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In this paper, I seek to present a proof for the Hartman-Wintner law of iterated

logarithm. The law states that for any random walk, {Sn} with the increment of zero

mean and finite variance, σ2, the following holds almost surely:

lim sup
n→∞

Sn√
2σ2n log log(n)

= 1

The proof presented in this paper requires the use of Skorokhod embedding theorem,

which is different from the original proof for Hartman-Wintner law of iterated loga-

rithm, and along the way, I will also prove the law of iterated logarithm for Brownian

motion. The proofs for both Skorokhod embedding theorem and the law of iterated

logarithm make use of properties of Brownian motion, so in this paper, I also in-

cluded how to construct a standard Brownian motion as well as proofs for Skorokhod

embedding theorem and law of iterated logarithm. For the construction of Brownian

motion, I used Haar wavelet approach and closely followed the corresponding chapter

from “Stochastic Calculus and Financial Applications” by M.Steele, and for proofs of

Skorokhod embedding theorem and law of iterated logarithm, I closely followed the

corresponding chapters from “Brownian Motion” by P. Morters and Y. Peres.
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1 Introduction

Let’s assume you are playing rock, paper, scissors with your friend. In each game,

you have 1
3
chance of winning, 1

3
chance of losing, and 1

3
chance of a draw. If you

win, you receive a dollar from your friend, and if you lose, you give a dollar to your

friend, and nothing happens in the case of a draw game. Let Xn be your payoff at

nth game, then {XN} is a sequence of i.i.d. random variables that can take a value

of 1 or 0 or -1, each with equal probability, 1
3
, then if we define Sn as

Sn = X1 +X2 + ...+Xn =
n∑
j=1

Xj

then Sn represents your total payoff at n. We are interested in the behavior of Sn in

the long run.

It is a well-known consequence from Hewitt-Savage 0-1 law that if X1, X2, ..., Xn are

i.i.d. non-degenerate real random variables of with a distribution that is symmetric

about zero, and Sn =
∑n

j=1Xj, then

−∞ = lim inf
n→∞

Sn < lim sup
n→∞

Sn = ∞

Now, the question is can we do better than that? In particular, is it possible to find

some tractable, closed-form function, ϕ(n) such that

lim sup
n→∞

Sn
ϕ(n)

= lim inf
n→∞

Sn
−ϕ(n)

= 1 almost surely

The answer is yes, and such ϕ(n) can be found by Hartman-Wintner law of iterated

logarithm. In the case of repeated rock, paper, scissors games shown above, the
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answer would be ϕ(n) =
√

4
3
n log log(n), so we get

lim sup
n→∞

Sn√
4
3
n log log(n)

= lim inf
n→∞

Sn

−
√

4
3
n log log(n)

= 1 almost surely

The real power of the theorem is that it can be generalized to any nondegenerate

symmetric random walk in which each increment has zero mean and finite variance.

Hartman-Wintner law of iterated logarithm states that for any random walk Sn with

increments, Sn − Sn−1 of zero mean and finite variance σ2, we get

lim sup
n→∞

Sn√
2σ2n log log(n)

= 1 almost surely

The primary aim of this paper is to present a proof Hartman-Winter law of iterated

logarithm, and to do so, we will prove another powerful and related theorem called

Skorokhod embedding theorem. The proofs for both theorems make use of a stochastic

process called Brownian Motion, so we will start by defining what Brownian Motion

is and proving its existence by explicitly constructing one. (Also, all random variables

mentioned will be assumed to be real-valued).
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2 Construction of a Brownian Motion

A standard Brownian motion, {Bt : 0 ≤ t} is a real-valued continuous-time stochastic

process satisfying the following four properties:

• B0 = 0

• It has independent increments. In other words, for any finite set, 0 ≤ t1 < t2 <

t3... < tn, Bt2 −Bt1 , Bt3 −Bt2 , ..., Btn −Btn−1 are independent.

• For any 0 ≤ s ≤ t, the increment Bt − Bs has the Gaussian distribution with

mean 0 and variance t− s.

• Bt is a continuous function of t with probability one.

We will show that such a process exists by explicitly constructing one. While there are

other methods of constructing a standard Brownian motion, we will make use of Haar

Wavelets to construct one. This part will follow chapter 3 from “Stochastic Calculus

and Financial Applications” by M.Steele very closely[1]. The idea is to construct a

standard Brownian motion on [0, 1], so that for each 1 ≤ n < ∞, we can have an

independent standard Brownian motion, B
(n)
s for s ∈ [0, 1], and for any 0 ≤ t < ∞,

we can get Bt by

Bt = B
(n+1)
t−n +

n∑
k=1

B
(k)
1 for t ∈ [n, n+ 1)

The Haar wavelet is a sequence of functions proposed by Alfred Haar in 1909. To
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construct a Haar wavelet, we first need to define a “mother wavelet,” H(t) as

