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ABSTRACT

SHARP THRESHOLDS FOR THE FROG MODEL

AND RELATED SYSTEMS

Joshua B. Rosenberg

Robin Pemantle

The frog model refers to a system of interacting random walks on a rooted graph. It

begins with a single active particle (i.e. frog) at the root, and some distribution of inactive

particles among the non-root vertices. Active particles perform discrete-time-nearest neigh-

bor random walks on the graph and activate passive particles upon landing on them. Once

activated, the trajectories of distinct particles are independent. In this thesis, we examine

the frog model in several different environments, and in each case, work towards identifying

conditions under which the model is recurrent, transient, or neither, in terms of the number

of distinct frogs that return to the root. We begin by looking at a continuous analog of the

model on R in chapter 2, following which I analyze several different models on Z in chapters

2 and 3. I then conclude by examining the frog model on trees in chapter 4. The strategy

used for analyzing the model on R primarily revolves around looking at a closely related

birth-death process. Somewhat similar techniques are then used for the model on Z. For

the frog model on trees I exploit some of the self-similarity properties of the model in order

to construct an operator which is used to analyze its long term behaviour, as it relates to

questions of recurrence vs. transience.
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Chapter 1

Introduction

1.1 Definitions and background on the frog model

The topic of this thesis is a derivative of activated random walk known as the frog model.

Since its inception, the term frog model has referred to a system of interacting random

walks on a rooted graph. Specifically, it begins with one active “frog” (i.e. particle) at

the root and sleeping frogs distributed among the non-root vertices, where the number of

sleeping frogs at each non-root vertex are independent random variables (not necessarily

identically distributed). The active frog performs a discrete-time nearest neighbor random

walk on the graph. Any time an active frog lands on a vertex containing a sleeping frog,

the sleeping frog wakes up and begins performing its own discrete-time nearest neighbor

random walk independent of those of the other active frogs.

Much of the existing research that has been done involving the frog model on various

infinite rooted graphs has focused on distinguishing conditions under which the model is

recurrent (meaning that infinitely many particles return to the root with probability 1)

1



from conditions under which it is transient. In the first published result to address this

topic [14], Telcs and Wormald showed that for every d ≥ 1 the frog model on Zd beginning

with one sleeping frog per non-root vertex (and where active frogs perform simple random

walks) is recurrent. More recent variations of the frog model that have been studied have

included the frog model with drift on Z [5, 2], the frog model on trees [6, 7], and continuous

analogs of the frog model on Rd [1]. In each of these cases as well, primary emphasis has

been placed on analyzing the long term behavior of the model as it pertains to questions of

recurrence vs. transience, and in some cases, on identifying the critical threshold values of

certain parameters where the model transitions between these two states.

One way the frog model can be interpreted is as an activated random walk model in

which the particle deactivation rate is 0. Interest in activated random walk models has

appeared to grow in recent years in reaction to progress on a number of different models,

several of which are featured in recent work by Leonardo T. Rolla [9]. Applications for these

models can be found in both the biological and social sciences, where they have been used

to model the spread of an infectious disease, and the propagation of information. They’ve

also been used as conservative lattice gas models, and in a variety of contexts in physics

literature (see [3]).

The fact that the frog model differs from all other activated random walk models in

that active particles never deactivate, endows it with its own qualitatively distinct dynam-

ics. In particular, the frog model stands out within this larger family of models in that

time functions as a dummy variable. By this I mean that when it comes to questions of

recurrence and transience for the frog model, all of the relevant information relates to the

paths traversed by activated particles, rather than the relative times at which the movement

2



of different particles occurs. While this distinctive feature of the frog model can present its

own set of challenges, it also allows for a certain amount of freedom and flexibility compared

to other activated random walk models. In fact it is this very freedom to permute, or simply

diregard the order of events, that is behind many of the techniques that are used in the

analysis of the frog model in both this work, as well as the wider literature.

1.2 Intro: Part II

1.2.1 The Gantert and Schmidt model

The results in this thesis come from three papers written by the author [10, 11, 12]. Each

of these papers examines the frog model in a distinct context, and each one forms the basis

for one of the chapters 2-4. In chapter 2, which is based on the results in [10], two related

models are analyzed. The first is a continuous analog of the frog model situated on the real

line, and the second is a discretized counterpart to this model situated on Z. The inspiration

for looking at each of these models came from [5], which addresses a particular version of

the frog model in which activated frogs perform random walks with some positive leftward

drift on the integers, and the numbers of sleeping frogs at each vertex (aside from the origin

which begins with a single activated frog) are i.i.d. random variables. In [5] Nina Gantert

and Philipp Schmidt establish tight conditions on the distribution function for the number

of sleeping frogs per vertex, that determine whether the system is recurrent or transient.

Specifically, they prove that if η refers to a nonnegative integer valued random variable that
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has the same distribution as the number of sleeping frogs at any nonzero vertex, then

Pη(the origin is visited i.o.) =


0 if E[log+η] <∞

1 if E[log+η] =∞
(1.2.1)

(Note that this result does not depend on the particular value of the leftward drift. It is

only required that the leftward drift be positive).

1.2.2 The continuous model on R

The continuous frog model analog featured in chapter 2 starts with a single active frog

at the origin on the real line that begins performing Brownian motion with leftward drift

λ > 0. The sleeping frogs all reside to the right of the origin according to a Poisson

process with intensity f : [0,∞)→ [0,∞). Any time an active frog hits a sleeping frog, the

sleeping frog wakes up and also begins performing Brownian motion with leftward drift λ,

independent of that of the other active frogs. The main result presented concerning this

model establishes sharp conditions involving the Poisson intensity function f and drift λ,

distinguishing between transience (meaning the probability that the origin is hit by infinitely

many different frogs is 0), and non-transience (meaning this probability is greater than 0).

Specifically, it is shown that the model is transient if and only if∫ ∞
0

e−
f(t)
2λ f(t)dt =∞ (1.2.2)

(where it’s assumed λ > 0 and f is monotonically increasing). The proof of this result

involves using the model to construct a continuous-time-inhomogeneous birth-death process,

and then showing that transience of the model on R corresponds to this process having

survival probability 0. Once the problem has been translated into one about birth-death

processes, we use a coupling argument and some analysis to achieve the desired result.
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1.2.3 The non-uniform model on Z

Following a short discussion about some of the implications of this last result, in which

several examples of near-critical cases are provided, the focus shifts to a discretized version

of the model on R, which I call the non-uniform frog model with drift on Z. In this model,

sleeping frogs are distributed among the positive integer vertices, where for each j ≥ 1

the number of sleeping frogs at x = j at time t = 0 is denoted as ηj . The ηj ’s are to be

independent Poisson random variables with E[ηj ] = f(j) for some function f : Z+ → [0,∞).

