zs

appears, for any given s. Call this e(s), so we will have f(z) =
∏∞

s=1(1 − zs)−e(s).

Consider the sequence {e(s)}∞s=1. The factors in the triple product having bik in the

exponent are those with s = jk where j ≡ i (mod r); that is, those with s ≡ ik

(mod kr). Thus we have

e(s) =
r∑

i=1

∑
k≥1

bikJs ≡ ik (mod kr)K

and in particular the sequence {e(s)}∞s=1 is the sum of finitely many periodic sequences

(recall that the inner sum is actually finite). Thus e(s) is a periodic function of s.

The mean of the sequence {e(s)} is the sum of the means of these periodic sequences,

and the sequence corresponding to the (i, k) term has mean bik/(kr). Therefore the

mean of the sequence {e(s)} is

r∑
i=1

∑
k≥1

bik
kr

=
1

r

r∑
i=1

∑
k≥1

bik
k

=
1

r

r∑
i=1

w(Mi)

as desired.

For example, consider partitions in which parts congruent to 1 mod 4 cannot be

singletons, parts congruent to 2 mod 4 must occur with multiplicity 0, 2, 3 or 5, parts

congruent to 3 mod 4 cannot be repeated , and parts congruent to 4 mod 4 must have

even multiplicity. These areM-partitions withM1 = {0, 2, 3, 4, . . .},M2 = {0, 2, 3, 5},
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M3 = {0, 1}, M4 = {0, 2, 4, 6, . . .}, and M4+r = Mr for r ≥ 1. Each of these sets is

rational, with w(M1) = 2/3, w(M2) = 5/12, w(M3) = 1/2, w(M4) = 1/2. The average

of these weights is 25/48, and so we have log pM(n) ∼
√
n× π

√
(2/3)(25/48).

These classification results can be seen as analogous to those in [Nat00]. In this

paper it is shown that given a set of integers A with gcd(A) = 1, and pA(n) the

partition function of A, then if A has asymptotic density α, then log pA(n) ∼ π
√

2/3 ·
√
αn and conversely. These results can be viewed as a generalization of the forward

direction of Nathanson’s result to partitions with multiplicity restrictions.

6.3 Tauberian theorems and irrational weights

In contrast to the results of the previous section, consider partitions with all parts

having multiplicities 0, 2 or 3. These are not equinumerous with partitions with their

parts lying in some set. To see this, we first compute the number of such partitions

of each size, from the generating function:

∏
k≥1

(1 + z2k + z3k) = z2 + z3 + z4 + 3z6 + z7 + 3z8 + 3z9 + 3z10 + 2z11 + 7z12 + · · ·

Now we attempt to build S such that partitions with parts in S are counted by this

same series. So there should be zero S-partitions of 1; thus 1 6∈ S. There should be

one S-partition of 2, so 2 ∈ S. There should also be one S-partition of 3, so 3 ∈ S.

Without considering 4, there is already an S-partition of 4, namely 2 + 2, so 4 6∈ S.

Finally, without considering 5, there is an S-partition of 5, namely 2 + 3. We want
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there to be zero S-partitions of 5, so we conclude there is no set with the desired

property.

Therefore the techniques of the previous section will not work for enumerating

partitions with restricted multiplicities when we do not have fortuitous factorizations

of the generating functions of the multiplicities. Using saddle point methods, we

will find an upper bound on the logarithm of the number of partitions with part

multiplicities restricted to some set M ; these bounds will be expressed in terms of

the roots of the generating polynomial of M . We begin with the following lemma on

the rate of growth of generating functions of such partitions.

Lemma 6.3.1. Let M be a finite set of nonnegative integers, including zero. Let

fM(x) =
∑

m∈M xm be its generating function. Let PM(x) =
∏

k≥1 fM(xk) be the

generating function of partitions with all parts having multiplicity in M . Then

logPM(x) ∼ C/(1 − x) as x → 1−, where C =
∑k

j=1−Li2(1 + αj) and the αj

satisfy fM(−1/αj) = 0.

Proof. Fix M . Let g(s) =
∑∞

k=1 log fM(e−ks). (Since M will be fixed throughout the

proof, we suppress it in the notation.) We replace this sum by the integral

I(s) =

∫ ∞

1

log fM(e−us) du

which we will later show does not seriously affect our asymptotic results. Now, since

fM is a polynomial with f(0) = 1, we can factor it, with fM(z) =
∏m

j=1(1 + αjz)
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where m is the degree of fM , or alternatively the largest element of M . This gives

I(s) =

∫ ∞

1

m∑
j=1

log(1 + αje
−us) du.

The inner sum is finite, so we can interchange sum and integral to get

I(s) =
m∑

j=1

∫ ∞

1

log(1 + αje
−us) du.

Finally, we have ∫
log(1 + αe−us) du =

1

s
Li2(1 + αe−us)

and using this to evaluate the definite integral we get

I(s) =
m∑

j=1

−Li2(1 + αje
−s)

s
.

Thus as s→ 0+, we have I(s) ∼ −s−1
∑m

j=1 Li2(1 + αj).

Next, we need to show that I(s) ∼ g(s). From the Euler-Maclaurin formula (see

[Odl95, (5.32)] for the precise form used here) we have

g(s) = I(s) +O

(∫ ∞

1

d

du
log p(e−us) du

)
.

The integrand here is

−
∑

m∈M mse−mus∑
m∈M e−mus

.