H(t) =



1 for 0 ≤ t < 1
2
,

−1 for 1
2
≤ t ≤ 1,

0 otherwise

then from this H(t), we define a sequence of functions

ψj,k(t) = H(2jt− k) for 0 ≤ j, 0 ≤ k < 2j

this sequence of functions, {ψj,k}, is called Haar wavelet. Now, from this Haar wavelet,

we define H0, H1, H2, ... as

H0(t) = 1

Hn(t) = 2
j
2ψj,k(t) for n = 2j + k where j ≥ 0 and 0 ≤ k < 2j

({Hn} actually forms a complete orthonormal sequence for L2[0, 1], and we will use

this fact later in this chapter. For the detailed proof of how this forms a complete

orthonormal sequence, you can look at page 135 of “A Basic Course in Probability”

by Rabindra Nath Bhattacharya, Edward C. Waymire). To list the first few Hn for

n ≥ 1, we have

H1(t) =



1 for 0 ≤ t < 1
2
,

−1 for 1
2
≤ t ≤ 1,

0 otherwise
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H2(t) =



√
2 for 0 ≤ t < 1

4
,

−
√
2 for 1

4
≤ t ≤ 1

2
,

0 otherwise

H3(t) =



√
2 for 1

2
≤ t < 3

4
,

−
√
2 for 3

4
≤ t ≤ 1,

0 otherwise

H4(t) =



2 for 0 ≤ t < 1
8
,

−2 for 1
8
≤ t ≤ 1

4
,

0 otherwise

H5(t) =



2 for 1
4
≤ t < 3

8
,

−2 for 3
8
≤ t ≤ 1

2
,

0 otherwise

H6(t) =



2 for 1
2
≤ t < 5

8
,

−2 for 5
8
≤ t ≤ 3

4
,

0 otherwise

H7(t) =



2 for 3
4
≤ t < 7

8
,

−2 for 7
8
≤ t ≤ 1,

0 otherwise

Now, we define another sequence of functions, {Ψj,k(t)} by

Ψj,k(t) =

∫ t

0

ψj,k(u)du

Just like the way we constructed {ψj,k(t)}, this sequence can also be more conveniently

represented as the wavelet by defining a mother wavelet first and constructing other

functions from that mother wavelet. We will denote the mother wavelet by Ψ(t) and

define it as following:

Ψ(t) =



2t for 0 ≤ t < 1
2
,

2(1− t) for 1
2
≤ t ≤ 1,

0 otherwise
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and from this Ψ(t), we define a sequence of functions

Ψj,k(t) = Ψ(2jt− k) for 0 ≤ j, 0 ≤ k < 2j

Now, let’s define {∆n(t)} as ∆2j+k = Ψj,k(t) (note that |∆n(t)| ≤ 1 from construc-

tion), then by defining {λn} as λ0 = 1, and for n ≥ 1

λn =
2−j/2

2
where n ≥ 1 and n = 2j + k with 0 ≤ k < 2j

we get the following expression

∫ t

0

Hn(u)du = λn∆n(t)

Now, we have all the necessary raw materials to construct a standard Brownian

motion for t ∈ [0, 1]. We will do so by proving the following proposition.

Proposition 2.1. Let {Zn : 0 ≤ n < ∞} be a sequence of independent Gaussian

random variables with mean 0 and variance 1, then the series defined by

Xt =
∞∑
n=0

λnZn∆n(t)

is a standard Brownian motion for 0 ≤ t ≤ 1.

We will prove the above proposition by showing that Xt satisfies the required

properties of a standard Brownian motion. First, we will start by proving that Xt

converges uniformly on [0, 1] with probability 1. To do so, we will first prove the

following lemma.
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Lemma 2.2. Let {Zn : 0 ≤ n < ∞} be a sequence of independent Gaussian random

variables with mean 0 and variance 1, then there is a random variable C that is finite

with probability one and

|Zn| ≤ C
√

log n for all n ≥ 2

Proof. This is actually a natural consequence from the density of a standard Gaussian

random variable and the Borel-Cantelli lemma. Note that for x ≥ 1

P (|Zn| ≥ x) =
2√
2π

∫ ∞

0

exp(−u2/2)du ≤
√

2

π

∫ ∞

x

u exp(−u2/2)du = exp(−x2/2)
√

2

π

Thus, for any α > 1, we have

P (|Zn| ≥
√

2α log n) ≤ exp(−α log n)

√
2

π
= n−α

√
2

π

Note that for α > 1, we have
∞∑
n=1

n−α <∞

thus, using the Borel-Cantelli lemma, we get

P (|Zn| ≥
√
2α log n for infinitely many n) = 0

and, therefore, the random variable defined by

sup
2≤n<∞

|Zn|√
log n

= C

is finite with probability one.