The process begins with a single active frog at the origin and, once activated, frogs perform

random walks (independently of each other) which at each step move one unit to the left

with probability p (where 1
2 < p < 1) and one unit to the right with probability 1− p. The

main result presented concerning this model states that it is transient if and only if

∞∑
j=1

e
− 1−p

2p−1
f(j)

=∞ (1.2.3)

(where f is assumed to be monotonically increasing, and the terms “transience” and “non-

transience” are to have the same meaning with respect to this model that they had for the

model on R). We prove this result by first using the model to construct a discrete-time-

inhomogeneous Markov process, after which it is shown that transience of the model on Z is

equivalent to this Markov process eventually hitting the absorbing state 0 with probability

1. Showing that this last outcome occurs if and only if (1.2.3) holds is then achieved via a

coupling argument similar to the one employed for the continuous-time birth-death process

referenced above.

After completing the proof for the non-uniform frog model (along with an accompany-

ing lemma), I conclude the chapter with a short subsection in which I present a pair of
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counterexamples where f is not monotone increasing, and the tight conditions for both the

model on R and the non-uniform model on Z cease to apply.

1.3 Intro: Part III

1.3.1 The nonhomogeneous model on Z

Chapter 3 of this thesis, which is based on the results in [12], begins by addressing a more

general frog model on the integers which I refer to as the nonhomogeneous frog model on Z.

This model encompasses both the non-uniform frog model on Z and the model looked at by

Gantert and Schmidt in [5], as well as a third model on Z which appears in [2] that features

a single sleeping frog at every positive integer point x = n who, upon activation, perform

random walks that go left with probability pn >
1
2 (note this value depends on n) and right

with probability 1 − pn. In the nonhomogeneous frog model on Z points to the left of the

origin contain no sleeping frogs and, for j ≥ 1, the number of sleeping frogs at x = j is

a random variable Xj , where the Xj ’s are independent, non-zero with positive probability,

and where Xj+1 � Xj (here “ � ” represents stochastic dominance). In addition, for each

j ≥ 1 frogs originating at x = j (if activated) go left with probability pj (where 1
2 < pj < 1)

and right with probability 1− pj , where the pj ’s are decreasing and the random walks are

independent. The frog beginning at the origin goes left with probability p0 and right with

probability 1− p0 (where p0 also satisfies 1
2 < p0 < 1).

The main result that I establish for the nonhomogeneous frog model on Z extends both

the result by Gantert and Schmidt (see (1.2.1)) and my own result discussed above involving

the non-uniform frog model with drift on Z. It also builds on a result by Bertacchi, Machado,
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and Zucca which established that the model from [2] described in the previous paragraph

is non-transient if there exists some increasing sequence of positive integers {nk}k∈N such

that
∞∑
k=0

nk∏
i=0

(
1−

(1− pi
pi

)nk+1−i)
<∞ (1.3.1)

(note this condition is proven to be sufficient, rather than sufficient and necessary). The

result that I prove, which is a sharp condition distinguishing between transience and non-

transience for the nonhomogeneous frog model on Z, states that the model is transient if

and only if
∞∑
n=2

n−1∏
j=1

fj

(
1−

(1− pj
pj

)n−j)
=∞ (1.3.2)

(where fj represents the probability generating function of Xj , the number of sleeping frogs

at x = j). The proof of this result incorporates many of the same concepts that are used

in the proof of the sharp condition for the non-uniform model on Z. However, significant

adjustments have to be made, particularly on account of the non-constant leftward drift

involved in the nonhomogeneous case. Further discussion of these details will be left for

chapter 3.

1.3.2 Applications of the nonhomogeneous model

After establishing the above result for the nonhomogeneous frog model on Z, the focus will

shift towards showing how it can be applied in a number of more specific cases. The first

application of the theorem will involve the Gantert and Schmidt model from [5], and will

entail showing how (1.2.1) can be achieved quite easily using the formula (3.1.1). After this

(3.1.1) is used to obtain a formula that provides a sharp condition distinguishing between

transience and non-transience in the case where the Xj ’s are i.i.d. and which, for the
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particular case where Xj = 1, builds on the result from [2] by giving a sharp result that

supersedes the soft condition in (1.3.1) and, for the case where pj = 1
2 + C

log j (for all but

finitely many j), implies the existence of a phase transition at C = π2

24 . Finally, (3.1.1) will

also be employed to obtain a formula that builds on the result involving the non-uniform frog

model by generalizing to cases where the pj ’s are not constant. For these last two results,

the proofs will require some light assumptions relating to the concavity of the sequences{
p−1
j

}
and {λj} (where λj represents the Poisson mean of the distribution of Xj in the

non-uniform model).

1.4 Intro: Part IV

In the final chapter of this thesis, which is based on the work in [11], I move past looking at

the frog model in 1-dimensional environments, focusing instead on the frog model on trees.

Specifically, I establish recurrence of the frog model on an infinite tree for which vertices

on even levels have three children and vertices on odd levels have two (this is referred to

as the 3,2-alternating tree), and where non-root vertices each begin with a single sleeping

frog. The inspiration for looking at this model came from [7], in which Hoffman, Johnson,

and Junge proved that the same model, when taken on the regular n-ary tree, is recurrent

for n = 2 and transient for n ≥ 5. The cases of the 3-ary and 4-ary trees, which remain

open, were conjectured in their paper to be recurrent and transient respectively.

The proof of recurrence on T3,2 (the 3,2-alternating tree) largely involves adapting the

methods that were employed by Hoffman, Johnson, and Junge in [7] to prove recurrence

on T2, to the demands of this more complex model. The approach they pioneered entails

embedding another model with nice self-similarity properties inside the standard model.
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This self-similar model is then shown to be recurrent via a bootstrapping argument which

is applied to it’s generating function (for the number of distinct frogs that hit the root).

Since this model is dominated by the original, this in turn implies recurrence of the original

model on T2 (or T3,2 in the case of my result).

9



Chapter 2

A continuous frog model analog

2.1 The frog model with drift on R

As noted in the introduction, the frog model with drift on R features sleeping frogs situated

to the right of the origin according to a Poisson process with intensity f : [0,∞)→ [0,∞).

We begin with a single active frog at the origin that performs Brownian motion with leftward

drift λ > 0. Whenever a sleeping frog is hit by an active frog, it becomes active and also

begins performing Brownian motion with leftward drift λ, independent of that of the other

active frogs (see Figure 2.1 for an illustration). A more formal construction of this process

is not needed, as most of the analysis involves a related and easily constructed birth-death

process. In this section we establish sharp conditions distinguishing between transience

(meaning the probability that the origin is hit by infinitely many distinct frogs is 0), and

non-transience (meaning this probability is greater than 0).
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0

Figure 2.1: The model on R, with black circles as active frogs and white ones sleeping frogs.

The main result for the frog model with drift on R will be the following theorem. It is

assumed here, as well as in the discrete case, that f is not the zero function.