In particular, there are |M | − 1 terms in the numerator. Each term in the numerator

is bounded in absolute value by m−se
−m+us, where m+ = maxM and m− is the

smallest nonzero element of M . The denominator includes the term 1 and other

positive terms, so is bounded below by 1. Therefore the integrand satisfies∣∣∣∣ ddu log p(e−us)

∣∣∣∣ ≤ |M | · |m−se
−m+us|
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and so the integral satisfies

∫ ∞

1

d

du
log p(e−us) du ≤ |M |m−s

∫ ∞

1

e−m+us du =
|M |m−

m+

e−m+s.

Thus g(s) = I(s) + O(e−m+s). So g(s) ∼ C/s, with C as defined above. Setting

x = e−s gives the desired result.

We now can obtain an asymptotic upper bound for the number of partitions with

all multiplicities in M .

Proposition 6.3.2. Let M be a set of nonnegative integers, including zero. Then we

have the bound

log pM(n) ≤ (2 + o(1))
√
Cn

as n→∞, where C is as defined in the previous lemma.

Proof. We now apply the bound from Lemma 2.3.4. We set x = e−s where s =
√
C/n.

This gives

pM(n) ≤ esnPM(e−s)

where pM(n) is the number of partitions of n with multiplicities restricted to the set

M . Taking logarithms,

log pM(n) ≤ sn+ logPM(e−s).

We know that logPM(x) ∼ C/(1 − x) as x → 1− from the previous lemma. Thus

logPM(e−s) ∼ C/s as s → 0+. This gives log pM(n) ≤ sn + (1 + o(1))C/s, and

recalling s =
√
C/n, we get the bound log pM(n) ≤ (2 + o(1))

√
Cn.
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Unfortunately this does not give us the actual rate of growth. It appears that

in fact log pM(n) = (2 + o(1))
√
Cn. We recall the following “Hardy-Ramanujan”

Tauberian theorem, as stated in [HLR04].

Proposition 6.3.3. Let H(x) =
∑∞

n=0 bnx
n where the bn form a positive, non-

decreasing sequence. Suppose logH(x) ∼ C/(1−x) as x→ 1−. Then log bn ∼ 2
√
Cn

as n→∞.

But if we have bn = pM(n), then the sequence {bn} is increasing. It appears,

however, that if gcd(M) = 1 then this sequence is “eventually increasing”, i. e.

pM(n+1) ≥ pM(n+1) for all large enough n. We cannot prove this but we can prove

that certain subsequences of {bn} are increasing.

Proposition 6.3.4. Let M be a finite set of nonnegative integers including zero, and

let h be the least common multiple of the nonzero elements of M . Then pM(n+ h) ≥

pM(n) for all n ≥ 0.

Proof. It suffices to give an injection φ fromM -partitions of n toM -partitions of n+h.

Let λ = λ
mj

j λ
mj−1

j−1 · · ·λm1
1 , where λj > λj−1 > · · · > 1 and m1, . . . ,mj ∈ M \ {0}.

Then φ(λ) = (λj + h/mj)
mjλ

mj−1

j−1 · · ·λm−1
1 . That is, we increase all occurrences of

the largest part of λ by h/mj, and keep all other parts constant. Clearly φ(λ) is an

M -partition of n+ h, and this transformation is one-to-one.

Proposition 6.3.5. Let qM(n) =
∑h−1

j=0 pM(n − j), where we take pM(0) = 1 and

pM(n) = 0 for n < 0. Then qM(n) is a weakly increasing function of n.
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Proof. Observe that qM(n+1)− qM(n) = pM(n+1)− pM(n−h+1). This difference

is nonnegative by the previous proposition.

We will now apply the Hardy-Ramanujan theorem to the sequence qM(n).

Proposition 6.3.6. Let M be a finite set of nonnegative integers including 0, and

define qM as in Corollary 6.3.5. Then we have log qM(n) = (2 + o(1))
√
Cn, where C

is defined as in Lemma 6.3.1.

Proof. Let fM be the generating polynomial of M . Then the generating function of

{qM(n)} is

QM(z) =
∑
n≥0

qM(n)zn = (1 + z + · · ·+ zh−1)
∞∏

k=1

fM(zk).

By Lemma 6.3.1, we have log
∏∞

k=1 fM(zk) ∼ C/(1 − z) as z → 1−. Clearly log(1 +

z + · · · + zh−1) ∼ log h as z → 1−. Thus logQM(z) ∼ C/(1 − z) as z → 1−.

The numbers {qM(n)} form a non-decreasing sequence. By the Hardy-Ramanujan

Tauberian theorem, log qM(n) ∼ 2
√
Cn.

In particular, if it could be shown that pM(n) does not oscillate too wildly, then

we would have log pM(n) ∼ 2
√
Cn. It should also be noted that when the generating

polynomial of M has a “nice” factorization, the sums of dilogarithms appearing here

are what would be expected from the results of Section 6.2.

Finally, we can derive identities satisfied by the dilogarithm from the work of the

preceding two sections. An example is the following identity:
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Proposition 6.3.7. Let ζr be a primitive rth root of unity. Then

r−1∑
k=1

−Li2(1− ζk
r ) =

r − 1

r

6

π2
.

Proof. Consider partitions of n in which no part has multiplicity r or greater; let

the number of such partitions be pr(n). From Theorem 6.2.4, the number of such

partitions satisfies log pr(n) ∼ π
√

2(r − 1)/3r · n. But pr(n) is increasing, since it is

equal to the number of partitions of n into parts not divisible by r. So by Lemma

6.3.1 and the Hardy-Ramanujan Tauberian theorem,

log pr(n) ∼

(
r−1∑
k=1

−Li2(1− ζk
r )

)1/2

· 2
√
n.