Using the above lemma, we will now prove that Xt converges uniformly on [0, 1]

with probability one. From construction of {∆n}, for any 0 ≤ x ≤ 1, we have
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∆n(x) = 0 for all but one value of n in the interval [2j, 2j+1), and for any n ∈ [2j, 2j+1),

we have log n < j+1. Then from Lemma 2.2, we can find a random variable C, which

is finite with probability one and satisfies |Zn| ≤ C
√
log n for all n ≥ 2, so for any

J ≥ 1, if we let M ≥ 2J , we get

∞∑
n=M

λn|Zn|∆n(t) ≤ C
∞∑

n=M

λn
√

log n∆n(t)

≤
∞∑
j=J

2j−1∑
k=0

2−j/2

2

√
j + 1∆2j+k(t) ≤ C

∞∑
j=J

2−j/2

2

√
j + 1

and note that
∑∞

j=1
2−j/2

2

√
j + 1 <∞. Therefore, we have

lim
J→∞

C
∞∑
j=J

2−j/2

2

√
j + 1 = 0

Now, let’s recall the definition of Xt, which was the following

Xt =
∞∑
n=0

λnZn∆n(t)

where λn is just a real constant, and ∆n(t) is a bounded continuous function on [0, 1].

Lemma 2.2 shows that Xt converges uniformly on [0, 1] with probability one, and if

an infinite sum of continuous functions on [0, 1] uniformly converges on [0, 1], then

that infinite sum must also be a continuous function on [0, 1]. Thus, the fact that

Xt converges uniformly on [0, 1] with probability one implies that the paths of the

process {Xt : 0 ≤ t ≤ 1} are continuous with probability one.

Next, we will show that Xt has independent increments by proving that Xt satisfies

an equivalent condition assuming Xt is Gaussian: Cov(Xs, Xt) = min(s, t) for all 0 ≤

s, t ≤ T .
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Lemma 2.3. If a process {Xt : 0 ≤ t ≤ T} is Gaussian and has E(Xt) = 0 for all

0 ≤ t ≤ T and if

Cov(Xs, Xt) = min(s, t) for all 0 ≤ s, t ≤ T

then {Xt} has independent increments, and if this process has continuous paths and

X0 = 0, then it is a standard Brownian motion on [0, T ].

Proof. Assuming the first part is true, the second part of this lemma is a natural

consequence from the definition of a standard Brownian motion on [0, T ], so it suffices

to prove only the first part. Recall that the coordinates of a multivariate Gaussian

vector are independent if and only if the covariance matrix is a diagonal matrix. Thus,

to prove the first part, it suffices to show that for any finite set, 0 ≤ t1 < t2 < t3... ≤

tn ≤ T , the vector of the process increments

(Xt2 −Xt1 , Xt3 −Xt2 , Xt4 −Xt3 , ..., Xtn −Xtn−1)

has a diagonal covariance matrix. Then it follows that, Xt2 − Xt1 , Xt3 − Xt2 , Xt4 −

Xt3 , ..., Xtn −Xtn−1 are independent random variables. To show that the covariance

matrix is a diagonal matrix, note that for i < j, we have

E[(Xti −Xti−1
)(Xtj −Xtj−1

)] = E[XtiXtj ]−E[XtiXtj−1
]−E[Xti−1

Xtj ]+E[Xti−1
Xtj−1

]

= ti − ti − ti−1 + ti−1 = 0

and the diagonal entries would be t1, t2, ..., tn, so the resulting matrix would be a

diagonal matrix.
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Note that from our construction of Xt, it’s obvious that X0 = 0 as ∆n(0) = 0

for all n. Furthermore, we already proved in Lemma 2.2 that Xt has continuous

paths. So using Lemma 2.3, we only have to show that Cov(Xs, Xt) = min(s, t) for

all 0 ≤ s, t ≤ 1 and for any finite set 0 ≤ t1 < t2 < t3... ≤ tn ≤ 1, (Xt1 , Xt2 , ..., Xtn)

has the multivariate Gaussian distribution to prove that Xt is a standard Brownian

motion for t ∈ [0, 1]. The first part can be done by simple calculations:

E(XsXt) = E

[
∞∑
n=0

λnZn∆n(s)
∞∑
m=0

λmZm∆m(t)

]
=

∞∑
n=0

λ2n∆n(s)∆n(t)

=
∞∑
n=0

∫ s

0

Hn(u)du

∫ t

0

Hn(u)du = min(s, t)

in which the last part of equality follows from Parseval’s identity, and the fact that

{Hn} is a complete orthonormal sequence for L2[0, 1]. (as illustrated below)

min(s, t) =

∫ 1

0

1[0,s](x)1[0,t](x)dx =
∞∑
n=0

⟨1[0,s], Hn⟩ ⟨1[0,t], Hn⟩

=
∞∑
n=0

∫ s

0

Hn(u)du

∫ t

0

Hn(u)du

For the second part, it suffices to calculate directly the multivariate characteristic

function of (Xt1 , Xt2 , ..., Xtn) and check whether the resulting characteristic function

matches that of a multivariate Gaussian with mean zero and covariance matrix, Σ =

(min(ti, tj))

E

[
exp(i

n∑
j=1

θjXtj)

]
= E

[
exp(i

n∑
j=1

θj

∞∑
k=0

λkZk∆k(tj))

]

=
∞∏
k=0

E

[
exp(iλkZk

n∑
j=1

θj∆k(tj))

]
=

∞∏
k=0

exp

(
−1

2
λ2k(

n∑
j=1

θj∆k(tj))
2

)



12

= exp

(
−1

2

∞∑
k=0

λ2k(
n∑
j=1

θj∆k(tj))
2

)
= exp

(
−1

2

n∑
j=1

n∑
k=1

θjθkmin(tj, tk)