Theorem 2.1.1. For any λ > 0 and f monotonically increasing, the frog model with drift

on R is transient if and only if ∫ ∞
0

e−
f(t)
2λ f(t)dt =∞. (2.1.1)

Remark 1. Note that the decision to restrict our focus to the case where no sleeping frogs

reside to the left of the origin was not made in order to simplify the problem. In fact, if the

domain of f is expanded to (−∞,∞) and it is allowed to take positive values to the left of

the origin, then provided ∫ 0

−∞
e2λtf(t)dt <∞ ,

the transience/non-transience of the model depends on the same integral condition from

Theorem 2.1.1. This follows from the theorem, along with the fact that E[L(−∞,0)] (where

L(a,b) denotes the number of distinct frogs originating in (a, b) that hit the origin) is equal

to the above integral. Alternatively, because L(a,b) (for b ≤ 0) has a Poisson distribution

with mean
∫ b
a e

2λtf(t)dt, divergence of the improper integral above will imply that L(−∞,0)

dominates a Poisson r.v. of any finite mean, thus implying recurrence of the model.

The proof of Theorem 2.1.1 proceeds as follows. It is first noted that by virtue of a

simple rescaling, it suffices to prove the theorem for the specific case λ = 1
2 . A continuous-

time-inhomogeneous birth-death process {Xt} is then defined with birth rate f(t)1(Xt>0),
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and death rate Xt. Transience for the frog model with drift 1
2 and Poisson intensity of

sleeping frogs f , is shown to coincide with Xt eventually arriving at the absorbing state

0 with probability 1. A related process {Yt} is then defined, which is identical to {Xt}

except that 0 is not an absorbing state (i.e. {Yt} has birth rate f(t) and death rate Yt).

The primary task in proving that (2.1.1) corresponds to transience of the model consists

of proving that {Yt} will jump from 0 to 1 infinitely often with probability 1, if and only

if (2.1.1) holds. To achieve this, it is first shown that as t → ∞ the distribution of Yt

behaves increasingly like that of a Poisson r.v. with mean
∫ t

0 e
−(t−u)f(u)du. This is then

used to show that the expected number of jumps from 0 to 1 (made by {Yt}) is infinite

if and only if the integral expression in (2.1.1) diverges. Together with a proof that this

quantity is infinite with probability 1 as long as it has infinite expectation, this is sufficient

for establishing that the model is transient if and only if (2.1.1) holds.

2.1.1 The process {Xt}

We start by setting λ = 1
2 (note by virtue of a simple rescaling, it suffices to prove the

theorem for a single value of λ > 0). For any t ≥ 0 let Xt denote the number of frogs

originating in [0, t] that ever pass the point x = t. Now note that lim
t→∞

Xt > 0 if and only if

(i) the set of points (initially) containing sleeping frogs is unbounded (f being nonnegative

and monotonically increasing implies it is bounded on compact sets, which guarantees that

no bounded region will contain infinitely many sleeping frogs) and (ii) all of these frogs are

eventually awakened. Since a Brownian motion with leftward drift 1
2 is continuous and goes

to −∞ with probability 1, it follows that

lim
t→∞

Xt > 0⇐⇒ {infinitely many frogs return to the origin} (2.1.2)
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Having established this equivalence, we now present the following proposition.

Proposition 2.1.2. {Xt} is a continuous-time-inhomogeneous birth-death process with

birth rate f(t)1(Xt>0) and death rate Xt.

Proof. By a straight forward argument involving an exponential martingale it is known that

the right most point reached by a Brownian motion (beginning at the origin) with leftward

drift 1
2 , has an exponential distribution with mean 1. By the strong Markov property it

follows that if 0 < a < b, then the probability that a frog originating in [0, a] ever passes

x = b (conditioned on its passing x = a) equals e−(b−a). Therefore, if we let R(t,dt) represent

the number of frogs originating in [0, t) that reach x = t, but not x = t+dt, then
(
R(t,dt)|Xt

)
has distribution Bin(Xt, 1−e−dt). Since 1−e−dt = dt+o(dt) as dt→ 0, it then follows that

{Xt} has “death rate” Xt. Furthermore, since the number of sleeping frogs in (t, t+dt) has

distribution Poiss(λ(t,dt)) (where λ(t,dt) =
∫ t+dt
t f(u)du), and the probability all such frogs

are awoken and reach x = t + dt, approaches 1 as dt → 0 (provided Xt > 0), this means

{Xt} has “birth rate” f(t)1(Xt>0). Hence, the proof is complete.

Remark 2. While the subscript t denoted a spatial parameter in the original definition

of {Xt}, it will be referred to as time from here on out in order to maintain consistency

with the expression “continuous-time birth-death process”. In addition, the elements in the

process {Xt} will be called particles, rather than frogs. A particle will be said to “die” at

time t0 if the point furthest to the right reached by that particle is x = t0.
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2.1.2 The process {Yt}

The statement (2.1.2), along with the scale invariance of the original model with respect

to λ discussed in the introduction, together imply that Theorem 2.1.1 can be proven by

showing that the process {Xt} goes extinct with probability 1 if and only if formula (2.1.1)

holds (for the case λ = 1
2). So let {Yt} be another continuous-time-inhomogeneous birth-

death process with birth rate f(t) and death rate Yt (hence, it differs from {Xt} only in

the sense that 0 is not an absorbing state). {Yt} is identified with a triple (Ω,F ,P) defined

as follows: Ω will represent the set of all functions ω : [0,∞) → N such that ω(0) = 1 and

where ω is constant everywhere except at a countable collection of points p1 < p2 < . . . ,

where for each i ≥ 1, ω(pi) = lim
t→p−i

ω(t)± 1 (note that Ω can be thought of as the collection

of all possible paths {Yt} can take). Let F denote the σ-field on Ω generated by the finite

dimensional sets {ω : ω(si) = Ci for 1 ≤ i ≤ n} (where 0 < s1 < · · · < sn and Ci ∈ N for

each i). Finally, P will refer to the probability measure on (Ω,F) associated with {Yt}. The

primary task involved in moving towards a proof of Theorem 2.1.1 will consist of proving a

statement about {Yt}. This comes in the form of the following theorem.

Theorem 2.1.3. Assume f : [0,∞) → [0,∞) is monotonically increasing and define the

value V (ω) = # {points where ω jumps from 0 to 1}. Then P(V =∞) = 1 if and only if

∫ ∞
0

e−f(t)f(t)dt =∞ (2.1.3)

If (2.1.3) does not hold, then P(V =∞) = 0.

The proof of Theorem 2.1.3 has three main steps. The first one entails proving the following

proposition. Note that in the statement of this proposition, and those following it, E will

14



denote expectation with respect to the probability measure P and f is assumed to be

monotonically increasing.

Proposition 2.1.4. ∫ ∞
0

e−f(t)f(t)dt =∞ =⇒ E[V ] =∞ (2.1.4)

After Proposition 2.1.4 is established, it is then shown how the result can be used to prove

one direction of Theorem 2.1.3. This entails establishing the following implication.

Proposition 2.1.5. E[V ] =∞ =⇒ P(V =∞) = 1.