Combining these, we have

π

√
2(r − 1)n

3r
∼

(
r−1∑
k=1

−Li2(1− ζk
r )

)1/2

· 2
√
n

and so the coefficients on each side must be equal. Rearranging gives the desired

result.

6.4 Probabilistic interpretations of partition iden-

tities

Many well-known partition identities occur in families. In the first member of such

a family partitions satisfying some condition on consecutively occurring parts are

enumerated. (Usually they are shown to be equinumerous with some family which
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is easier to enumerate.) In other members of the family, some subset of this set is

enumerated. By comparing these two results, we can compute the probability that

large partitions have certain properties.

An example is given by the Rogers-Ramanujan identities.

Proposition 6.4.1 (First Rogers-Ramanujan). The number of partitions of an inte-

ger n in which the difference between any two parts is at least 2 is the same as the

number of partitions into parts congruent to 1 or 4 modulo 5.

Proposition 6.4.2 (Second Rogers-Ramanujan). The number of partitions of an

integer n in which the difference between any two parts is at least 2 and no part is

equal to 1 is the same as the number of partitions into parts congruent to 2 or 3

modulo 5.

We call the number of partitions of the types given in these identities r1(n) and

r2(n), respectively. From Theorem 2.3.11 it follows that

ra(n) ∼ csc(aπ/5)

4π · 151/4
n−3/4 exp

(
2π
√
n/15

)
for a = 1, 2. Therefore

Corollary 6.4.3. As n→∞, we have

r2(n)

r1(n)
→ csc(2π/5)

csc(π/5)
=

√
5− 1

2
.

Now, r2(n)/r1(n) is the probability that a partition of n in which the difference

between any two parts is at least 2 contains no 1. Why is this probability algebraic?

And why does the “golden ratio” appear here?
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Recall the Boltzmann sampler for partitions into distinct parts. When the Boltz-

mann parameter is x, this sampler includes a part k with probability xk/(1 + xk).

For large partitions we take x→ 1− and so each part is included independently with

probability 1/2. Therefore we can model large partitions as random bit strings, and

large partitions with no two consecutive parts as random bit strings with no two con-

secutive 1s. So, heuristically, the probability that a partition with no two consecutive

parts contains no 1 is the probability that a random bit string with no two consecutive

1s starts with 0.

Formally speaking, this probability does not exist, since a random bit string has

no two consecutive 1s with probability zero. But consider random bit strings of length

n, with no two consecutive 1s. The number of these is the Fibonacci number Fn+2,

and the number starting with a 0 is Fn+1; their ratio is Fn+1/Fn+2, which approaches

(
√

5 − 1)/2 as n → ∞. In fact the probability that a uniformly chosen partition

with no two consecutive parts and no part greater than n contains no 1 is exactly

Fn+1/Fn+2.

We can construct a similar interpretation for the Gollnitz-Gordon identities.

Proposition 6.4.4 (Gollnitz-Gordon). The number of partitions in which there are

no consecutive summands, and furthermore the difference between any even sum-

mands is at least 4, is equal to the number of partitions of n into parts of the form

8m+1, 8m+4, 8m+7. The number of these which furthermore contain no parts 1 or

2 is equal to the number of partitions of n into parts of the form 8m+3, 8m+4, 8m+5.
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From Meinardus’ theorem the number of partitions of the first type is asymptotic

to

1

4
cos

π

8
n−3/4 exp(π/2

√
n)

and the number of partitions of the second type is asymptotic to

1

4
cos

3π

8
n−3/4 exp(π/2

√
n).

It then follows that the probability that a “Gollnitz-Gordon partition” of n contains

no 1s or 2s approaches (cos 3π/8)/(cosπ/8) =
√

2 − 1 for large n. To construct an

interpretation in terms of words is a bit more involved than the Rogers-Ramanujan

identities. We consider words on the alphabet {a, b, c} where c must be followed

by a whenever it occurs. Let An, Bn, Cn be the number of such words of length n

beginning with a, b, c respectively; let Wn be the total number of words. Then An =

Bn = Wn−1, Cn = An−1 = Wn−2. The number of such words must grow exponentially

with n – that is, Wn ∼ r · sn for some constants r and s. So An = Bn ∼ rsn−1

and Cn ∼ rsn−2; we conclude s2 = 2s + 1, from which s =
√

2 + 1. The probability

that a long word begins with a is thus s−1 =
√

2 − 1. Now we interpret a, b, c as

00, 10, 01 respectively. For example, the word babcabbab is identified with the bit

string 10 00 10 01 00 10 10 00 10, and thus the partition 1 + 5 + 8 + 11 + 13 + 17.

Now, the restrictions on words, when translated into restrictions on bit strings, are

exactly the restrictions on Gollnitz-Gordon partitions. We do not allow a fourth

letter corresponding to 11 since consecutive parts are never allowed. Also, whenever

01 occurs in the bit string – which corresponds to the letter c – an even part 2k
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occurs. This means that parts 2k + 1 and 2k + 2 cannot occur, the first by the

restriction on consecutive summands and the second by the restriction on consecutive

even summands. So c must be followed by a, and Gollnitz-Gordon partitions with

largest part at most 2n can be identified with words of length n.