)

for the last equality, note that

∞∑
k=0

λ2k(
n∑
j=1

θj∆k(tj))
2 =

∞∑
k=0

λ2k

(
n∑
i=1

n∑
j=1

θiθj∆k(ti)∆k(tj)

)

=
n∑
i=1

n∑
j=1

θiθj

∫ ti

0

Hn(u)du

∫ tj

0

Hn(u)du =
n∑
i=1

n∑
j=1

θiθj min(ti, tj)

thus, we get the desired equality

exp

(
−1

2

∞∑
k=0

λ2k(
n∑
j=1

θj∆k(tj))
2

)
= exp

(
−1

2

n∑
j=1

n∑
k=1

θjθkmin(tj, tk)

)

and the last expression is the characteristic function of a multivariate Gaussian with

mean zero and covariance matrix, Σ = (min(ti, tj)), and, therefore, Xt is indeed a

standard Brownian motion.
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3 Law of Iterated Logarithm

As complete as the previous chapter looks in constructing a standard Brownian Mo-

tion, it still misses one of its key facets: a filtration. A filtration is a family of σ-fields,

denoted by Ft, such that Fs ⊂ Ft for s ≤ t. In our case, we would like to make it

right-continuous, meaning
∩
s:s>tFt = Fs. Basically, to complete a construction of a

Brownian motion, we will need to define Ω and Ft, so that each Bt is a measurable

function from a probability space, (Ω,Ft, P ) into [0, 1]. For Ω, it would be a set of

all continuous real functions

Ω = {ω(t) : [0,∞) → (−∞,∞)}

and for Ft, it needs to satisfy that for each Borel set, B, of R, we must have

{ω : Bt(ω) ∈ B} ⊂ Ft. The obvious choice for Ft would be σ({Bs : s ≤ t}), namely,

a family of σ-fields generated by Brownian motion up to time t. (Although this

filtration is not right-continuous, it is still possible to construct a right-continuous

filtration, which is same as σ({Bs : s ≤ t}) up to measure zero, but we will omit the

details. For the detailed proof, please refer to the chapter on Brownian motion on

“Probability: Theory and Examples” by Richard Durrett).

Note that from this construction, each Bt would be equipped with a different (Ω,Ft),

as each filtration, Ft, would be different for different values of t, and using the filtra-

tion, we can define a new concept: stopping time, which is a random variable, T ,

taking values on [0,∞] such that for all t ≥ 0, we have {T < t} ∈ Ft.

Finally, we have finished the construction of a standard Brownian motion. Arguably
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the most important and interesting stochastic process, the standard Brownian motion

has many intriguing properties, one of which is the following reflection principle.

Theorem 3.1. Let T be a stopping time, and let {Bt : t ≥ 0} be a standard Brownian

motion, then the process {B∗
t : t ≥ 0} defined by

B∗
t = Bt1{t≤T} + (2BT −Bt)1{t>T}

is also a standard Brownian motion.

This process, B∗
t , is called Brownian motion reflected at T , and using this reflection

principle, we can prove the following result.

Lemma 3.2. For a > 0, P (max0≤s≤tBs > a) = 2P (Bt > a) = P (|Bt| > a).

Proof. The second equality is obvious from the symmetry of Brownian motion, so it

suffices to prove the first part to prove the lemma. We define a stopping time, T , as

T = inf{t ≥ 0 : Bt = a} and let {B∗
t : t ≥ 0} be Brownian motion reflected at the

stopping time T , then

P (max
0≤s≤t

Bs > a) = P (Bt > a) + P (max
0≤s≤t

Bs > a and Bt ≤ a)

= P (Bt > a) + P (B∗
t > a) = 2P (Bt > a) = P (|Bt| > a)

Now, we will get to the main theme of this thesis, which is proving the following

three theorems: law of Iterated logarithm, Hartman-Wintner law of iterated loga-

rithm, and Skorokhod embedding theorem, and the remaining parts of the thesis will
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closely follow chapter 5 from “Brownian Motion” by P. Morters and Y. Peres[2]. We

will first prove the law of iterated logarithm, which can be stated as following:

Theorem 3.3. If {Bt : t ≥ 0} is a standard Brownian motion, then

lim sup
t→∞

Bt√
2t log log(t)

= lim inf
t→∞

Bt

−
√

2t log log(t)
= 1 almost surely

By symmetry of the standard Brownian motion, it suffices to prove the lim sup

case. We will make use of the Borel-Cantelli lemma and Lemma 3.2 to prove Theorem

3.3.