After establishing Proposition 2.1.5, we address the issue of proving the other direction of

Theorem 2.1.3. This comes in the form of the proceeding proposition.

Proposition 2.1.6.

∫ ∞
0

e−f(t)f(t)dt <∞ =⇒ P(V <∞) = 1 (2.1.5)

Proof of Proposition 2.1.4. First note that for any t > 0, Yt is a random variable of the

form Bern(e−t) + Poiss(λt) (with the two parts of the sum independent) where

λt =

∫ t

0
f(u)e−(t−u)du = f(t)− f(t)e−t −

∫ t

0
(f(t)− f(u))e−(t−u)du (2.1.6)

This follows from the fact that the single particle we began with at time zero remains

“alive” at time t with probability e−t (hence the term Bern(e−t)), along with the fact that,

if f is continuous at u (note that f being increasing implies it is continuous a.e.), then the

event of a particle being “born” inside the time interval [u, u + du) and surviving until at

least time t, has probability (f(u)e−(t−u) + o(1))du as du→ 0 (where disjoint intervals are
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independent). It is then implied by (2.1.6) that λt ≤ f(t) ∀ t ∈ [0,∞), from which it follows

that

P(ω(t) = 0) ≥ e−f(t)(1− e−t) (2.1.7)

Since the probability {Yt} jumps from 0 to 1 on an interval [t, t+ dt) is (1 + o(1))P(ω(t) =

0)f(t)dt as dt→ 0, it follows that

E[V ] =

∫ ∞
0

P(ω(t) = 0)f(t)dt (2.1.8)

Combining this with (2.1.7) then establishes the implication

∫ ∞
0

e−f(t)f(t)dt =∞ =⇒ E[V ] =∞

Hence, the proof is complete.

Proof of Proposition 2.1.5. Let Ux = {ω ∈ Ω : ω never jumps from 0 to 1 in (x,∞)}. If it’s

assumed that P(V = ∞) < 1, then this implies that there exists x, L > 0 (with L ∈ Z)

such that P(Ux+1| ω(x+ 1) = L) > 0. Since

P({ω(t) > 0 on (x, x+ 1)} ∩ {ω(x+ 1) = L} | ω(x) = 1) > 0 (2.1.9)

we get P(Ux| ω(x) = 1) > 0. Since f is monotonically we know
(
{Yt1+t} |(Yt1 = 1)

)
can

be coupled with
(
{Yt2+t} |(Yt2 = 1)

)
(for t2 > t1) so that the former is dominated by the

latter. From this it follows that P(Ut| ω(t) = 1) is increasing w.r.t. t. Now if we let

Vx(ω) = # {points in (x,∞) where ω jumps from 0 to 1}, the fact that P(Ut|ω(t) = 1) is

positive (for t ≥ x) and increasing implies that P(Vx ≥ T + 1| Vx ≥ T ) ≤ 1−P(Ux| ω(x) =

1) ∀ T ∈ N. Hence,

E[Vx] ≤
∞∑
j=0

(1−P(Ux| ω(x) = 1))j =
1

P(Ux| ω(x) = 1)
<∞ =⇒ E[V ] <∞
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Therefore, we’ve established the contrapositive of Proposition 2.1.5, which establishes the

proposition.

Proof of Proposition 2.1.6. It follows from (2.1.7) and (2.1.8) that

E[V ] =

∫ ∞
0

e−λt(1− e−t)f(t)dt (2.1.10)

Since 1 − e−t → 1 as t → ∞, in order to show that E[V ] < ∞ it suffices to establish the

following implication.

∫ ∞
0

e−f(t)f(t)dt <∞ =⇒
∫ ∞

0
e−λtf(t)dt <∞ (2.1.11)

Using the integral formula for λt in (2.1.6), we see that if f is continuous at t, then λt is

differentiable at t with

dλt
dt

=
d
(
e−t
∫ t

0 e
uf(u)du

)
dt

= f(t)− e−t
∫ t

0
euf(u)du = f(t)− λt

Hence, at all continuity points of f , we have f(t) = λt + λ′t. Since f is monotonically

increasing, this means it has only countably many discontinuity points, which means it is

continuous a.e (as was mentioned in the proof of 2.1.4). It then follows that f(t) = λt + λ′t

a.e. Hence, we can write

∫ ∞
0

e−f(t)f(t)dt =

∫ ∞
0

e−(λt+λ′t)f(t)dt =

∫ ∞
0

e−λtf(t)e−λ
′
tdt (2.1.12)

Now let 0 ≤ t1 < t2 and note that

λt2 − λt1 =

∫ t2−t1

0
e−(t2−u)f(u)du+

∫ t1

0
e−(t1−u)

(
f(t2 − t1 + u)− f(u)

)
du > 0 (2.1.13)
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Hence, λt is monotonically increasing. Also note that if 0 ≤ t1 < t2 ≤ N (for N <∞) then

λt2 =

∫ t2

0
e−(t2−u)f(u)du

= e(t1−t2)

∫ t1

0
e−(t1−u)f(u)du+

∫ t2

t1

e−(t2−u)f(u)du

≤ λt1 + (t2 − t1)f(N)

Along with (2.1.13) this implies |λt2−λt1 | ≤ (t2−t1)f(N), which means that λt is absolutely

continuous on [0, N ]. Coupled with λt being monotonically increasing and satisfying λ0 = 0,

this implies that if g : [0, N ]→ [0,∞) is any Lebesgue measurable function, then∫ λN

0
g(x)dx =

∫ N

0
g(λt)λ

′
tdt (2.1.14)

(see [13], para. 2, pg. 156). Now since lim
t→∞

f(t) = ∞ (otherwise it could not hold that∫∞
0 e−f(t)f(t)dt < ∞) this means λt =

∫ t
0 e
−(t−u)f(u)du → ∞ as t → ∞. Therefore, if

g ≥ 0 is Lebesgue measurable with
∫∞

0 g(x)dx <∞, then letting N →∞ in (2.1.14) gives∫ ∞
0

g(x)dx =

∫ ∞
0

g(λt)λ
′
tdt

Specifically looking at the cases g1(x) = e−x and g2(x) = xe−x, gives the two formulas∫ ∞
0

e−λtλ′tdt =

∫ ∞
0

e−xdx = 1∫ ∞
0

e−λtλtλ
′
tdt =

∫ ∞
0

xe−xdx = 1

Combining these formulas with (2.1.12), and using the fact that f(t) = λt + λ′t a.e., then

gives ∫ ∞
0

e−λtf(t)dt =

∫ ∞
0

e−λtf(t)1(λ′t≤1)dt+

∫ ∞
0

e−λt(λt + λ′t)1(λ′t>1)dt

≤ e

∫ ∞
0

e−λtf(t)e−λ
′
tdt+

∫ ∞
0

e−λtλtλ
′
tdt + 1

= e

∫ ∞
0

e−f(t)f(t)dt + 2 <∞
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Hence, this establishes (2.1.11) which, as was shown, implies E[V ] < ∞, from which it

follows that P(V <∞) = 1. Hence, the proof is complete.