The ratios (
√

5−1)/2 and
√

2−1 also appear in a probabilistic model of partitions

due to [MO09]. Their model is the following: let 0 < p < 1, and let C1, C2, . . . be

independent events with Pp(Cn) = 1 − pn. Let A(r, t) be the set of sequences where

Cn occurs if n is not congruent to ±r mod t. Then [MO09, Thm. 1.3]

lim
p→1

Pp(A(2, 5))

Pp(A(1, 5))
=
−1 +

√
5

2
, lim
p→1

Pp(A(3, 8))

Pp(A(1, 8))
=
√

2− 1

which Masri and Ono prove using modular forms.

The Rogers-Ramanujan identities are special cases of a theorem of Gordon [Gor61].

Proposition 6.4.5 (Gordon). Let Bk,i(n) be the number of partitions of n written

as (b1, . . . , bs) with bj − bj+k−1 ≥ 2 and at most i− 1 parts equal to 1. Let Ak,i(n) be

the number of partitions of n into parts not congruent to 0 or ±i mod 2k + 1. Then

Ak,i(n) = Bk,i(n) for all n.

We can extract from this the distribution of the number of 1s:

Proposition 6.4.6. The probability that a partition b1 + b2 + . . . of n (in decreasing

order) with bj − bj+k−1 ≥ 2 for each j, has exactly r ones approaches

sin
(

(r+1)π
2k+1

)
− sin

(
rπ

2k+1

)
sin
(

kπ
2k+1

) .

for r = 0, 1, . . . , k − 1, as n→∞.
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The case k = 2 is Corollary 6.4.3.

Proof. It suffices to show that the limiting probability of having less than r ones, for

r = 1, . . . , k, is
(
sin rπ

2k+1

)
/
(
sin kπ

2k+1

)
. By the previous theorem, the desired partitions

with less than r ones are equinumerous with partitions having no parts congruent to

0 or ±r mod 2k + 1. We can now apply Meinardus’ theorem with

α(s) = (1− (2k + 1)−s)ζ(s)− ζ(s, r/(2k + 1))− ζ(s, 1− r/(2k + 1)).

The number of such partitions is, from Meinardus’ theorem, asymptotic to

eα′(0)(4π)−1/2(π2A/6)1/4n−3/4 exp(π
√

2An/3) (6.3)

with A = 1 − 3
2k+1

. Differentiating and using the identity ζ ′(0, v) = log(Γ(v)/
√

2π),

we get

eα′(0) =
1√

2k + 1

2π

Γ
(

r
2k+1

)
Γ
(
1− r

2k+1

) .
The reflection formula Γ(z)Γ(1− z) = π csc(πz) finally gives

eα′(0) =
2√

2k + 1
sin

πr

2k + 1
.

Thus the number of the partitions counted by Bk,r(n) is asymptotic to sinπr/(2k + 1)

multiplied by a function of k and n. The desired limiting probability is

lim
n→∞

Bk,r(n)/Bk,k(n)

; the numerator and denominator involve the same function of k, n and cancel, leaving

the quotient of sines as the limit.
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We can observe the similarity to the following result from the combinatorics of

words.

Proposition 6.4.7. The probability that a word of length n over the alphabet

{0, 1, . . . , k − 1}, in which the sum of any two consecutive letters is at most k − 1,

begins with the letter r approaches

sin (r+1)π
2k+1

− sin rπ
2k+1

sin kπ
2k+1

as n→∞.

Proof. Let Mk be the k× k matrix which has 1s on and above the main antidiagonal

and 0s for all other entries. Then the numbers of words of length n beginning with

0, 1, . . . , k − 1 and satisfying this condition are given by the vector Mn−1
k

~1, where

~1 is the column vector of k 1s. The limiting distribution is therefore given by the

eigenvector corresponding to the largest eigenvalue of Mk.

Let Pk(x) be the characteristic polynomial of Mk. Then assume for the moment

the identity

Pk(x) · Pk(−x) = x2kU2k(1/(2x)) (6.4)

where U is the Chebyshev polynomial of the second kind. We will prove this identity

later. The zeroes of Un are at cos(jπ/(n + 1)) for j = 1, 2, . . . , n; thus the zeroes of

x2kU2k(1/(2x)) are at 1
2
sec jπ

2k+1
, with j = 1, 2, . . . , 2k. The two largest of these zeroes

in absolute value are those with j = k, k + 1, which are negatives of each other; one

is a zero of Pk(x) and the other is a zero of Pk(−x).
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Assuming (6.4), the largest eigenvalue of Mk is 1
2
sec kπ

2k+1
. We want to show that

vk =

(
sin

π

2k + 1
, sin

2π

2k + 1
− sin

π

2k + 1
, . . . , sin

kπ

2k + 1
− sin

(k − 1)π

2k + 1

)T

is the corresponding eigenvector, that is, that Mkv = 1
2
sec kπ

2k+1
~v. Performing the

matrix multiplication, it suffices to show that

2 cos
kπ

2k + 1
sin

jπ

2k + 1
= sin

(k + 1− j)π

2k + 1
− sin

(k − j)π

2k + 1
. (6.5)

Now, we recall the identity 2 cosφ sin θ = sin(θ + φ) + sin(θ − φ). Applying this to

the left-hand side of (6.5), we get

2 cos
kπ

2k + 1
sin

jπ

2k + 1
= sin

(j + k)π

2k + 1
+ sin

(j − k)π

2k + 1
. (6.6)

From the right-hand side of (6.6) we can get the right-hand side of (6.5) by noting that

sin is 2π-periodic (for the first term) and an odd function (for the second term).