Proof. Let ψ(t) =
√
2t log log(t). We will first prove the upper bound. For some

fixed ϵ > 0 and q > 1, we define the event An as

An = max
0≤t≤qn

Bt ≥ (1 + ϵ)ψ(qn)

then by using Lemma 3.2, we get

P (An) = P (|Bqn| ≥ (1 + ϵ)ψ(qn)) = P

(
|Bqn |√
qn

≥ (1 + ϵ)
ψ(qn)√
qn

)

Note that for a standard normal random variable, Z, from Lemma 2.2, we have the

tail estimate P (Z > x) ≤
√

2
π
exp(−x2/2) ≤ exp(−x2/2) for x ≥ 1, so

P (An) ≤ 2 exp(−(1 + ϵ)2 log log(qn)) =
2

(n log(q))(1+ϵ)2

and for any ϵ > 0 and q > 1,

∞∑
n=1

2

(n log(q))(1+ϵ)2
<∞
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and, therefore, by Borel-Cantelli lemma, we know that only finitely many of these

events occur. For any t, we can find n such that qn−1 ≤ t < qn, giving

Bt

ψ(t)
=

Bt

ψ(qn)

ψ(qn)

qn
t

ψ(t)

qn

t
≤ (1 + ϵ)q

because ψ(t)
t

is decreasing with respect to t. Since our choice of t was arbitrary, we

have

lim sup
t→∞

Bt

ψ(t)
≤ (1 + ϵ)q almost surely

and since our choice of ϵ > 0, q > 1 was also arbitrary, we have proved that

lim sup
t→∞

Bt

ψ(t)
≤ 1 almost surely

Having proved the upper bound, we will now prove the lower bound. Again, we will

make use of Borel-Cantelli lemma and geometric sequence. Fix q > 1 and define the

event Dn as

Dn = {Bqn −Bqn−1 ≥ ψ(qn − qn−1)}

so that {Dn} is a sequence of independent events.

Lemma 3.4. If Z is a standard normal random variable, then for all x > 0, we have

x

x2 + 1

1√
2π

exp(−x2/2) ≤ P (Z > x)

Proof. Let f(x) = x exp(−x2/2)− (x2+1)
∫∞
x

exp(−u2/2)du, then it suffices to prove

that f(x) ≤ 0 for all x. It’s clear that f(0) = −1 < 0 and limx→∞ f(x) = 0, and for

x > 0

f ′(x) = (1− x2 + x2 + 1) exp(−x2/2)− 2x

∫ ∞

x

exp(−u2/2)du
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= −2x(

∫ ∞

x

exp(−u2/2)du− exp(−x2/2)
x

) ≥ 0

so f(x) ≤ 0 for all x > 0.

Using the above lemma, we know that if Z is a standard normal random variable,

then for sufficiently large x, we have P (Z > x) ≥ exp(−x2/2)
x

, and from this tail

estimate, for sufficiently large n, we get

P (Dn) = P (Z ≥ ψ(qn − qn−1)√
qn − qn−1

) ≥ exp(− log log(qn − qn−1))

2 log log(qn − qn−1)

≥ exp(− log(n log(q)))√
2 log(n log(q))

>
1

n log(n)

and, therefore,
∑∞

n=1 P (Dn) diverges, so for infinitely many n

Bqn ≥ Bqn−1 + ψ(qn − qn−1)

and from the upper bound Bqn−1 ≤ 2ψ(qn−1) and symmetry of the standard Brow-

nian motion, we get Bqn−1 ≥ −2ψ(qn−1), and, therefore, we can re-write the above

inequality as

Bqn ≥ Bqn−1 + ψ(qn − qn−1) ≥ −2ψ(qn−1) + ψ(qn − qn−1)

Thus, almost surely, for infinitely many n

Bqn

ψ(qn)
≥ −2ψ(qn−1) + ψ(qn − qn−1)

ψ(qn)
≥ −2

√
q
+
qn − qn−1

qn
= 1− 2

√
q
− 1

q

as ψ(t)√
t
is increasing in t for sufficiently large t, but ψ(t)

t
is decreasing in t, and, therefore,

we have

lim sup
t→∞

Bt

ψ(t)
≥ 1− 2

√
q
− 1

q
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and since our choice of q > 1 was arbitrary, we get the “almost sure” lower bound

lim supt→∞
Bt

ψ(t)
≥ 1, and combining it with the upper bound, we know that

lim sup
t→∞

Bt

ψ(t)
= 1 almost surely.

Now, the question is whether we can get a result similar to one in Theorem 3.3 in

a discrete case as well, and conveniently, the answer is yes. We will demonstrate the

result by proving the following discrete analogue of Theorem 3.3: (from now on, we

will denote Bt by B(t))

Theorem 3.5. If Sn = X1 + X2 + · · · + Xn in which {Xn} is an i.i.d. sequence of

symmetric random variables such that P (Xi = 1) = P (Xi = −1) = 1
2
for each i, then

almost surely

lim sup
n→∞

Sn√
2n log log(n)

= 1

For the proof of the above theorem, we will need the following lemma:

Lemma 3.6. If {Tn : 1 ≤ n} is a sequence of random times such that Tn → ∞ and

Tn+1

Tn
→ 1 almost surely, then letting ψ(t) =

√
2t log log(t)

lim sup
n→∞

B(Tn)

ψ(Tn)
= 1 almost surely.

