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1 Introduction

Simple random walk has been studied extensively in both the mathematics and statis-

tical physics literature. In [1], Júnior, et al. consider two independent simple random

walks coloring a circle of points, Z/nZ. One walk colors points red and the other

colors points blue. Once colored, a point does not change colors, i.e. the color of a

point is determined by the first random walk to reach it. Throughout the introduc-

tion, we ignore ties where the red walk and the blue walk reach a given point at the

same time.

Rather than coloring the circle, here we consider two independent simple random

walks coloring the lattice torus, Zd/nZd, d ≥ 3, in the same manner as [1]. Eventually,

all points of the torus will be colored and the question we face, regarding the coloring,

is: what does the torus look like? Our approach is to investigate the number of red

points minus the number of blue points on the lattice torus. Understanding the

distribution of this quantity is a step towards answering the posed question. The

main results presented here are nontrivial upper and lower bounds on the variance

of the number of red points minus the number of blue points on the colored lattice

torus.

Júnior, et al. do not directly address the difference in number of red points and

number of blue points in their paper [1], however they consider a related problem.

Using generating functions, Júnior et al. obtain an approximation to the probability

that a given site is colored red when the two walks start opposite each other on the
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circle. If the red walk starts from 0, the blue walk starts from n/2, and m is some

other point on the circle, then

P{m is colored red}

tends to a nonlinear but, according to experimental evidence, close to linear function

of λ = m/n as n →∞ and λ remains fixed.

Other quantities might reasonably be studied to help us better understand what

the torus looks like after it is colored. In [1], Júnior et al. offer empirical results on

the average number of red-blue interfaces when d = 1. (A red-blue interface is a pair

of neighboring points with one point colored red and the other colored blue.) Their

simulations indicate that when the two random walks start opposite each other on

the circle the average number of red-blue interfaces is 2.5. Moreover, Júnior et al.

suggest that the number of red-blue interfaces scales logarithmically with the ratio

n/a, where a is the distance between the initial position of the red walk and the

initial position of the blue walk, and that this relationship is nearly independent of

n. Júnior et al. give no analytical results regarding red-blue interfaces, citing that

the expressions involved are “cumbersome.” We will not address red-blue interfaces

any further in what follows.

1.1 Recoloring

In a different setting, we have two independent simple random walks coloring the

lattice torus red and blue, but each point is recolored whenever it is visited by a
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random walk (contrast with the above, where, once colored, a point is never recol-

ored). With recoloring, the current color of a point is determined by the most recent

random walk to have visited it. Furthermore, with recoloring, the colors of the torus

will never reach a final state and the question “what does the torus look like?” is

more ambiguous than above. The colors of the torus together with the position of the

random walks is a Markov chain on a finite state space and, thus, has a stationary

distribution. (See [3], for instance, for the elementary facts about stationary distri-

butions of Markov chains we shall require.) Assuming that points are recolored, an

appropriate question regarding the coloring of the torus is: what does the torus look

like under the stationary distribution?

At stationary, we may consider the random walks on the torus with recoloring

process as a bi-infinite Markov chain, that is, we may consider the process at times

−∞ < j < ∞. Under the stationary distribution, at time j = 0 (or at any fixed

time) the two random walks are uniformly and independently distributed on Zd/nZd

and the color of x ∈ Zd/nZd is red if it was most recently visited by the red walk

and blue otherwise. Equivalently, x is red at time j = 0 if and only if the time

reversal of the red walk on −∞ < j ≤ 0 reaches x before the time reversal of the blue

walk on −∞ < j ≤ 0. Since the time reversal of the red and blue simple random

walks on −∞ < j ≤ 0 are independent simple random walks, indexed in time by the

nonnegative integers, with initial positions uniformly and independently distributed

on Zd/nZd, we may take the view that x is red at time j = 0 if and only if it is
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reached by a red simple random walk before it is reached by an independent blue

walk. But this is the same way that the final color of x is determined when the torus

is colored without recoloring. It follows that the stationary distribution of colors on

the torus when points are recolored is the same as the final distribution of colors when

there is no recoloring and the two random walks’ initial positions are independent and

uniformly distributed on the torus. In the sequel, we will consider only the process

without recoloring.

1.2 Organization

The paper is organized as follows. First, an overview of simple random walk (SRW)

on Zd is provided. Our ultimate objective is to better understand two independent

SRWs on Zd/nZd, however, we take the point of view that SRW is occurring in Zd

and all events of interest can be described with reference to the cosets x + nZd.

When dealing with more than one SRW, parity is a concern. For instance, on

the circle Z/2nZ, two independent SRWs started at points with different parity will

never meet. To avoid this issue, we work with SRWs that take steps in continuous

time, according to independent exponential random variables. After explaining some

of the basics of discrete time SRWs, we prove a couple of results that are useful in

converting results for discrete time random walk into analogous results for continuous

time random walk.

Next, we introduce two independent continuous time SRWs and, finally, our
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bounds on the variance of the number of red sites minus the number of blue sites

on the colored lattice torus are established. Finding an upper bound on the variance

is (easily) reduced to bounding the probability that two points x, y ∈ Zd/nZd are the

same color minus the probability that x, y are different colors. At time 0, the red and

blue walks are started and some time later one of x, y is colored, say, for instance, that

x is colored red (and y remains uncolored). Then x, y are the same color if and only

if the red walk, starting from x, reaches y before the blue walk reaches y. Initially,

the red walk may have the advantage in reaching y before the blue walk. However,

after some length of time the red and the blue walks become “lost” and, if y has not

been colored before this time, then the two walks are equally likely to reach y first.

Making this idea precise and then using techniques found in Chapter 1 of [2] lead to

the desired upper bound.

To find a lower bound on the variance of the number of red sites minus the number

of blue sites, we isolate contributions to the variance that arise whenever one of the

two random walks neighbors an uncolored site of Zd/nZd. To prove the lower bound

we use a result proved in the course of obtaining the upper bound, namely, that there

is a significant probability that a walk neighboring an uncolored point gets lost before

reaching that point. Note that the upper and lower bounds proved in this paper do

not match.