Proof of (6.4). . We want to show that Pk(x)Pk(−x) = x2kU2k(1/(2x)), where

t → Pk(t) is the characteristic polynomial of the matrix which has 1 in all posi-

tions on or above the main antidiagonal. We will do this by showing both sides

of this equation satisfy the same recurrence. First, Pk(x) and Pk(−x) can both be

written as determinants. In the case k = 3 these determinants are

P3(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

1− x 1 1

1 1− x 0

1 0 −x

∣∣∣∣∣∣∣∣∣∣∣∣
, P3(−x) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + x 1 1

1 1 + x 0

1 0 x

∣∣∣∣∣∣∣∣∣∣∣∣
(We will in general illustrate the proofs with small matrices instead of writing the

matrices in a fully general form.) Write Qk(x) = Pk(x)Pk(−x). Then Pk(x)Pk(−x)
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is a product of determinants, and thus a determinant of products. By matrix multi-

plication, in the k = 3 case we have

Q3(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

3− x2 2 1

2 2− x2 1

1 1 1− x2

∣∣∣∣∣∣∣∣∣∣∣∣
We claim that Qk(x) = (1 − 2x2)Qk−1(x) − x4Qk−2(x) for k ≥ 2. This follows from

simple properties of determinants. In the case k = 4 we have

Q4(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4− x2 3 2 1

3 3− x2 2 1

2 2 2− x2 1

1 1 1 1− x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and we first subtract the last row from all other rows, and then subtract the second-

to-last row from the bottom row, we get

Q4(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3− x2 2 1 x2

2 2− x2 1 x2

1 1 1− x2 x2

0 0 x2 1− x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We expand by minors along the bottom row. This gives

Q4(x) = (1− 2x2)

∣∣∣∣∣∣∣∣∣∣∣∣

3− x2 2 1

2 2− x2 1

1 1 1− x2

∣∣∣∣∣∣∣∣∣∣∣∣
− x2

∣∣∣∣∣∣∣∣∣∣∣∣

3− x2 2 x2

2 2− x2 x2

1 1 x2

∣∣∣∣∣∣∣∣∣∣∣∣
.
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The first determinant on the left-hand side is (1 − 2x2)Q3(x). To find the second

determinant, we subtract the bottom row from all other rows to get∣∣∣∣∣∣∣∣∣∣∣∣

2− x2 1 0

1 1− x2 0

1 1 x2

∣∣∣∣∣∣∣∣∣∣∣∣
and finally expanding by minors along the rightmost column gives xQ2(x). Thus we

have Q4(x) = (1− 2x2)Q3(x)− x4Q2(x); the same is true for larger matrices.

We now show that the polynomials Vk(x) = x2kU2k(1/(2x)) satisfy the same re-

currence. Let Wk(x) = Uk(1/x)x
k. Then consider the recurrence for the Cheby-

shev U polynomials, Un(t) = 2tUn−1(t) − Un−2(t). Let x = 1/t to get Un(1/x) =

2/xUn−1(1/x)− Un−2(1/x). Note that Uk(1/x) = x−kWk(x) and clear factors of x to

get

Wn(x) = 2Wn−1(x)− t2Wn−2(x).

From this we can read off the generating function for the polynomials W ,

∑
n≥0

Wn(x)tn =
1

1− 2t+ t2x2
.

Substituting 2x for x gives

∑
n≥0

Wn(2x)tn =
1

1− 2t+ 4t2x2
(6.7)

and substituting −t for t gives

∑
n≥0

(−1)nWn(2x)tn =
1

1 + 2t+ 4t2x2
. (6.8)
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Averaging (6.7) and (6.8) gives

∑
n≥0, 2|n

Wn(2x)xn =
1 + 4t2x2

1 + 8t2x2 − 4t2 + 16t4x4
.

Rewrite the sum with k = n/2, and substitute
√
t/2 for t, to get

∑
k≥0

W2k(2x)4
−kxk =

1 + tx2

1 + 2tx2 − t+ t2x4

We note that Vk(x) = W2k(2x)/2
2k, so this gives the generating function for the Vk.

The desired recurrence follows immediately.

Finally, we can check that Q1(x) = V1(x) = 1−x2 and Q2(x) = V2(x) = x4−3x2+

1, so {Qk} and {Vk} have the same initial values. Thus Qk(x) = Vk(x), establishing

the result.

Finally, we note that this method of modeling the multiplicities of parts of parti-

tions by Markov chains appears to work even when corresponding pairs of partition

identities do not exist. For example, consider partitions of n into nonconsecutive

parts which contain no k. These can be identified with bit strings which contain no

consecutive 1s and have a 0 in the kth position. Now, the number of bit strings of

length n with no two consecutive 1s and a zero in the kth position is Fk+1Fn−k+2. So

the probability that a random bit string of length n with no two consecutive 1s has

a 0 in the kth position is

Fk+1Fn−k+2

Fn+2

∼ Fk+1φ
n−k+2

φn+2
=
Fk+1

φk
.

When k = 1, 2, 3 these are (
√

5 − 1)/2 ≈ .618, 3 −
√

5 ≈ .764, 3
√

5 − 6 ≈ .708

respectively.
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These appear to be the limiting probabilities that are obtained in actual partitions.

Let Pk(n) denote the number of partitions of n into nonconsecutive parts which

contain no k. (In particular P1(n) is the same as r2(n); both count the partitions which

occur in the second Rogers-Ramanujan identity.) Let p(n, j) denote the number of

partitions of n into j nonconsecutive distinct parts, and let q(n, j) denote the number

of partitions of n into j parts. Then p(n, j) = q(n − j(j − 1), j). From a partition

n = n1+n2+· · ·+nj into nonconsecutive distinct parts, we can obtain an unrestricted

partition n− j(j − 1) = (n1 − 2(j − 1)) + (n2 − 2(j − 2)) + · · ·+ (nj−1 − 2) + nj, and

this correspondence is reversible.