Also, if Tn
n

→ a > 0 almost surely, then

lim sup
n→∞

B(Tn)

ψ(an)
= 1 almost surely.
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Remark 3.7. The upper bound requires the sequence {Tn : 1 ≤ n} to be unbounded,

and the second condition, Tn+1

Tn
→ 1, requires times to be sufficiently dense to make

the lemma work. For instance, for the following sequence

T0 = 0 Tn = inf{t > Tn−1 + 1 : B(t) <
1

n
}

the second condition, (Tn+1

Tn
→ 1 almost surely), does not hold and

lim sup
n→∞

B(Tn)

ψ(Tn)
= 0 almost surely.

Proof. Now, assume that first and second conditions both hold for the sequence of

times {Tn : 1 ≤ n}. Since the fact that lim supn→∞
B(Tn)
ψ(Tn)

≤ 1 almost surely follows

from the upper bound for continuous time without any conditions on {Tn : n ≥ 1}, it

suffices to prove that lim supn→∞
B(Tn)
ψ(Tn)

≥ 1 almost surely. Fix q > 4, and define the

events Dk, Ωk, D
∗
k as following:

Dk = {B(qk)−B(qk−1) ≥ ψ(qk − qk−1)}

Ωk = { min
qk≤t≤qk+1

B(t)−B(qk) ≥ −
√
qk}

D∗
k = Dk ∩ Ωk

Note that Dk, Ωk are independent events, so we have

P (D∗
k) = P (Dk)P (Ωk)

From the proof of Theorem 3.3, we know that there is a constant, c > 0 such that

P (Dk) = P

(
B(1) ≥ ψ(qk − qk−1)√

qk − qk−1

)
≥ c

k log(k)
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and by scaling (dividing both sides of
√
qk), we know that for some constant c2 > 0,

we have P (Ωk) > c2 for all k. Thus, we have

c2

∞∑
j=1

c

j log(j)
≤ c2P (Dk) <

∞∑
k=1

P (D∗
k)

so we know that
∑∞

k=1 P (D
∗
2k) is infinite, and since the events {D∗

2k : k ≥ 1} are

independent, by the Borel-Cantelli lemma, for infinitely many even integers, k, we

have

min
qk≤t≤qk+1

B(t) ≥ B(qk−1) + ψ(qk − qk−1)−
√
qk

and note that if k is sufficiently large, then B(qk−1) ≥ −2ψ(qk−1) holds almost surely,

and (1− 1
q
)ψ(qk) ≤ ψ(qk − qk−1), so we have, for infinitely many k,

min
qk≤t≤qk+1

B(t) ≥ B(qk−1) + ψ(qk − qk−1)−
√
qk ≥ ψ(qk)(1− 1

q
− 2

√
q
)−

√
qk

Now, let n(k) = min{n : Tn > qk}, then as Tn+1

Tn
→ 1 almost surely, for any fixed

ϵ > 0, for all sufficiently large k, we have qk ≤ Tn(k) ≤ qk(1+ ϵ), so for infinitely many

k, we have

B(Tn(k))

ψ(Tn(k))
≥ ψ(qk)

ψ(qk(1 + ϵ))
(1− 1

q
− 2

√
q
)−

√
qk

ψ(qk)

but as

√
qk

ψ(qk)
→ 0 and ψ(qk)

ψ(qk(1+ϵ))
→ 1√

1+ϵ
, we have

lim sup
n→∞

B(Tn)

ψ(Tn)
≥ 1√

1 + ϵ
(1− 1

q
− 2

√
q
)

and if we let ϵ→ 0 and q → ∞, as the left side does not depend on either q or ϵ, we

get the desired lower bound

lim sup
n→∞

B(Tn)

ψ(Tn)
≥ 1 almost surely
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which leads to the conclusion

lim sup
n→∞

B(Tn)

ψ(Tn)
= 1 almost surely,

and note that if Tn
n

→ a, then ψ(Tn)
ψ(an)

→ 1 by scaling.

Now, using the above lemma, we will prove Theorem 3.5. It turns out to be

remarkably simple.

Proof. All we need to do is to construct a correct sequence of times, and we can do

so by defining {Tn} as following:

T0 = 0

Tn = min{t > Tn−1 : |B(t)−B(Tn−1)| = 1} for 1 ≤ n

The sequence of times {Tn} is just a sequence of stopping times for Brownian motion,

and, therefore, the waiting times Tn − Tn−1 are i.i.d. random variables by the strong

Markov property. It’s clear that Tn → ∞ from construction, so we just have to check

the second condition, Tn+1

Tn
→ 1.

By symmetry, we have

P (B(Tn)−B(Tn−1) = 1) = P (B(Tn)−B(Tn−1) = −1) =
1

2

so we can think of {B(Tn) : n ≥ 0} as a simple random walk. To calculate E(Tn −

Tn−1), we will use the following fact:

• For a < 0 < b, if we let T = min{t ≥ 0 : B(t) ∈ {a, b}}, then

P (B(T ) = a) =
b

|a|+ b
P (B(T ) = b) =

|a|
|a|+ b

E(T ) = |a|b
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then by letting a = −1, b = 1, we get E(Tn − Tn−1) = 1, and, therefore, we have

Tn+1

Tn
→ 1, then the statement in Theorem 3.5 is just a natural consequence of Lemma

3.6.