In the discussion at the end of the paper, we mention how the arguments given

here can be modified to obtain an upper bound on the variance when d = 2. Also
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in the discussion, we briefly mention the conjectured rate that the variance of the

number of red sites minus the number of blue sites follows as n tends to infinity

(Pemantle, Peres and Revelle).

2 Notation

For x = (x1, ..., xd) ∈ Rd a superscript is used to denote the coordinates of x. Let

|x| = ||x||2 denote the Euclidean norm of x ∈ Rd, ||x||1 = |x1|+ · · ·+ |xd|, and

||x||∞ = max
1≤j≤d

|xj|.

Following the standard practice, if x, y ∈ R, then x ∧ y := min{x, y} and x ∨ y :=

max{x, y}. For x ∈ Zd, let [x] ∈ Zd/nZd denote the image of x in Zd/nZd, i.e. [x] is

the coset x + nZd.

We will frequently make use of standard asymptotic notation. For functions f, g :

Zd → R, we write f(x) ∼ g(x) if

f(x)

g(x)
→ 1 as |x| → ∞.

We write f(x) = O(g(x)) if there is a constant C > 0 such that

|f(x)| ≤ C|g(x)|

for all x ∈ Zd and we write f(x) ³ g(x) if there are constants c1, c2 > 0 such that

c1|g(x)| ≤ |f(x)| ≤ c2|g(x)|
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for all x ∈ Zd. Throughout we allow constants to depend on the dimension, d.

The setting is a probability space (Ω,F ,P) that is assumed to carry all of the

random variables and processes introduced below. All of the random variables and

processes considered here are standard and there are no significant existence issues.

We will sometimes use superscripts, for instance Px or Pr,b, to indicate the initial

point of a random walk or pair of random walks. It should be clear from the context

which processes the superscripts refer to and this convention will be further explained

as the need arises. The superscript may also appear when taking expectations as Ex

or Er,b, etc.

On one occasion we need the concept of the law of a stochastic process. We say

that two stochastic processes X(t), Y (t), 0 ≤ t < ∞, are equal in law, denoted

X(t)
L
= Y (t), if, for each finite sequence of numbers 0 ≤ t1, ..., tk < ∞ and Borel

subsets B1, ..., Bk ⊂ R, we have

P{X(t1) ∈ B1, ..., X(tk) ∈ Bk} = P{Y (t1) ∈ B1, ..., Y (tk) ∈ Bk}.

For further details, see [4].

3 Simple random walk

Let X1, X2, ... be iid with

P{Xj = e} =
1

2d
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provided e ∈ Zd and |e| = 1. Define the simple random walk Sk = (S1
k , ..., S

d
k) =

X0 + X1 + · · · + Xk where X0 = x ∈ Zd. A superscript in Px and Ex will indicate

X0 = x; take the absence of a superscript to mean X0 = 0. Observe that

E|Sk|2 = kE|X1|2 = k/d.

This simple calculation suggests that after k steps, the SRW Sk is displaced order

k1/2 units from its initial position. Refinements of this idea are relied on repeatedly

in the sequel.

3.1 Large deviations

Following notation in [2], define Cm = {z ∈ Zd; |z| < m} and for subsets A ⊂ Zd

define the boundary of A,

∂A = {z ∈ Ac ∩ Zd; |z − x| = 1 for some x ∈ A}.

Since

E
[|Sk+1|2

∣∣X1, ..., Xk

]
=

d∑
j=1

E
[
(Xj

k+1 + Sj
k)

2
∣∣X1, ..., Xk

]

= |Sk|2 + 1 + 2
d∑

j=1

Sj
kE

[
Xj

k+1

∣∣X1, ..., Xk

]

= |Sk|2 + 1,

|Sk|2 − k is a martingale with respect to Fk = σ(X1, ..., Xk), the σ-field generated by

X1, ..., Xk.
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Proposition 3.1. Let τm = inf{j ≥ 0; Sj ∈ ∂Cm}. Then

m2 ≤ Eτm < (m + 1)2.

If d = 1, then Eτm = m2.

Proof. Since |Sk|2− k is a martingale, so is |Sk∧τm|2− (k∧ τm) (see, for instance, [4]).

Thus,

E(k ∧ τm) = E|Sk∧τm|2.

Applying the monotone convergence theorem to the left side and the dominated con-

vergence theorem to the right side above, Eτm = E|Sτm |2. Since m2 ≤ |Sτm|2 <

(m + 1)2,

m2 ≤ Eτm < (m + 1)2.

Note that when d = 1, |Sτm|2 = m2 and the inequality on the left above is an

equality.

The main goal of this subsection is to use Chebyshev’s inequality to obtain large

deviations results for τm, defined in Proposition 3.1.

Lemma 3.2. Suppose d = 1. If x > 0 is an integer, then

Px{τm > a} ≤ Px−1{τm > a}.
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Proof. The proof is by induction on x. For x = 1,

P0{τm > a} =
1

2
P1{τm > a− 1}+

1

2
P−1{τm > a− 1}

= P1{τm > a− 1}

≥ P1{τm > a}.

For x > 1,

Px−1{τm > a} =
1

2
Px{τm > a− 1}+

1

2
Px−2{τm > a− 1}

≥ 1

2
Px{τm > a− 1}+

1

2
Px−1{τm > a− 1}

≥ 1

2
Px{τm > a}+

1

2
Px−1{τm > a},

which leads to

Px{τm > a} ≤ Px−1{τm > a}.

This completes the proof.

Corollary 3.3. Suppose d = 1. If x ∈ Z, then

Px{τm > a} ≤ P{τm > a}.