Furthermore, we can write P2(n) in terms of the ps and therefore the qs. First,

we note that

P2(n) =
∑
k≥1

p(n− (3k + 2), k).

To see this, consider partitions of n into nonconsecutive distinct parts, which contain

a 2. Such partitions contain no 1s and no 3s. From such a partition with k+ 1 parts,

we can obtain a partition of n − (3k + 2) with k nonconsecutive distinct parts by

removing the 2 and subtracting 3 from each other part. By the equivalence between

ps and qs we have

P2(n) =
∑
k≥1

q
(
n− (k2 + 2k + 2), k

)
.

Note that this sum is actually finite. Finally, the q(n, j) are easily computed. For

example, we have the well-known recurrence

Q(n, k) = Q(n, k − 1) +Q(n− k, k)
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Figure 6.1: Left panel: P2(n)/r1(n) for n = 1, 2, . . . , 255. Right panel:

√
n(P2(n)/r1(n))− (

√
5− 2)) for the same values of n.

with Q(n, 0) = 0, Q(1, k) = 1, where Q(n, k) is the number of partitions of n into at

most k parts; then q(n, k) = Q(n, k)−Q(n, k− 1). Therefore we can compute P2(n),

and the ratio P2(n)/r1(n), for each n. We conjecture that limn→∞ P2(n)/r1(n) =

√
5− 2, and the convergence is of square-root speed; see Figure 6.4.

6.5 Probabilistic aspects of overpartitions

Overpartitions are a particular type of partition-like object in which the last occur-

rence of each part can be barred. For example, the overpartitions of 4 are 4, 4̄, 3 +

1, 3̄+1, 3+1̄, 3̄+1̄, 2+2, 2+2̄, 2+1+1, 2̄+1+1, 2+1+1̄, 2̄+1+1̄, 1+1+1+1, 1+1+1+1̄.

We let p̄(n) denote the number of overpartitions of n. It is clear that an overparti-

tion is the disjoint union of a standard partition and a partition into distinct parts.
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Therefore overpartitions have the generating function

∏
n≥0

1 + zn

1− zn
= 1+2z+4z2+8z3+14z4+24z5+40z6+64z7+100z8+154z9+232z10+· · · .

In the nomenclature of Section 6.2, overpartitions are of the class 3/2. We note that

we can rewrite the generating function of overpartitions as

∏
n≥0

(1− z2n)

(1− zn)2
=
∏
n≥0

(1− zn)−bn

where bn is 1 when n is even, and 2 when n is odd. “By inspection” we can see that

since the bn average 3/2, overpartitions fall in the 3/2 class. More rigorously, the

associated Dirichlet series is α(s) = (2 − 2−s)ζ(s), which has simple pole at ρ = 1

with residue A = 3/2. From Meinardus’ theorem, we find

p̄(n) ∼ 1

8n
exp(π

√
n).

This result is due to Hardy and Ramanujan [HR18].

Much work on overpartitions has been arithmetic in nature, for example [Mah04].

The original motivation for studying overpartitions comes from the jagged partitions

of [FJM05], which have their origins in statistical physics; these are certain sequences

of numbers which are “almost” weakly decreasing, and are equinumerous with over-

partitions.

Random overpartitions have previously been studied [CH04, CGH06]; these papers

give results about the number of parts, number of parts of various multiplicities, and

so on of random overpartitions. In this section we will define a family of weighted

objects which interpolate between partitions and overpartitions.

226



First, an overpartition consists of a partition and a partition into distinct parts.

In terms of combinatorial classes, we have O = P ×D, where O,P ,D are the classes

of overpartitions, partitions, and partitions into distinct parts, respectively. So the

Boltzmann sampler for overpartitions with parameter x simply generates a partition

and a partition into distinct parts, both with parameter x. We recall that the Boltz-

mann sampler for partitions into distinct parts generates partitions with mean size

asymptotic to π2

12
(1−x)−2, and the Boltzmann sampler for partitions generates parti-

tions with mean size asymptotic to π2

6
(1− x)−2. Thus the mean size of Boltzmann-x

overpartitions is π2

4
(1 − x)−2. The variance of this size is the sum of the variances

originating from the component Boltzmann samplers, which are π2

6
(1 − x)−3 and

(π2/3 − 2ζ(3))/(1 − x)3, so the distribution of sizes is concentrated. Therefore a

“typical” overpartition of n has barred parts summing to n/3.

Alternatively, recall the asymptotic results pd(n) ∼ 1
4(3n)3/4 exp π

√
n/3, p(n) ∼

1
4n
√

3
exp π

√
2n/3. The “typical” number of distinct parts of an overpartition of n,

then, is that x for which pd(x)p(n − x) is maximized; this is maximized when x is

near n/3. This is essentially the method of proof used in [CGH06];

Corteel, Hitczenko, and Goh [CH04, CGH06] have undertaken the study of cer-

tain statistics of random overpartitions. Here we define a common generalization of

partitions and overpartitions, which interpolates between these two random objects.