Although we put some severe restrictions on the distribution of Xi, this is a good

beginning for the proof of Hartman-Wintner law of iterated logarithm that we will

cover later. (Note that if Xi is any symmetric binomial random variable with mean

zero and Var(Xi) = σ2 for any σ > 0, then we can just normalize it by dividing it by

σ and apply Theorem 3.5).
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4 Skorokhod Embedding Theorem

What if {Xi} is any i.i.d. sequence of random variables with finite variance and mean

zero? Does the Theorem 3.5 still hold true? The answer is yes, and this remarkably

general phenomenon is known as Hartman-Wintner law of the iterated logarithm.

To prove this theorem, we need one more theorem, namely Skorokhod embedding

theorem, and this chapter will be dedicated to proving that theorem. Before we prove

the theorem, we will prove two theorems that will be used to prove a key lemma, which

is necessary for the proof of Skorokhod embedding theorem. The proof of Theorem

4.1 is based on the corresponding part from “Probability with Martingales” by David

Williams[3].

Theorem 4.1. If X is an integrable random variable and Xn = E(X|Fn), then

{Xn : n ≥ 0} is a uniformly integrable martingale and

lim
n→∞

Xn = E(X|F∞) almost surely and in L1

in which a filtration, F∞ is defined as F∞ = σ(
∪
nFn).

Proof. Note that it is obvious from the tower property that {Xn : n ≥ 0} is martin-

gale. To show that it is uniformly integrable, we will prove the following lemma:

Lemma 4.2. If X ∈ L1, then the class

{E(X|G) : G is a sub-σ-algebra of F}

is uniformly integrable.



24

Proof. For any given ϵ > 0, we can choose δ > 0 such that for F ∈ F

P (F ) < δ ⇒
∫
F

|X|dP < ϵ

then we let c to be a positive real number such that c−1E(|X|) < δ and define G as

sub-σ-algebra of F and Y as any version of E(X|G), then by Jensen’s inequality, we

get

|Y | ≤ E(|X| |G) almost surely

and thus, E(|Y |) ≤ E(|X|), and

cP (|Y | > c) ≤ E(|Y |) ≤ E(|X|)

such that

P (|Y | > c) < δ

However, {|Y | > c} ∈ G, so from the definition of conditional expectation and the

fact we just derived: |Y | ≤ E(|X| |G) almost surely, we get the desired result:∫
|Y |≥c

|Y | ≤
∫
|X|≥c

|X| < ϵ

Now, we have proved that {Xn : n ≥ 0} is a uniformly integrable martingale, so

all we need to prove is the last part: limn→∞Xn = E(X|F∞) almost surely. Without

a loss of generality, let’s assume that X ≥ 0, and let µ = E(X|F∞), then consider

two measures: Q1, Q2 on (Ω,F∞), which we will define as

Q1 =

∫
F

µ dP



25

Q2 =

∫
F

X∞ dP (X∞ = lim supXn)

for any F ∈ F∞. If F ∈ Fn, then as E(µ|Fn) = E(X|Fn) by tower property, we get

∫
F

µ dP =

∫
F

Xn dP =

∫
F

X∞ dP

showing that Q1, Q2 agree on
∪

Fn, and from π−λ theorem, they agree on F∞ as well.

Note that µ is clearly F∞-measurable, and X∞ = lim supXn is also F∞-measurable.

Thus, we get

F = {ω : µ > X∞} ∈ F∞

and as Q1(F ) = Q2(F ), we get

∫
µ>X∞

µ−X∞ dP = 0 ⇒ P (µ > X∞) = P (X∞ > µ) = 0

which means

lim
n→∞

Xn = E(X|F∞) almost surely and in L1

Theorem 4.3. If the martingale {Xn : n ≥ 0} is L2-bounded, then there is a random

variable, X, such that

lim
n→∞

Xn = X almost surely and in L2

Proof. For m ≥ n, we have

E((Xm −Xn)
2) =

m∑
k=n+1

E((Xk −Xk−1)
2) ≤

∞∑
k=1

E((Xk −Xk−1)
2) <∞
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Then as L2-boundedness implies L1-boundedness, by martingale convergence theo-

rem, Xn converges to an integrable random variable, X almost surely. Then if we let

m→ ∞, by applying Fatou’s lemma, we get the desired result.

Theorem 4.1 is called Levy’s upward theorem, and Theorem 4.3 is called conver-

gence theorem for L2-bounded martingales. Note that in Theorem 3.5, we constructed

a sequence of stopping times, {Tn}, such that it satisfies the conditions in Lemma

3.6 and B(Tn+1)−B(Tn) has the law of a symmetric binomial random variable with

mean 0 and variance 1. In that particular case, we put some severe restrictions on

the distribution of Xi, and one may wonder for any random variable X with mean

zero and finite variance, is it possible to find a stopping time, T , such that B(T ) has

the law of X. Again, the answer is yes, and this is a result of Skorokhod embedding

theorem, which can be formally stated as following:

Theorem 4.4. Assume that {B(t) : t ≥ 0} is a standard Brownian motion, and X is

a random variable with mean zero and finite variance. Then there is a stopping time,

T , with respect to the natural filtration, (F(t) : t ≥ 0) of Brownian motion, such that

B(T ) has the law of X and E(T ) = E(X2).