¤

Assuming d = 1, Chebyshev’s inequality and Proposition 3.1 imply

P{τm > 2m2} ≤ 1

2m2
Eτm =

1

2
.
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If a ≥ 2, then by Corollary 3.3,

P{τm > am2} =
∑
z∈Z

P{τm > (a− 2)m2, S(a−2)m2 = z}Pz{τm > 2m2}

≤ P{τm > (a− 2)m2}P{τm > 2m2}

≤ 1

2
P{τm > (a− 2)m2}

...

≤ 2−ba/2c. (3.1)

Proposition 3.4. There is a constant c > 0 such that

P{τm > am2} ≤ e−ca

for all integers a.

Proof. The inequality (3.1) gives the result for d = 1 immediately. For d > 1, observe

that if Sk ∈ Cm, then Sj
k ∈ (−m,m), j = 1, ..., d. Moreover, S1

k + · · · + Sd
k is a

one-dimensional SRW. Let τ ′m = inf{j ≥ 0; S1
j + · · ·+ Sd

j /∈ (−m,m)}. By the result

for d = 1,

P{τm > am2} ≤ P{τ ′dm > am2} ≤ e−ca/d2

.

Proposition 3.4 bounds the probability that a random walk remains in a ball of

radius m for am2 steps. In [2], Lemma 1.5.1, Lawler gives an upper bound on the

probability that a random walk leaves a ball of radius am in am2 steps, i.e. a bound

on P{τam ≤ am2}. The proof of this upper bound relies on the reflection principle

([2], Exercise 1.3.4) which is stated and proved below.
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Proposition 3.5 (reflection principle).

P{τm ≤ k} ≤ 2P{|Sk| ≥ m}.

Proof. By the Markov property,

P{τm ≤ k, |Sa| < m} =
k∑

j=0

∑

x∈∂Cm

P{τm = j, Sτm = x}P{|x + Sk−j| < m}.

Essentially by convexity,

P{|x + Sk−j| < m} ≤ P{|x + Sk−j| ≥ m}. (3.2)

Indeed, suppose that x, y ∈ Rd, |x| ≥ m, and |x + y| < m. If |x − y| < m, then

convexity of the open ball {z ∈ Rd; |z| < m} implies that |x| < m, a contradiction.

So we must have |x − y| ≥ m. Hence, |x + Sk−j| < m implies |x − Sk−j| ≥ m and

(3.2) follows.

Combining (3.1) and (3.2) gives

P{τm ≤ k, |Sk| < m} ≤ P{τm ≤ k, |Sk| ≥ m}.

Thus,

P{τm ≤ k} = P{τm ≤ k, |Sk| < m}+ P{τm ≤ k, |Sk| ≥ m}

≤ 2P{τm ≤ k, |Sk| ≥ m}

≤ 2P{|Sk| ≥ m}.
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A straightforward application of Chebyshev’s inequality now gives the bound men-

tioned above (details can be found in [2]).

Proposition 3.6. There is a constant c > 0 such that

P{τam ≤ am2} ≤ 2P{|Sam2| ≥ am} ≤ 2e−ca1/2

.

¤

3.2 Local results

This subsection contains two significant, well-known results about SRW: the local

central limit theorem and asymptotics of the Green’s function for SRW, d ≥ 3. These

and other related results can be found in [2], Chapter 1. Note that all arguments in

this section are due to Lawler, [2].

The parity of a point x ∈ Zd is defined to be the parity of ||x||1. For x ∈ Zd1 and

y ∈ Zd2 , we write x ↔ y if x and y have the same parity. Notice that P{Sk = x} = 0

if x = k.

Theorem 3.7 (local central limit theorem). If x ↔ k, then

∣∣∣∣∣P{Sk = x} − 2

(
d

2πk

)d/2

e−
d|x|2
2k

∣∣∣∣∣ ≤ O(k−(d+2)/2).

Heuristic. By the central limit theorem, if A ⊂ Rd is an open ball, then

lim
k→∞

∣∣∣∣∣P
{

Sk/
√

k ∈ A
}
−

∫

A

(
d

2π

)d/2

e−
d|u|2

2 du

∣∣∣∣∣ = 0.
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Since Sk takes value in Zd, if Sk/
√

k ∈ A, then, in fact, Sk/
√

k ∈ Ak = A ∩ k−1/2Zd.

Observe that Ak contains roughly kd/2m(A) points where m(A) is the Lebesgue mea-

sure of the open ball A. Moreover, since Sk can only occupy points with the same

parity as k, and about half the points of k1/2Ak have the same parity as k, Sk/
√

k ∈ A

implies that Sk/
√

k occupies one of roughly 1
2
kd/2m(A) possible points in Ak. If we

assume that k is so large that Sk/
√

k is close to evenly distributed over these points

and if we take A to be small enough that e−
d|u|2

2 is roughly constant over u ∈ A, then

it is reasonable to suppose that

P
{

Sk/
√

k = x/
√

k
}
≈ 2

(
d

2πk

)d/2

e−
d|x|2
2k

for x/
√

k ∈ Ak and x ↔ k.

The above heuristic is appealing, but proving the local central limit theorem

requires considerably more work than the heuristic suggests. The proof involves a

careful analysis of the characteristic function of Sk. A sketch of the proof is provided

below.

Sketch proof of Theorem 3.7. For θ = (θ1, ..., θd) ∈ Rd, define

φ(θ) = EeiX1·θ =
1

d

d∑
j=1

cos θj,

the characteristic function of X1. Then φ(θ)k is the characteristic function of Sk.

Multiplying both sides of the equation

∑

z∈Zd

P{Sk = z}eiz·θ = φ(θ)k
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by e−ix·θ and integrating θ over [−π, π]d gives,

P{Sk = x} = (2π)−d

∫

[−π,π]d
e−ix·θφ(θ)k dθ. (3.3)

Note that if θ ∈ {±(π, ..., π), 0}, then |φ(θ)| = 1 and if θ is away from the three

points {±(π, ..., π), 0}, then φ(θ)k decreases exponentially in k. Hence, the main

contribution in (3.3) comes from integrating near ±(π, ..., π) and 0. By symmetry,

we need only consider the integral near 0 (and not ±(π, ..., π)). Indeed, let A =

[−π/2, π/2]× [−π, π]d−1. Since k ↔ x,

e−ix·θφ(θ)k = e−ix·(θ+(π,...,π))φ(θ + (π, ..., π)).