We then construct Boltzmann samplers for these objects, and analyze the Boltzmann

samplers to determine how these parameters vary.
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In particular, as observed in [CH04], overpartitions can be understood as partitions

counted with the weight 2k where k is the number of part sizes. Alternatively, they

can be understood as overpartitions counted with the weight (2 − 1)l where l is

the number of barred parts. So we define a random object, a w-overpartition of n

(for w > 0), as a partition counted with the weight wk where k is the number of

part sizes, or alternatively in the case w > 1 as an overpartition counted with the

weight (w − 1)l where l is the number of bars. Thus a random 2-overpartition is an

overpartition chosen uniformly at random, and a random 1-overpartition is a partition

chosen uniformly at random.

We note that w-overpartitions are counted by the generating function

(1 + wz + wz2 + wz3 + · · · )(1 + wz2 + wz4 + wz6 + · · · ) · · · =
∏
j≥1

1 + (w − 1)zj

1− zj
.

So we can construct a Boltzmann sampler with parameter x by taking Pj parts of

size j, where Pj is an integer-valued random variable with P(Pj = 0) = 1−xj

1+(w−1)xj and

P(Pj = k) = wxjk(1−xj)
1+(w−1)xj for k > 0. and the Pj are independent.

As for partitions and overpartitions, the critical value for the Boltzmann sampler

for w-overpartitions is at x = 1. The expected size of a random w-overpartition with

Boltzmann parameter x is given by

E(
∑
j≥1

jPj) =
∑
j≥1

jwxj

(1− xj)(1− (w − 1)xj)
.

We can approximate this sum by the corresponding integral over j, from 1 to ∞,
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giving

E(
∑
j≥1

jPj) ∼
log(1− x)− log(1 + (w − 1)x)

log x
+
Li2(1− x)− Li2(1 + (w − 1)x)

(log x)2

where Li2 is the dilogarithm. As x→ 1− with fixed w, this has the asymptotic form

π2/6− Li2(w)

(1− x)2
+O((1− x)−1).

This is the asymptotic expected size of a random w-overpartition with Boltzmann

parameter x. Thus we take N = f(w)(1− x)−2 where f(w) = π2/6− Li2(w).

The average number of parts of a partition is similarly obtained by integration.

This is E
∑

j Pj; we have

E(Pj) =
wxj

(1− xj)(1 + (w − 1)xj)

and, integrating again,

E(
∑
j≥1

Pj) ∼
log(x− 1)− log(1 + (w − 1)x)

log x
.

As x → 1−, this has the asymptotic form (1 − x)−1 log(1 − x)−1 + O((1 − x)−1).

Recalling the relationship between x and N , we see that 1/(1 − x) ∼
√
N/f(w).

Thus we have:

Proposition 6.5.1. The average number of parts in a random w-overpartition, with

Boltzmann parameter chosen to give w-overpartitions of expected size N , is asymptotic

to
√
N logN

2
√
π2/6− Li2(w)

.
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In particular, in the case w = 1 we recover a Boltzmannized version of the Erdos-

Lehner result on the number of parts of a random partition; in the case w = 2

case we recover a Boltzmannized version of the corresponding result of Corteel and

Hitczenko [CH04, Thm. 1.3], namely that the average number of parts in a random

Boltzmannized overpartition, tuned to have expected size N , is π−1
√
N logN .

We can get a similar result if we consider the number of expected part sizes instead

of the expected number of parts. Let Pj be defined as before, and let Qj = min(Pj, 1).

Then E(Qj) = 1 − P(Pj = 0) = wxj/(1 + (w − 1)xj)). Integrating over j gives∑
j EQj ∼ −w log(1+(w−1)x)

(w−1) log x
, and as x→ 1−, this is asymptotic to w log w

w−1
(1−x)−1.. The

average number of part sizes in a Boltzmann-x w-overpartition, where x has been

tuned to give average size n, is thus asymptotic to

w logw

(w − 1)
√
f(w)

√
N.

In the case w = 1 we take a limit to find that the coefficient is
√

6/π; this reproduces

a result of [EL41]. In the case w = 2 this coefficient is (4 log 2)/π, reproducing [CH04,

Thm. 1.1]. Finally, we observe that

lim
w→∞

w logw

(w − 1)
√
f(w)

=
√

2

which we might interpret as “an ∞-overpartition has
√

2N distinct part sizes on

average”. In fact, this makes sense. Whatever an ∞-overpartition is, it is an object

biased very heavily towards having as many distinct part sizes as possible. The

partitions with the most part sizes for their sum are the “triangular” partitions 1 +

2 + . . .+ k, and a triangular partition of N has size near
√

2N .
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Now, [CGH06, Thm. 3] give a result on the sum of the barred parts of an over-

partition:

Theorem 6.5.2. Let W̄n be the sum of the barred parts in a random overpartition of

n. For k = o(n),

P(W̄n = bn/3c ± k) =
3

4n3/4
exp

(
−9πk2

16n3/2

)
(1 + o(1)).

However, the Boltzmann method does not reproduce this result. We give here

the results that lead to this conclusion, as they are interesting results about the

Boltzmann method applied to partitions into distinct parts.

Proposition 6.5.3. The expected number, expected sum, and variance of the sum

of the overlined parts of a Boltzmannized w-overpartition with parameter x are, as

x→ 1−,

logw

1− x
,
−Li2(w)

(1− x)2
,
−2Li2(w)

(1− x)3

Proof. Let Rj be Bernoulli with mean (w−1)xj/(1+(w−1)xj); this is the probability

that a random Boltzmann-x w-overpartition has an overlined part equal to j. The

expected number of overlined parts is then

E(
∑

j

Rj) ∼
∫ ∞

0

(w − 1)xj

1 + (w − 1)xj
dj =

− logw

log x
∼ logw

1− x
.