Proof of Theorem 2.1.3. The theorem follows immediately from Propositions 2.1.4, 2.1.5,

and 2.1.6.

2.1.3 Proving Theorem 2.1.1

With Theorem 2.1.3 established, we can now complete the proof of Theorem 2.1.1. Due to

the relationship discussed earlier between the process {Xt} and the frog model with drift on

R, as well as scale invariance of the original model, it suffices to prove the following claim.

Claim: For f : [0,∞) → [0,∞) monotonically increasing, the process {Xt} dies out with

probability 1 if and only if ∫ ∞
0

e−f(t)f(t)dt =∞

Proof. First couple the process {Xt} with the familiar process {Yt} so that the two processes

are identical until {Xt} dies out. Since Theorem 2.1.3 established the implication∫ ∞
0

e−f(t)f(t)dt =∞ =⇒ P({Yt} jumps from 0 to 1 i.o.) = 1 (2.1.15)

this means that if the left side of (2.1.15) holds, then with probability 1, {Xt} will eventually

die out (i.e. the coupled processes {Yt} and {Xt} will eventually hit 0). Conversely, since

Theorem 2.1.3 also states that if the integral in (2.1.15) is finite then V <∞ with probability

1, this means that if we let T0(ω) = {t ∈ [0,∞) : ω(t) = 0}, then P(sup T0 < ∞) = 1.

Letting P represent the law of {Xt} on (Ω,F), it now follows that there must be some t > 0

and some positive integer M s.t.

P(Xs > 0 ∀ s ≥ t|Xt = M) = P(Ys > 0 ∀ s ≥ t|Yt = M) > 0 (2.1.16)
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and P(Yt = M) > 0. This then implies that P(Xt = M) > 0, which along with (2.1.16),

gives

∫ ∞
0

e−f(t)f(t)dt <∞ =⇒ P(Xs > 0 ∀ s ≥ 0) ≥ P(Xt = M)P(Xs > 0 ∀ s ≥ t|Xt = M) > 0

Alongside the first part of the proof, this last result establishes that {Xt} dies out with

probability 1 if and only if the integral on the left side of (2.1.15) diverges. Thus we have

established the above claim, which completes the proof of Theorem 2.1.1.

Remark 3. Note that the result of Theorem 2.1.1 can easily be extended to all measurable

functions f : [0,∞) → [0,∞) for which ∃ r ∈ (0,∞) such that f is bounded on [0, r) and

increasing on [r,∞). This is established by first noting that it follows from (2.1.2) that the

process is non-transient if and only if

P( lim
t→∞

Xt > 0) > 0⇐⇒ P(Xr > 0)P( lim
t→∞

Xt > 0|Xr > 0) > 0 (2.1.17)

Because P(Xr > 0) ≥ e−r (since the particle beginning at time 0 remains “alive” at time r

with probability e−r), and because P( lim
t→∞

Xt > 0|Xr = L) > 0 (for some L > 0) if and only

if P( lim
t→∞

Xt > 0|Xr = 1) > 0, it follows from (2.1.17) and Theorem 2.1.1 that the process is

non-transient if and only if

P( lim
t→∞

Xt > 0|Xr = 1) > 0⇐⇒
∫ ∞
r

e−f(t)f(t)dt <∞⇐⇒
∫ ∞

0
e−f(t)f(t)dt <∞

2.2 The non-uniform frog model with drift on Z

Recall that the non-uniform frog model with drift on Z contains ηj sleeping frogs at x = j

for every positive integer j, where each ηj has distribution Poiss(f(j)) for some function

f : Z+ → [0,∞), and the ηj ’s are independent. Upon becoming activated (via being landed
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on by an active frog), a frog performs a random walk independent of all other active frogs,

that at each step goes left with probability p (for some p > 1
2) and right with probability

1 − p. We start with a single active frog at the origin which also goes left (or right) with

probability p (or 1 − p respectively). We again establish a sharp condition distinguishing

between transience and non-transience in the form of the following theorem.

Theorem 2.2.1. For 1
2 < p < 1 and f monotonically increasing, the non-uniform frog

model with drift on Z is transient if and only if

∞∑
j=1

e
− 1−p

2p−1
f(j)

=∞ (2.2.1)

Remark 4. As with the model on R, allowing sleeping frogs to also reside to the left of the

origin does not complicate matters significantly in the case of the model on Z. If the domain

of f is expanded to all of Z\ {0}, then the condition given in Theorem 2.2.1 continues to

apply as long as
∞∑
j=1

(1− p
p

)j
f(−j) <∞

since the above sum is equal to E[L∗(−∞,0)] (where L∗(a,b) denotes the number of distinct frogs

originating in (a, b)∩Z that ever hit the origin). Conversely, since L∗(−N−1,0) has a Poisson

distribution with mean equal to the sum of the first N terms in the expression above, the

divergence of this sum will, as with the continuous case (see Remark 1), imply recurrence

of the model.

The proof that transience of the non-uniform frog model corresponds to (2.2.1) nearly

mirrors that of the continuous case. A discrete-time-inhomogeneous Markov process {Mj}
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is defined, where

(Mj+1|Mj) =


Bin
(
Mj ,

1−p
p

)
+ Poiss

(1−p
p f(j)

)
if Mj ≥ 1

0 if Mj = 0

Transience of the non-uniform frog model is shown to hold if and only if {Mj} eventually

arrives at the absorbing state 0 with probability 1. {Nj} will then represent a process just

like {Mj}, except (Nj+1|Nj = 0) = Poiss(1−p
p f(j)) (i.e. 0 is not an absorbing state). Most

of the focus is devoted to showing that {Nj} will attain the value 0 infinitely often with

probability 1 if and only if the sum in (2.2.1) diverges. The proof involves establishing a se-

ries of three propositions which are essentially the discrete analogs of a series of propositions

that were used when dealing with the continuous model.

2.2.1 The processes {Mj} and {Nj}

We begin by using the non-uniform frog model to define the process {Mj} as follows. Let

M0 = 1 and, for j ≥ 1, let Mj equal the number of frogs originating in {0, 1, . . . , j − 1} that

ever hit x = j. Much like with the process {Xt}, we find that

lim
j→∞

Mj > 0⇐⇒ {infinitely many frogs return to the origin} (2.2.2)

Examining the process {Mj}, we also obtain this next proposition.

Proposition 2.2.2. {Mj} is a discrete-time-inhomogeneous Markov process with M0 = 1,

M1 = Bern(1−p
p ), and for j ≥ 1

(Mj+1|Mj) =


Bin
(
Mj ,

1−p
p

)
+ Poiss

(1−p
p f(j)

)
if Mj ≥ 1

0 if Mj = 0

(where the two parts of the above sum are independent).
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Proof. By a simple martingale argument the probability an active frog residing at x = j

ever makes it to x = j + 1 is 1−p
p . Therefore, the expression for M1 follows. This also

implies that if we condition on Mj , then for j ≥ 1 the distribution of the number of frogs

that make it to x = j + 1 which originate in {0, 1, . . . , j − 1}, is Bin
(
Mj ,

1−p
p

)
. Adding this

to the number of frogs originating at x = j that ever make it to x = j + 1, while again

using the first line of this proof along with the fact that ηj (the number of sleeping frogs

starting at x = j) has distribution Poiss
(
f(j)

)
, gives us the above piecewise expression for(

Mj+1|Mj

)
.