Using this fact, one easily checks that

∫

[−π,π]d
e−ix·θφ(θ)k dθ = 2

∫

A

e−ix·θφ(θ)k dθ.

Choosing r ∈ (0, π/2) judiciously, we find ρ < 1 such that

∫

A

e−ix·θφ(θ)k dθ =

∫

|θ|≤r

e−ix·θφ(θ)k dθ + O(ρk)

= k−d/2

∫

|α|≤r
√

k

exp

(
−ix · α√

k

)
φ(α/

√
k)k dα + O(ρk)

where the second equality follows after making the substitution α =
√

kθ. Thus,

P{Sk = x} = 2(2π
√

k)−d

∫

|α|≤r
√

k

exp

(
−ix · α√

k

)
φ(α/

√
k)k dα + O(ρk). (3.4)

The integral above can be decomposed as follows:

∫

|α|≤r
√

k

exp

(
−ix · α√

k

)
φ(α/

√
k)k dα =

3∑
j=0

Ij(k, x), (3.5)
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where

I0(k, x) =

∫

Rd

exp

(
−ix · α√

k

)
exp

(
−|α|

2

2d

)
dα = (2πd)d/2e−

d|x|2
2k ,

I1(k, x) =

∫

|α|≤k1/4

[
φ(α/

√
k)k − exp

(
−|α|

2

2d

)]
exp

(
−ix · α√

k

)
dα,

I2(k, x) = −
∫

|α|≥k1/4

exp

(
−ix · α√

k

)
exp

(
−|α|

2

2d

)
dα,

I3(k, x) =

∫

k1/4≤|a|≤rk1/2

exp

(
−ix · α√

k

)
φ(α/

√
k)k dα.

Though it requires some care, it is straightforward to show that

I1(k, x) = O(k−1)

and that there is a constant c > 0 such that I2(k, x), I3(k, x) = O(exp(−ck1/2)).

Combining this with (3.4) and (3.5) gives the Theorem.

When d ≥ 3, SRW is transient and the Green’s function

G(x, y) = Ex

[ ∞∑

k=0

I{Sk = y}
]

=
∞∑

k=0

Px{Sk = y}

is finite. To simplify notation, we sometimes write G(x) = G(0, x). The local central

limit theorem leads to approximations for G(x) and related quantities that will be

useful in the sequel.

Theorem 3.8. Suppose d ≥ 3. For x ∈ Zd,

G(x) ∼ ad|x|2−d

where ad = d
2
Γ

(
d
2
− 1

)
π−d/2 = 2

(d−2)ωd
and ωd is the volume of the d-dimensional

|| · ||2-unit ball.
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Sketch proof. Assume x ↔ 0 and fix some small positive ε. Using Proposition 3.6 to

approximate terms of G(x) with k ≤ |x|2−ε and the local central limit theorem to

approximate terms with k > |x|2−ε, one finds

G(x) =
∞∑

k=0

P{S2k = x} ∼
∞∑

k=0

2

(
d

4πk

)d/2

e−
d|x|2
4k .

Hence, making the change of variables v = d|x|2
4u

in the integral below,

G(x) ∼
∞∑

k=0

2

(
d

4πk

)d/2

e−
d|x|2
4k ∼

∫ ∞

0

2

(
d

4πu

)d/2

e−
d|x|2
4u du = ad|x|2−d.

To handle the case x = 0, first note that when x 6= 0,

G(x) =
∞∑

k=0

P{Sk = x} =
∞∑

k=1

1

2d

∑

|e|=1

P{Sk−1 = x} =
1

2d

∑

|e|=1

G(x + e)

(we say that G is harmonic on Zd \ {0}). If x = 0, then harmonicity of G and the

result for x ↔ 0 imply

G(x) =
1

2d

∑

|e|=1

G(x + e) ∼ ad|x|2−d.

Proposition 3.9. Suppose d ≥ 3 and x ∈ Cm. Define τ 0
m = inf{j ≥ 0; Sj ∈

∂Cm ∪ {0}}. Then

Px{Sτ0
m

= 0} =
G(x)

G(0)
+ O(m2−d).
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Proof. Let τ 0 = inf{j ≥ 0; Sj = 0}. Using the fact that G is harmonic on Zd \ {0},

Ex[G(S(k+1)∧τ0)|Fk] = I{τ 0 ≤ k}G(0) + Ex[G(Sk+1)I{τ 0 > k}|Fk]

= I{τ 0 ≤ k}G(0) + I{τ 0 > k}ESk [G(S1)]

= I{τ 0 ≤ k}G(0) + I{τ 0 > k} 1

2d

∑

|e|=1

G(Sk + e)

= I{τ 0 ≤ k}G(0) + I{τ 0 > k}G(Sk)

= G(Sk∧τ0).

Thus, G(Sk∧τ0) is a bounded martingale and, consequently, Mk = G(Sk∧τ0
m
) is also a

bounded martingale.

Since G(Sk∧τ0
m
) is a martingale, G(x) = Ex[G(Sk∧τ0

m
)]. Taking k →∞ gives

G(x) = Ex[G(Sτ0
m
)] = G(0)Px{Sτ0

m
= 0}+ Ex[G(Sτ0

m
)|Sτ0

m
∈ ∂Cm]Px{Sτ0

m
∈ ∂Cm}.

Rearranging above and using Theorem 3.8,

Px{Sτ0
m

= 0} =
G(x)− Ex[G(Sτ0

m
)|Sτ0

m
∈ ∂Cm]

G(0)− Ex[G(Sτ0
m
)|Sτ0

m
∈ ∂Cm]

=
G(x)

G(0)
+ O(m2−d).