Their expected sum is

E(
∑

j

jRj) ∼
∫ ∞

0

j(w − 1)xj

1 + (w − 1)xj
dj =

−Li2(w)

(log x)2
∼ −Li2(w)

(1− x)2
.
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Finally, since the Rj are independent, so are the jRj, and thus the variance of

their sum is the sum of their variances. So

V(
∑

j

jRj) ∼
∫ ∞

0

j2 (w − 1)xj

(1 + (w − 1)xj

(
1− (w − 1)xj

(1 + (w − 1)xj

)
dj

=

∫ ∞

0

j2(w − 1)xj

(1 + (w − 1)xj)2
dj

=
2Li2(w)

(log x)3
∼ −2Li2(w)

(1− x)3
.

Now, we choose x so that the expected size of a w-overpartition with Boltzmann

parameter x is near N ; that is, take 1− x =
√
f(w)/N . Then we get

E(
∑

j

jRj) ∼
−Li2(w)

(1− x)2
=

Li2(w)

Li2(w)− π2/6
N.

In the case w = 2, the expected sum of overlined parts is N/3, corroborating

[CH04, Thm. 1.4].

But with the same parameter x, we get

V(
∑

j

jRj) ∼
−2Li2(w)

(1− x)3
=

−2Li2(w)

(π2/6− Li2(w))3/2
N3/2.

In the case w = 2, this is 4
3π
N3/2. But [CGH06, Corollary 1] gives the variance 8

9π
N3/2

for the fixed-size N , two-thirds the variance in the Boltzmannized case. This gives

an indication of the limitations of naive use of Boltzmann samplers. Two-thirds of

the variance of the number of overlined parts in the Boltzmannized case comes from

variance occurring for fixed N ; one-third comes from the variance of the size of the

Boltzmannized object itself.
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To make this more precise, we conjecture that the variance of the sum of the

overlined parts in a Boltzmannized w-overpartition tuned to size N is equal to the

sum of:

1. the variance of the sum of the overlined parts in a fixed-size w-overpartition of

size N , and

2. the square of the expected proportion of parts of a w-overpartition which

are overlined, multiplied by the variance of the size of a Boltzmannized w-

overpartition tuned to size N .

Implicitly we have assumed here that these two sources of variance are independent.

The first item in this list is the only one of the terms here not yet known, so we can

solve for it. Under these assumptions, we find that the variance of the sum of the

overlined parts in a fixed-size w-overpartition is

−2Li2(w)f(w)3/2N3/2 −
(
−Li2(w)

f(w)

)2
(

2√
f(w)

)
N3/2

and after some simplification, this is

−π2

3

Li2(w)

f(w)5/2

which matches the result of [CGH06].
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[BF08] Miklós Bóna and Ryan Flynn, The average number of block inter-

changes needed to sort a permutation and a recent result of Stanley,

Preprint, arXiv:0811.0740, 2008. 161

[BFP07] Olivier Bodini, Eric Fusy, and Carine Pivoteau, Random sampling of

plane partitions, Submitted, preprint at arXiv:0712.0111v1, 2007. 77,

78

[BG07] Florent Benaych-Georges, Cycles of random permutations with re-

stricted cycle lengths, Preprint, arXiv:0712.1903, 2007. 81, 186

235



[Bia04] P. Biane, Nombre de factorisations d’un grand cycle, Sém. Lothar.

Combin. 51 (2004), article B51a. 161

[Bil95] Patrick Billingsley, Probability and measure, third ed., Wiley Series

in Probability and Mathematical Statistics, John Wiley & Sons Inc.,

New York, 1995, A Wiley-Interscience Publication. 48, 49, 151

[BLL98] F. Bergeron, G. Labelle, and P. Leroux, Combinatorial species and

tree-like structures, Cambridge University Press, 1998. 2

[BM03] Mireille Bousquet-Mélou, Four classes of pattern-avoiding permuta-

tions under one roof: generating trees with two labels, Electron. J.

Combin. 9 (2002/03), no. 2, Research paper 19, 31 pp. (electronic),

Permutation patterns (Otago, 2003). 171, 172

[Bón04] Miklós Bóna, Combinatorics of permutations, CRC Press, Inc., Boca

Raton, FL, USA, 2004. 170

[Bón05] , The limit of a Stanley-Wilf sequence is not always rational,

and layered patterns beat monotone patterns, J. Combin. Theory Ser.

A 110 (2005), no. 2, 223–235. 171

[Bón08] , On three different notions of monotone subsequences,

arXiv:0711.4325, 2008. 175

236



[BQ03] Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count:

The art of combinatorial proof, The Dolciani Mathematical Exposi-

tions, vol. 27, Mathematical Association of America, Washington, DC,

2003. 34

[Bre86] Charles H. Brenner, Asymptotic analogs of the Rogers-Ramanujan

identities, J. Combin. Theory Ser. A 43 (1986), no. 2, 303–319. 46

[Buc49] A. A. Buchstab, On those numbers in an arithmetic progression all

prime factors of which are small in order of magnitude, Dokl. Akad.

Nauk. 67 (1949), 5–8. 138

[BUV09] Volker Betz, Daniel Ueltschi, and Yvan Velenik, Random permutations

with cycle weights, Preprint, arXiv:0908.2217., 2009. 113

[BV02] Jérémie Bourdon and Brigitte Vallée, Generalized pattern matching

statistics, Mathematics and computer science, II (Versailles, 2002),
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