We now introduce the process {Nj} which, as stated in the introduction, will represent

a process identical to {Mj} except that (Nj+1|Nj = 0) has distribution Poiss(1−p
p f(j))

(meaning 0 is not an absorbing state). {Nj} is identified with a triple (Ω∗,F∗,P∗) defined as

follows. Ω∗ will represent the set of all functions ω : N→ N, F∗ will represent the σ-field on

Ω∗ generated by the finite dimensional sets, and P∗ will refer to the probability measure on

(Ω∗,F∗) associated with {Nj} (note that P∗ is supported on {ω ∈ Ω∗ : ω(0) = 1, ω(1) ≤ 1}).

Using the formalism defined above, we now present a result which constitutes the main step

in proving Theorem 2.2.1.

Theorem 2.2.3. If 1
2 < p < 1, f is monotonically increasing, and we let K(ω) =

# {j ∈ Z+ : ω(j) = 0}, then P∗(K =∞) = 1 if and only if

∞∑
j=1

e
− 1−p

2p−1
f(j)

=∞ (2.2.3)

If (2.2.3) does not hold then P∗(K =∞) = 0.
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2.2.2 Proving Theorem 2.2.1

We begin this section by presenting Propositions 2.2.4, 2.2.5, and 2.2.6. In places where the

proofs bear an especially strong resemblance to the proofs of the corresponding propositions

for the model on R (2.1.4, 2.1.5, and 2.1.6 respectively) some details are omitted. In

what follows, f is always assumed to be monotonically increasing, and E∗ will represent

expectation with respect to P∗.

Proposition 2.2.4.
∞∑
j=1

e
− 1−p

2p−1
f(j)

=∞ =⇒ E∗[K] =∞

Proof. As a random variable (for j ≥ 1)

Nj = Bern

((1− p
p

)j)
+ Poiss(τj) (2.2.4)

where

τj =

j−1∑
i=1

(1− p
p

)j−i
f(i)

By an argument similar to the one employed in the proof of Proposition 2.1.4, we find that

it follows from the fact f is increasing that τj ≤ 1−p
2p−1f(j) ∀ j. Combining this with (2.2.4)

establishes that

P∗(ω(j) = 0) ≥
(

1−
(1− p

p

)j)
e
− 1−p

2p−1
f(j)

(2.2.5)

Since
(

1−p
p

)j
→ 0 as j →∞ and

E∗[K] =
∞∑
j=1

P∗(ω(j) = 0)

the proposition follows.

Proposition 2.2.5.

E∗[K] =∞ =⇒ P∗(K =∞) = 1
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Proof. Proceed by proving the contrapositive. Let Uj = {ω ∈ Ω∗ : ω(i) > 0 ∀ i > j}. As-

sume P∗(K = ∞) < 1. It will follow that ∃ L ≥ 1 such that P∗(UL|ω(L) = 0) > 0. Along

with the fact that P∗(UL|ω(L) = 0) is monotonically increasing (which follows from the fact

that f is increasing), this implies that E∗[K] − L can be bounded above by the sum of a

geometric series with base 1−P∗(UL|ω(L) = 0) < 1. The contrapositive of the proposition

then follows, which establishes the proposition.

Proposition 2.2.6.

∞∑
j=1

e
− 1−p

2p−1
f(j)

<∞ =⇒ P∗(K <∞) = 1

Proof. Since (2.2.4) implies that P∗(ω(j) = 0) = e−τj
(
1−

(1−p
p

)j)
, it follows that

E∗[K] =

∞∑
j=1

e−τj
(

1−
(1− p

p

)j)
<

∞∑
j=1

e−τj

Hence, to show that
∞∑
j=1

e
− 1−p

2p−1
f(j)

<∞ =⇒ E∗[K] <∞

it suffices to show that

∞∑
j=1

e
− 1−p

2p−1
f(j)

<∞ =⇒
∞∑
j=1

e−τj <∞ (2.2.6)

To establish (2.2.6), first note that

τj+1 − τj =
(1− p

p

)j+1
j∑
i=1

(1− p
p

)−i
f(i)−

(1− p
p

)j j−1∑
i=1

(1− p
p

)−i
f(i)

=
[(1− p

p

)j+1
−
(1− p

p

)j] j−1∑
i=1

(1− p
p

)−i
f(i) +

1− p
p

f(j)

=
1− 2p

p
τj +

1− p
p

f(j) =⇒ 1− p
2p− 1

f(j) =
p

2p− 1
∆τj + τj

(where ∆τj denotes τj+1 − τj). Hence,

∞∑
j=1

e
− 1−p

2p−1
f(j)

=

∞∑
j=1

e−τj · e−
p

2p−1
∆τj (2.2.7)
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Now if the sum on the right in (2.2.6) is written as

∞∑
j=1

e−τj =
∞∑
j=1

e−τj1(∆τj≤1) +
∞∑
j=1

e−τj1(∆τj>1) (2.2.8)

then (2.2.7) and the left side of (2.2.6) imply that

∞∑
j=1

e−τj ≤ e
p

2p−1

∞∑
j=1

e
− 1−p

2p−1
f(j)

+
e

e− 1
<∞

(where the e
e−1 term follows from the fact that the last sum on the right in (2.2.8) can be

bounded above by the sum of the geometric series with base e−1). Therefore, this establishes

(2.2.6), which implies E∗[K] <∞, from which it follows that P∗(V <∞) = 1. Hence, the

proof is complete.

Proof of Theorem 2.2.3. The theorem is an immediate consequence of Propositions 2.2.4-

2.2.6.

Theorem 2.2.3 is now used to establish Theorem 2.2.1. Note that on account of (2.2.2),

establishing Theorem 2.2.1 reduces to proving the following claim.

Claim: For f : Z+ → [0,∞) monotonically increasing, the process {Mj} dies out with

probability 1 if and only if
∞∑
j=1

e
− 1−p

2p−1
f(j)

=∞

Proof. By a coupling of {Mj} with {Nj}, it follows from Theorem 2.2.3 that if the above

sum diverges, then {Mj} dies out with probability 1. For the other direction, we can apply

an argument exactly like the one we used in the continuous case, but where we replace

the integral with the sum and replace {Xt} and {Yt} with {Mj} and {Nj} respectively.

Alongside the first part of the proof, this establishes Theorem 2.2.1.
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Remark 5. Much like with the continuous case, the result of Theorem 2.2.1 extends to all

functions f : Z+ → [0,∞) for which ∃ q ∈ Z+ such that f is increasing on {q, q + 1, q + 2, . . . }.