3.3 SRW in continuous time

In the previous subsection we saw that parity is an issue for SRW on Zd. To avoid

this issue in the sequel, we consider simple random walks in continuous time.

Let X1,±(t), ..., Xd,±(t) be 2d independent rate λ/2d Poisson processes. Let ej ∈

Rd be the unit vector with a one in the j-th coordinate, j = 1, ..., d. Define the rate
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λ continuous time SRW

S(t) = X(0) +
d∑

j=1

[
Xj,+(t)−Xj,−(t)

]
ej

where X(0) = x ∈ Zd. Note that S(t) is a rate λ compound Poisson process.

Dealing with continuous time SRW allows us to sidestep some problems with par-

ity, however we need to develop some tools that will allow us relate results for discrete

time SRW to continuous time SRW. First recall the fact about Poisson processes:

Proposition 3.10. Let N(t) be a rate λ Poisson process. Define ξ0 = 0 and for

j ≥ 1 define ξj = inf{t ≥ ξj−1; N(t) 6= N(ξj−1)}. Then ξj − ξj−1, j = 1, 2, ...

are independent mean 1/λ exponential random variables (ξj − ξj−1 is called the j-th

inter-arrival time).

¤

Our primary tool is a large deviations result for sums of independent exponential

random variables.

Lemma 3.11. Suppose that Zj is a sum of j ≥ 1 independent mean 1/λ exponential

random variables and that z > 0. If λ > 1, then

P{Zj > z} ≤
(

λ

λ− 1

)j

e−z.

If λ > 0, then

P{Zj < z} ≤
(

λ

λ + 1

)j

ez.
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Proof. The random variable Zj has a gamma distribution with density

fj(t) =
λj

(j − 1)!
tj−1e−λt, t > 0.

By Chebyshev’s inequality,

P{Zj > z} ≤ e−zEeZj =

(
λ

λ− 1

)j

e−z.

This is the first inequality. The second inequality is obtained similarly:

P{Zj < z} ≤ ezEe−Zj =

(
λ

λ + 1

)j

ez.

Proposition 3.12. Let Zj be as in Lemma 3.11. Let ε > 0. There is c = c(ε) > 0

such that

P{|Zj − j/λ| > εj/λ} ≤ e−cj.

Proof. Note that λZj/µ is a sum of j independent mean 1/µ random variables. From

Lemma 3.11,

P{Zj > (1 + ε)j/λ} = P{λZj/µ > (1 + ε)j/µ} ≤
(

µ

µ− 1

)j

e−(1+ε)j/µ

and

P{Zj < (1− ε)j/λ} = P{λZj/µ < (1− ε)j/µ} ≤
(

µ

µ + 1

)j

e(1−ε)j/µ.

The proposition is a consequence of the fact that (1 + ε)/µ − log µ
µ−1

> 0 and (1 −

ε)/µ + log µ
µ+1

< 0 for µ sufficiently large.
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4 Two SRWs

We consider two independent continuous time SRWs coloring points on the integer

torus Zd/nZd. To begin, let R(t), B(t) be independent rate λ continuous time simple

random walks on Zd. Let Rj(t), Bj(t) denote the j-th coordinate of R(t), B(t),

respectively, j = 1, ..., d. The superscripts in Pr,b and Er,b indicate that R(0) = r,

B(0) = b. Define S(t) = (S1(t), ..., Sd(t)) = R(t)−B(t) and notice that S(t) is a rate

2λ continuous time SRW.

By considering the image of each walk R(t), B(t) in Zd/nZd we can view R(t),

B(t) as simple random walks on Zd/nZd. We imagine that R(t) colors sites in Zd/nZd

red, B(t) colors sites in Zd/nZd blue, and, once colored, a site can not change colors.

To make this more precise, for x ∈ Zd, define

ρx = inf{t ≥ 0; R(t) ∈ [x]} and βx = inf{t ≥ 0; B(t) ∈ [x]}.

(Recall that [x] ∈ Zd/nZd is the coset x + nZd.) Let

R(t) = {[x] ∈ Zd/nZd; ρx ≤ βx, ρx ≤ t}

be the collection of points in Zd/nZd that are red at time t and let

B(t) = {[x] ∈ Zd/nZd; βx ≤ ρx, βx ≤ t}

be the collection of points that are blue at time t. Set R = R(∞) and B = B(∞).

Clearly, R ∪B = Zd/nZd and R ∩B = ∅ almost surely.

We are primarily interested in the random variable

∆ = #R −#B.
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Using symmetry, the expectation of ∆ is easily computed:

Er,b∆ =
∑

[x]∈Zd/nZd

Pr,b {ρx ≤ βx} −Pr,b {βx ≤ ρx}

=
∑

[x]∈Zd/nZd

Pr,b {ρ−x+r+b ≤ β−x+r+b} −Pr,b {βx ≤ ρx}

=
∑

[x]∈Zd/nZd

P0,0 {ρb−x ≤ βr−x} −P0,0 {βx−b ≤ ρx−r}

= 0.

Clearly, Er,b∆2 ≤ n2d. The main results are nontrivial bounds on the variance Er,s∆2.

4.1 An upper bound

The goal of this section is to prove the following result.

Theorem 4.1. Suppose d ≥ 3. Then

Er,b∆2 = O(nd+2).

Using the Markov property, proving Theorem 4.1 is reduced to determining which

walk, R(t) or B(t), reaches a point [x] ∈ Zd/nZd first, given the initial positions

R(t) = r and B(t) = b. Indeed, expanding,

Er,b∆2 =
∑

[x],[y]∈Zd/nZd

Pr,b{[x], [y] are the same color}

−Pr,b{[x], [y] are different colors} (4.1)

where

{[x], [y] are the same color} = {[x], [y] ∈ R} ∪ {[x], [y] ∈ B}
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and

{[x], [y] are different colors} = {[x] ∈ R, [y] ∈ B} ∪ {[y] ∈ R, [x] ∈ B}.