Proof. First, we will define a new concept called binary splitting. If {Xn : n ∈ N}

is martingale such that whenever for some x0, · · · , xn ∈ R, the event

A(x0, · · · , xn) = {X0 = x0, X1 = x1, · · · , Xn = xn}

has positive probability, the random variable Xn+1 conditioned on A(x0, · · · , xn) is
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supported on at most two values, then it’s called binary splitting.

Lemma 4.5. If X is a random variable with finite variance, then there is a binary

splitting martingale, {Xn : n ∈ N} such that Xn → X almost surely in L2.

Proof. Let G0 be the trivial σ-algebra, which only consists of the empty set and the

underlying probability space and let X0 = E(X). We will define the martingale

{Xn : n ∈ N} and the associated filtration (Gn : n ∈ N} recursively from those. Next,

we define the random variable, ξ0 by

ξ0 =


1 if X ≥ X0,

−1 if X < X0.

and for n > 0, we let Gn = σ(ξ0, ξ1, · · · , ξn−1) and Xn = E(X|Gn) and define ξn as

ξn =


1 if X ≥ Xn,

−1 if X < Xn.

To show that {Xn : n ∈ N} is binary splitting martingale, note that Gn is generated

by a partition, Pn of the underlying probability space into 2n sets, each of which

has the form A(x0, · · · , xn), and since each element of Pn is a union of two elements

of Pn+1, the martingale {Xn : n ∈ N} is indeed binary splitting. Note that from

construction of Xn, we get

E(X2) = E(((X −Xn) +Xn)
2) = E((X −Xn)

2) + 2E((X −Xn)Xn) + E(X2
n)

= E((X −Xn)
2) + E(X2

n) ≥ E(X2
n)
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Thus, {Xn : n ∈ N} is bounded in L2, and from Levy’s upward theorem and the

convergence theorem for L2, Theorem 4.1 and 4.2 respectively, we get

Xn → X∞ = E(X|G∞) almost surely in L2

in which G∞ = σ(
∪∞
i=0Gi). Now, all we need to show is X = X∞ almost surely. To

do so, we will show that

lim
n→∞

ξn(X −Xn+1) = |X −X∞|

Note that if X(ω) < X∞(ω) then there is an integer N such that X(ω) < Xn(ω) for

n < N , so ξn = −1, and the above equality holds. Similarly, if X(ω) > X∞(ω) then

there is an integer N such that X(ω) > Xn(ω) for n < N , so ξn = 1, and the above

equality holds as well, and if X(ω) = X∞(ω), the equality trivially holds.

Using the fact that ξn is Gn+1-measurable, we get

E[ξn(X −Xn+1)] = E[ξnE[X −Xn+1|Gn+1]] = 0

and since if Yn → Y almost surely, and {Yn : n = 0, 1, · · · } is L2-bounded, then

E(Yn) → E(Y ), we know that limn→∞ ξn(X − Xn+1) must also be L2-bounded, so

E|X −X∞| = 0.

Now, having completed the proof of the lemma, we will get to the proof of Sko-

rokhod embedding theorem. Using the above lemma, we take a binary splitting

martingale {Xn : n ∈ N} such that Xn → X almost surely in L2. Then it is well-

known fact that if X is supported on a set of two elements {−a, b} for some a, b > 0
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with mean zero, then if we let T = inf{t : B(t) ∈ {−a, b}} to be our stopping time,

then B(T ) has the same distribution as that of X with E(T ) = −ab < ∞, so we

will use that as our stopping time. Thus, as Xn conditioned on A(x0, x1, · · · , xn−1) is

supported on at most two values, it is clear that we can find a sequence of monotone

increasing stopping times, T0 ≤ T1 ≤ T2 ≤ · · · such that B(Tn) is distributed as Xn

for each n, and E(Tn) = E(X2
n). Since Tn is a monotone increasing sequence, we

have Tn → T almost surely for some stopping time, T , and by monotone convergence

theorem

E(T ) = lim
n→∞

E(Tn) = lim
n→∞

E(X2
n) = E(X2)

then as B(Tn) converges in distribution to X from construction and converges almost

surely to B(T ) from the continuity of Brownian sample paths, we get the desired

result: B(T ) is distributed as X.
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5 Hartman-Wintner Law of Iterated Logarithm

Now we have all the necessary tools to prove Hartman-Wintner law of iterated loga-

rithm, which can be stated formally as following:

Theorem 5.1. If {Sn : n ∈ N} is a random walk such that increments, Sn − Sn−1

has zero mean and finite variance, σ2, then the following holds almost surely:

lim sup
n→∞

Sn√
2σ2n log log(n)

= 1

Proof. Having proved Skorokhod embedding theorem, the proof for this law is delight-

fully simple. Given the distribution of Sn+1 − Sn, we simply replace the sequence of

times {Tn} in Theorem 3.5 by the sequence of times {T ∗
n} such that B(T ∗

n+1)−B(T ∗
n)

each has the law of Sn, which exists by Skorokhod embedding theorem, then the

result naturally follows.
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