Due to its strong similarity to the argument given in Remark 3, the explanation for this is

omitted.

2.3 Counterexamples and additional comments

In this final section I’ll discuss a scenario in which f : [0,∞)→ [0,∞) is not monotonically

increasing, and the tight condition of Theorem 2.1.1 ceases to hold. A similar case for the

discrete model is also mentioned.

Example 1. Define f : [0,∞)→ [0,∞) as

f(t) =


1 if t ∈ [2n, 2n + 1) for n ∈ Z+

t otherwise

Since E[V ] =
∫∞

0 e−λtf(t)(1 − e−t)dt (see (2.1.10)), to show that E[V ] < ∞ it suffices to

show that
∫∞

0 e−λtf(t)dt <∞. Recalling from (2.1.6) that λt =
∫ t

0 e
−(t−u)f(u)du, we’ll seek

to achieve a lower bound for λt. Note first that if n ∈ Z+ then∫ 2n+1

2n+1
euf(u)du =

∫ 2n+1

2n+1
ueudu =

(
2n+1 − 1

)
e2n+1 − 2n · e2n+1

Hence, for t = 2n+1 (for n ∈ Z+)

λt = e−t
(∫ 2

0
ueudu+

n∑
j=1

∫ 2j+1

2j
eudu+

n∑
j=1

(
2j+1 − 1

)
e2j+1 − 2j · e2j+1

)
(2.3.1)

≥ e−t
((
t− 1

)
et − t

2
e
t
2

+1
)
≥ t− 2

(where the last inequality follows from the fact that t
2e

t
2

+1 < et for t ≥ 4). Since λt+r ≥

e−rλt, it follows that for 0 ≤ r ≤ 1 (with t = 2n+1 as above) we have

λt+r ≥ e−1(t− 2) (2.3.2)
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Furthermore, note that if to ∈ (t + 1, 2t) then λ′to exists (since f is continuous in (2n+1 +

1, 2n+2)) with λ′to = f(to)− λto . Since λto ≤ e−to
∫ to

0 ueudu = to − 1 + e−to , this means

λto ≤ to − e−1 =⇒ λ′to = to − λto ≥ e−1

which along with (2.3.2), implies λto ≥ e−1(to − 2). Combining this with (2.3.1) and

(2.3.2) then tells us that λs ≥ e−1(s − 2) ∀ s ∈ [2n+1, 2n+2) (for n ∈ Z+), and therefore

λs ≥ e−1(s− 2) ∀ s ∈ [4,∞). Using this inequality, along with the fact that f(s) ≤ s ∀ s ∈

[0,∞), we find that

∫ ∞
0

e−λtf(t)dt ≤
∫ 4

0
tdt+

∫ ∞
4

e−e
−1(t−2)tdt <∞ =⇒ E[V ] <∞ =⇒ P(V <∞) = 1

By the argument that was employed in subsection 2.1.3 to establish the implication P(V <

∞) = 1 =⇒ {non-transience}, it follows that for the given Poisson intensity function f

(with drift 1
2) the model is non-transient. Noting now that

∫ ∞
0

e−f(t)f(t)dt ≥
∞∑
j=1

∫ 2j+1

2j
e−1dt =

∞∑
j=1

e−1 =∞

we find that the tight condition from Theorem 2.1.1 does indeed fail to apply in this case.

Remark 6. Notice that the tight condition of Theorem 2.1.1 also fails to hold when f :

[0,∞) → [0,∞) is a bounded (nonzero) function such that
∫∞

0 f(x)dx < ∞ (since then∫∞
0 e−f(x)f(x)dx < ∞, but the model is transient). However, if the integral in (2.1.1) is

changed to
∫∞

0 e−f(x)(1+f(x))dx, then 2.1.1 remains valid, yet functions in L1([0,∞)) that

are bounded, nonzero, and nonnegative, no longer violate the new condition. Hence, such

functions offer far less insight into the limits to which the result of Theorem 2.1.1 can be

stretched, than does the case examined in Example 1.
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Example 2. Define f : Z+ → N as

f(j) =


1 if j = 2n for n ∈ Z+

j otherwise

It follows from (2.2.4) that in order to show that E∗[K] < ∞ it suffices to show that∑∞
j=1 e

−τj < ∞ (with τj defined as in the proof of Proposition 2.2.4). From the formulas

for τj and f we see that τj ≥
(

1−p
p

)2
(j − 2) ∀ j ≥ 1 (recall 1

2 < p < 1). Hence,

∞∑
j=1

e−τj <∞ =⇒ E∗[K] <∞ =⇒ P∗(K <∞) = 1

As we saw in the proofs of Theorems 2.1.1 and 2.2.1, this implies non-transience of the

model. Combining this with the fact that

∞∑
j=1

e
− 1−p

2p−1
f(j) ≥

∞∑
j=1

e
− 1−p

2p−1
f(2j)

=
∞∑
j=1

e
− 1−p

2p−1 =∞

we see that the tight condition of Theorem 2.2.1 does not apply in this case.
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Chapter 3

Several frog model variants on Z

3.1 The nonhomogeneous frog model

Refreshing the definition of the nonhomogeneous frog model on Z, it begins with no frogs to

the left of the origin, and one active frog at the origin which performs a random walk that

at each step goes left with probability p0 (where 1
2 < p0 < 1) and right with probability

1− p0. For j ≥ 1, the number of sleeping frogs at x = j is a random variable Xj , where the

Xj ’s are independent, non-zero with positive probability, and where Xj+1 � Xj (here “ � ”

represents stochastic dominance). In addition, for each j ≥ 1 frogs originating at x = j (if

activated) go left with probability pj (where 1
2 < pj < 1) and right with probability 1− pj ,

where the pj ’s are decreasing and the random walks are independent. My main result for

the nonhomogeneous frog model on Z is the following sharp condition that distinguishes

between transience and non-transience of the model.

Theorem 3.1.1. Let fj be the probability generating function of Xj for the nonhomogeneous
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frog model on Z. The model is transient if and only if

∞∑
n=2

n−1∏
j=1

fj

(
1−

(1− pj
pj

)n−j)
=∞ (3.1.1)

3.1.1 The processes {Mj} and {Nj}

In order to move towards a proof of Theorem 3.1.1, we begin by defining the process {Mj}

where, for each j ≥ 1, Mj represents the number of frogs originating in {0, 1, . . . , j − 1}

that ever hit the point x = j. {Mj} is now identified with a triple (Ω,F ,P) defined as

follows: Ω will represent the set of all functions ω : Z+ → N (i.e. the set of all possible

trajectories of {Mj}), F will represent the σ-field on Ω generated by the finite dimensional

sets, and P will refer to the probability measure induced on (Ω,F) by the process {Mj}.