For x, y ∈ Zd define ηx,y = ρx ∧ βx ∧ ρy ∧ βy to be the first time x or y is colored.

Then, by the Markov property,

Pr,b{[x], [y] are the same color|ηx,y = ρx}

= Er,b
[
Px,B(ηx,y){ρy ≤ βy}

∣∣ηx,y = ρx

] (4.2)

and

Pr,b{[x], [y] are different colors|ηx,y = ρx}

= Er,b
[
Px,B(ηx,y){βy ≤ ρy}

∣∣ηx,y = ρx

]
.

(4.3)

Similar equations hold when we condition on ηx,y = βx, ρy, or βy. By bounding terms

like

Pr,b{ρx ≤ βx} −Pr,b{βx ≤ ρx} = Pr,b{[x] is red} −Pr,b{[x] is blue} (4.4)

and using equations (4.2) and (4.3) we will obtain the desired bound on Er,b∆2.

Define σj = inf{t ≥ 0; Sj(t) ∈ [0]}, j = 1, ..., d and define σ = σ1 ∨ · · · ∨ σ2. The

following proposition makes precise the idea that if neither the red walk nor the blue

walk hits the point x quickly, then the two SRWs are equally likely to hit x first. It

is useful in bounding (4.4).

Proposition 4.2. If r, b, x ∈ Zd, then

Pr,b{σ ≤ ρx ≤ βx} = Pr,b{σ ≤ βx ≤ ρx}.
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Proof. Define the processes Ř(t) = (Ř1(t), ..., Řd(t)), B̌(t) = (B̌1(t), ..., B̌d(t)) ∈ Zd

by

Řj(t) = Rj(t ∧ σj) +
(
Bj(t ∨ σj)−Bj(σj)

)
,

B̌j(t) = Bj(t ∧ σi) +
(
Rj(t ∨ σj)−Rj(σj)

)
,

j = 1, ..., d. By comparing the inter-arrival times of the processes R(t), B(t), Ř(t), B̌(t)

one finds that [Ř(t)] and [B̌(t)] are independent compound Poisson processes with

([Ř(t)], [B̌(t)])
L
= ([R(t)], [B(t)]). Let ρ̌x, β̌x, σ̌ be stopping times for the processes

Ř(t), B̌(t) corresponding to ρx, βx, σ. Then σ̌ = σ and

{σ̌ ≤ ρ̌x ≤ β̌x} = {σ ≤ βx ≤ ρx}.

It follows that

Pr,b{σ ≤ ρx ≤ βx} = Pr,b{σ̌ ≤ ρ̌x ≤ b̌x} = Pr,b{σ ≤ βx ≤ ρx}.

Applying Proposition 4.2 to (4.4) gives

Pr,b{ρx ≤ βx} −Pr,b{βx ≤ ρx} = Pr,b{ρx ≤ βx, ρx < σ}

−Pr,b{βx ≤ ρx, βx < σ}

≤ Pr,b{ρx < σ}. (4.5)

We work towards bounding Pr,b{ρx < σ}.
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Lemma 4.3. There is a constant c > 0 such that

Pr,b{σ > kn2} = O(e−ck).

Proof. Observe that

Pr,b{σ > kn2} ≤
d∑

j=1

Pr,b{σj > kn2}.

Thus, to prove the lemma it suffices to show that Px,y{σ1 > kn2} = O(e−kj). We

proved an analogous result for discrete time SRW in Proposition 3.4 and, after dis-

cretizing S1(t), we make use of it presently.

Define ξ0 = 0 and, for j = 1, 2... define ξj = inf{t ≥ ξj−1; S1(t) 6= S1(ξj−1)}.

Let Sj = S1(ξj) and let τn = inf{j ≥ 0; Sj /∈ (−n, n)}. Then S1(t) is a rate λ/d

compound Poisson process and Sj is a discrete time SRW. Furthermore,

σ1 ≤
τn∑

j=0

ξj.

By Propositions 3.4 and 3.12,

Pr,b{σ1 > kn2} ≤ Pr,b

{
τ∑

j=0

ξj > kn2

}

≤ Pr,b




bλkn2/(2d)c∑

j=0

ξj > kn2



 + Pr,b{τ > bλkn2/(2d)c}

= O(e−ck)

for some constant c > 0.

Proposition 3.6 concerns discrete time SRW and || · ||2-balls. We adapt this result

to fit a slightly different situation: continuous time SRW and || · ||∞-balls. Define

Bm = {z ∈ Zd; ||z||∞ < m} and νk = inf{t ≥ 0; R(t) ∈ ∂Bkn+n/2}.
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Lemma 4.4. If |r| ≤ n/2, then there is a constant c > 0 such that

Pr,b{νk ≤ kn2} = O(exp(−ck1/2)).

Proof. The stopping time νk is analogous to the discrete stopping time τm considered

above and the present proof is similar to that of the previous lemma: we discretize

R(t) and apply Propositions 3.6 and 3.12. The only new ingredient is our reliance on

the equivalence of the || · ||∞ and || · ||2 norms in Rd.

Take c0 > 0, a constant such that c0||x||∞ ≤ ||x||2 for all x ∈ Zd. Let ξ0 = 0

and, for j = 1, 2, ... let ξj = inf{t ≥ ξj−1; R(t) 6= R(ξj−1)}. Let Rj = R(ξj) and let

τk = inf{j ≥ 0; Rj ∈ ∂Cc0(kn+n/2)}. Then, using Propositions 3.6 and 3.12,

Pr,b{νk ≤ kn2} ≤ Pr,b

{
τk∑

j=0

ξj ≤ kn2

}

≤ Pr,b




b2λkn2/dc∑

j=0

ξj ≤ kn2



 + Pr,b{τk ≤ 2λkn2/d}

= O(exp(−ck1/2))

for some constant c > 0.

With the two previous lemmas in hand, we can bound Pr,b{ρx < σ}.

Proposition 4.5. Suppose d ≥ 3. Let r, b ∈ Zd, ||r||∞ ≤ n/2. Then

Pr,b{ρ0 < σ} =
G(r)

G(0)
+ O(n2−d) = O(|r|2−d). (4.6)

Proof. We have

Pr,b{ρ0 < σ} = Pr,b{ρ0 < σ, ρ0 < ν0}+
∞∑

k=0

Pr,b{ρ0 < σ, νk ≤ ρ0 < νk+1}. (4.7)
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We estimate the terms on the right side above. Since nZd ∩Bn/2 = {0}, Proposition

3.9 gives

Pr,b{ρ0 < σ, ρ0 < ν0} ≤ Pr,b{ρ0 < ν0} ≤ G(r)

G(0)
+ O(n2−d). (4.8)

Let ρ
(k)
0 = inf{t ≥ 0; R(t) ∈ nZd∩Bkn+n/2}. To estimate the terms Pr,b{ρ0 < σ, νk ≤

ρ0 < νk+1}, first note that

Pr,b{ρ0 < σ, νk ≤ ρ0 < νk+1} ≤ Pr,b{νk < σ, νk ≤ ρ0 < νk+1}

≤ Pr,b{νk < σ, νk ≤ ρ
(k+1)
0 < ∞} (4.9)

and

#(nZd ∩Bkn+n/2) = O(kd).

From the definition of νk,

|R(νk)− nx| ≥ n/4.

for all x ∈ Zd. By the Markov property and Theorem 3.8

Pr,b{νk < σ, νk ≤ ρ
(k+1)
0 < ∞} ≤ Pr,b{νk < σ}

∑

z∈nZd∩B(k+1)n+n/2

G(R(νk), z)

= n2−dPr,b{νk < σ}O(kd). (4.10)

Applying Lemmas 4.3 and 4.4,

Pr,b{νk < σ} ≤ Pr,b{νk ≤ jn2}+ Pr,b{kn2 < σ2} = O(exp(−ck1/2)).

Combining this with (4.9) and (4.10) gives

Pr,b{ρ0 < σ, νk ≤ ρ0 < νk+1} ≤ Pr,b{νk < σ, νk ≤ ρ
(k+1)
0 < ∞}

= n2−dO(kd exp(−ck1/2)).
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Note we can sum over k above; (4.7) and (4.8) give the first equality in (4.6), the

second equality follows from Theorem 3.8.

The previous proposition contains the bulk of Theorem 4.1. An elementary cal-

culation is all that is left.

Proof of Theorem 4.1. Suppose that x 6= y and ||x||∞, ||y||∞ ≤ n/2. By (4.2), (4.3),

(4.5), and Proposition 4.5,

Pr,b{[x], [y] are the same color} −Pr,b{[x], [y] are different colors} = O(|x− y|2−d).

By equivalence of norms and (4.1),

Er,b∆2 = O


 ∑

x,y∈Bn/2, x6=y

||x− y||2−d
∞


 + O(nd).

To approximate the sum above, note that for fixed y ∈ Bn/2,

∑

x∈Bn/2\{y}
||x− y||2−d

∞ ≤
∑

x∈Bn\{0}
||x||2−d

∞ .

Thus,

∑

x,y∈Bn/2, x 6=y

||x− y||2−d
∞ = O


nd

∑

x∈Bn\{0}
||x||2−d

∞




= O

(
nd

n∑

k=1

j

)

= O(nd+2).

The proposition follows.
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4.2 A lower bound

Suppose that rather than coloring points of Zd/nZd by random walks, we flip inde-

pendent fair coins to determine the color of each point of Zd/nZd. That is, suppose

that a site x ∈ Zd/nZd is colored red with probability 1/2 and blue with probability

1/2, independent of all other sites. Then it is easily seen that the variance of the

number of red sites minus the number of blue sites is nd. Using Proposition 4.5 we

will prove that the variance Er,b∆2 is, up to a constant multiple, at least the variance

of the number of red sites minus the number of blue sites when colors are determined

by coin flips.

Theorem 4.6. Suppose d ≥ 3. There is a constant c > 0 such that

Erb∆2 ≥ cnd.

To prove Theorem 4.6 we consider instances where one of the two random walks

neighbors an uncolored site. Let

U (t) = (Zd/nZd) \ (R(t) ∪B(t)),
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be the collection of uncolored points at time t and define the following stopping times:

η0 = 0,

ξ
(0)
1 = inf{t ≥ 0; S(t) 6= S(0)},

ξ
(0)
2 = inf{t ≥ ξ

(0)
1 ; S(t) 6= S(ξ

(0)
1 )},

...

ηj = inf{t ≥ ξ
(j−1)
2 ; [R(t)] ∈ ∂U (t) or [B(t)] ∈ ∂U (t)},

ξ
(j)
1 = inf{t ≥ ηj; S(t) 6= S(ηj)},

ξ
(j)
2 = inf{t ≥ ξ

(j)
1 ; S(t) 6= S(ξ

(j)
1 )}

...

Define the event

Aj =
{

R(ηj) = R(ξ
(j)
2 ) and B(ηj) = B(ξ

(j)
2 )

}
∩

{
U (ηj) 6= U (ξ

(j)
2 )

}
∩ {ηj < ∞}

for j = 0, 1, ... In words, ηj is a time when one of the walks R(t) or B(t) neighbor

an uncolored site and Aj is the event that in the two steps immediately following ηj,

one of the walks jumps to an uncolored site (thus, coloring the site) and then jumps

back to its previous position. Also define the martingale

M(t) = Er,b[∆|Ft]

where Ft = σ(R(t), B(t); 0 ≤ s ≤ t).

Observe that if j ≤ nd/2, then ηj < ∞ and

Pr,b{Aj} ≥ 1

16d2
. (4.11)
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By (4.5) and Proposition 4.5, when d ≥ 3 and j ≤ nd/2,

[
M(ξ

(j)
2 )−M(ηj)

]2

≥
[
M(ξ

(j)
2 )−M(ηj)

]2

I{Aj}

=

(
1− G(e)

G(0)
+ O(n2−d)

)2

I{Aj} (4.12)

where e ∈ Zd, |e| = 1. (In fact, both (4.11) and (4.12) hold whenever ηj < ∞.)

The inequalities (4.11) and (4.12) are key to proving Theorem 4.6. The other main

ingredient is the following lemma.

Lemma 4.7.

Er,b∆2 ≥ Er,b

[ ∞∑
j=0

(
M(ξ

(j)
2 )−M(ηj)

)2
]

.

Proof. The Lemma is a consequence of the optional sampling theorem ([4], Theorem

77.5), however, some care is required to justify the interchange of limits along the

way.

By Jensen’s inequality,

Er,bM(t)2 ≤ Er,b∆2 ≤ nd+2.

Hence, standard martingale convergence theorems imply that

lim
t→∞

M(t) = ∆ a.s. and in L2

and, consequently,

Er,b∆2 = lim
t→∞

Er,bM(t)2. (4.13)

The next step is to look more closely at M(t) and Er,bM(t)2. For j ≥ 0, define

Dj(t) = M(t ∧ ηj+1)−M(t ∧ ηj).
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Then

M(t) =
∞∑

j=0

Dj(t)

and

Er,bM(t)2 = Er,b

[ ∞∑
j=0

Dj(t)

]2

= Er,b

[ ∞∑

j,k=0

Dj(t)Dk(t)

]
. (4.14)

By Lemma 3.11, there is ρ ∈ (0, 1) such that

Pr,b{Dj(t) 6= 0} ≤ Pr,b{ηj+1 ≤ t} ≤ etO(ρj)

Since |Dj(t)| ≤ 2nd and
∑∞

j,k=0 ρj+k < ∞, we can apply the dominated convergence

theorem on the right side of (4.14) and get

Er,bM(t)2 =
∞∑

j,k=0

Er,b [Dj(t)Dk(t)] . (4.15)

By the optional sampling theorem, if j < k, then

Er,b [Dj(t)Dk(t)] = Er,b
{
Dj(t)E

r,b[Dk(t)|Fηk
]
}

= 0.

Again by the optional sampling theorem,

Er,b
[(

M(t ∧ ηj+1)−M(t ∧ ξ
(j)
2 )

)(
M(t ∧ ξ

(j)
2 )−M(t ∧ ηj)

)]
= 0,

hence,

Er,bDj(t)
2 = Er,b

[
M(t ∧ ηj+1)−M(t ∧ ξ

(j)
2 )

]2

+ Er,b
[
M(t ∧ ξ

(j)
2 )−M(t ∧ ηj)

]2

.
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Now using (4.13), (4.15) and Fatou’s lemma,

Er,b∆2 = lim
t→∞

∞∑
j=0

Er,b
[
M(t ∧ ηj+1)−M(t ∧ ξ

(j)
2 )

]2

+Er,b
[
M(t ∧ ξ

(j)
2 )−M(t ∧ ηj)

]2

≥
∞∑

j=0

Er,b
[
M(ηj+1)−M(ξ

(j)
2 )

]2

+ Er,b
[
M(ξ

(j)
2 )−M(ηj)

]2

≥
∞∑

j=0

Er,b
[
M(ξ

(j)
2 )−M(ηj)

]2

= Er,b

[ ∞∑
j=0

(
M(ξ

(j)
2 )−M(ηj)

)2
]

.

Proof of Theorem 4.6. We bound

Er,b

[ ∞∑
j=0

(
M(ξ

(j)
2 )−M(ηj)

)2
]

from below. By (4.11) and (4.12),

Er,b

[ ∞∑
j=0

(
M(ξ

(j)
2 )−M(ηj)

)2
]

≥
∑

0≤j≤nd/2

Er,b
[
M(ξ

(j)
2 )−M(ηj)

]2

≥
∑

0≤j≤nd/2

(
1− G(e)

G(0)
+ O(n2−d)

)2

Pr,b{Aj}

≥
(

1− G(e)

G(0)
+ O(n2−d)

)2
nd

32d2

≥ cnd

for some constant c > 0. The Theorem follows from Lemma 4.7.
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5 Discussion

5.1 d = 2

When d = 2, simple random walk on Zd is recurrent, hence the Green’s function

is infinite, and, at a glance, the proofs leading to an upper bound on the variance

of the number of red points minus the number of blue points on Zd/nZd do not

work. However, examining the proof of Theorem 4.1, it’s clear that we need not

make reference to the Green’s function and the proof goes through provided that we

understand asymptotics of Px{Sτ0
m

= 0} (Proposition 3.9). Lawler, [2] Proposition

1.6.7 is a relevant result:

Proposition. Suppose d = 2 and x ∈ Cm. Then

Px{Sτ0
m

= 0} =
log n− log |x|

log n
+ O((log n)−1).

Using the above proposition in place of Proposition 3.9, we can essentially mimic the

proof of Theorem 4.1 to get, for d = 2,

Er,b∆2 = O(n4/(log n)).

5.2 The conjectured rate

When d ≥ 3, Theorems 4.1 and 4.6 imply that there are positive constants c and C

such that

cnd ≤ Er,b∆2 ≤ Cnd+2.



35

It has been conjectured in personal communications between Pemantle, Peres, and

Revelle that

Er,b∆2 ³





n4/(log n) if d = 2,

n4 if d = 3,

n4 log n if d = 4,

nd if d ≥ 5.

If we consider the process of coloring the torus in blocks of n2 time steps, then sites

colored in different blocks are roughly independent. It is thought that considering

the variance arising from sites colored within each of these time blocks will lead to

the conjectured rates.
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