Since P(Xn ≥ 1) ≥ P(X1 ≥ 1) > 0 ∀ n ≥ 1 (recall Xj+1 � Xj ∀ j ≥ 1) and the

Xj ’s are independent, it follows from Borel-Cantelli II that {Xj ≥ 1 i.o.} a.s. Additionally,

since each activated frog performs a random walk with nonzero leftward drift, this means

that each activated frog will eventually hit the origin with probability 1. Coupling this

with the fact that {Xj ≥ 1 i.o.} a.s. =⇒
∑∞

j=1Xj = ∞ a.s., along with the implication

Ml = 0 =⇒ Mj = 0 ∀ j > l, we find that

{infinitely many frogs hit the origin} ⇐⇒ min Mj > 0 (3.1.2)

Now on account of (3.1.2), it follows that in order to establish Theorem 3.1.1, it suffices to

show that

min Mj = 0 P− a.s. ⇐⇒
∞∑
n=2

n−1∏
j=1

fj

(
1−

(1− pj
pj

)n−j)
=∞ (3.1.3)

With this in mind, we define a new model which we’ll call the F+ model. This model will

resemble the non-homogeneous frog model on Z in that the distribution of the number of
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frogs beginning at every vertex will be the same in the two cases, as will the drifts of the

active frogs. The only difference will be that in the F+ model all frogs will begin as active

frogs (i.e. they do not need to be landed on to be activated). The next step is to now use

the F+ model to define the process {Nj} where, for each j ≥ 1, Nj equals the number of

frogs originating in {0, 1, . . . , j − 1} that ever hit the point x = j in the F+ model (i.e. {Nj}

is identical to {Mj} except that the F+ model replaces the non-homogeneous frog model

on Z in the definition). {Nj} can now be identified with the triple (Ω,F ,Q), where Q will

refer to the probability measure induced on (Ω,F) by the process {Nj}. Having defined

this construction, we’ll now establish the following proposition, which will serve as the key

step in proving Theorem 3.1.1.

Proposition 3.1.2. Define the random variable K(ω) = # {j ∈ Z+ : ω(j) = 0}. Then

Q(K =∞) = 1 if and only if

∞∑
n=2

n−1∏
j=1

fj

(
1−

(1− pj
pj

)n−j)
=∞ (3.1.4)

If (3.1.4) does not hold then Q(K =∞) = 0.

Remark. It is worth noting that it cannot be assumed that {Mj} and {Nj} are Markov

processes, since Mj (Nj resp.) only gives the number of frogs originating to the left of the

point x = j that ever hit x = j, rather than also providing the information about where each

such frog originated (a significant detail, since frog origin determines drift). Nevertheless,

because the only conditioning we will do with respect to these two processes will involve

conditioning on Mj (Nj resp.) equalling 0, they prove to be sufficient for our purposes.

Proof of Proposition 3.1.2. By a simple martingale argument the probability a frog starting
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at x = j ever hits x = n (for n > j) is
(

1−pj
pj

)n−j
. Hence, the probability that no frogs

beginning at x = j ever hit x = n is

∞∑
i=0

P(Xj = i)
(

1−
(1− pj

pj

)n−j)i
= fj

(
1−

(1− pj
pj

)n−j)
It then follows that for every n ≥ 1 we have

Q(ω(n) = 0) =
(

1−
(1− p0

p0

)n) n−1∏
j=1

fj

(
1−

(1− pj
pj

)n−j)

=⇒ E[K] =
2p0 − 1

p0
+

∞∑
n=2

(
1−

(1− p0

p0

)n) n−1∏
j=1

fj

(
1−

(1− pj
pj

)n−j)
(where E refers to expectation with respect to the probability measure Q). Since

(
1 −(

1−p0
p0

)n)
→ 1 as n→∞, this means

E[K] <∞ ⇐⇒
∞∑
n=2

n−1∏
j=1

fj

(
1−

(1− pj
pj

)n−j)
<∞ (3.1.5)

It now immediately follows that if the right side of (3.1.5) holds, then Q(K = ∞) = 0.

Hence, to prove the proposition it suffices to establish the implication Q(K =∞) < 1 =⇒

E[K] <∞ (note this is just the contrapositive of E[K] =∞ =⇒ Q(K =∞) = 1).

Now since the event {K =∞} cannot depend on the behavior of the frogs from any

finite collection of vertices (for the process {Nj}), it follows that Q(K = ∞|ω(1) = 0) =

Q(K =∞|ω(1) = 1), which in turn establishes the implication

Q(K =∞) < 1 =⇒ Q(1 ≤ K <∞) > 0 (3.1.6)

Next define Vn = {ω ∈ Ω : ω(j) > 0 ∀ j > n} and assume Q(K = ∞) < 1. Letting Q(n)

denote the probability measure obtained by conditioning on the event ω(n) = 0, (3.1.6)

then implies that there must exist L ≥ 1 such that Q(L)(VL) > 0. Additionally, because
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Xi1+i2 � Xi1 ∀ i1, i2 ≥ 1 (since Xi+1 � Xi ∀ i ≥ 1 and � is transitive) and because the

sequence of drifts {pj} is decreasing with respect to j, this implies that for any L′ > L

there exists a coupling of the models
(
F+|NL = 0

)
and

(
F+|NL′ = 0

)
(i.e. the F+ model

with all frogs to the left of the point x = L′ removed) with the following properties: (i)

Every frog originating at x = L+ j in
(
F+|NL = 0

)
has a particular frog that corresponds

to it originating at x = L′ + j in the coupled model
(
F+|NL′ = 0

)
(note that unless

XL+j and XL′+j are identically distributed, there can be frogs originating at x = L′ + j in(
F+|NL′ = 0

)
that do not correspond to frogs originating at x = L + j in

(
F+|NL = 0

)
),

and (ii) whenever a frog in
(
F+|NL = 0

)
takes a step to the right, the corresponding frog

in
(
F+|NL′ = 0

)
does as well (and where if a frog with drift pL+j in

(
F+|NL = 0

)
takes

a step to the left, then the corresponding frog in
(
F+|NL′ = 0

)
must have it’s step go to

the right with probability
pL′+j−pL+j

1−pL+j
). Letting Kn(ω) = # {j > n : ω(j) = 0}, the above

coupling then implies that

(
KL|ω(L) = 0

)
�
(
KL′ |ω(L′) = 0

)
=⇒ Q(L′)(VL′) ≥ Q(L)(VL) (3.1.7)

Now if we define the stopping times Tn where T1(ω) = min {j ≥ 1 : ω(L+ j) = 0} and, for

n ≥ 2, Tn(ω) = min {j > Tn−1(ω) : ω(L+ j) = 0}, we find that for every n ≥ 2

Q(L)(KL ≥ n) =

∞∑
j=1

Q(L)(Tn−1 = j)Q(L+j)(V c
L+j) ≤ Q(L)(V c

L)Q(L)(KL ≥ n− 1) (3.1.8)

(where the inequality follows from (3.1.7)). From this it then follows that for n ≥ 1

Q(L)(KL ≥ n) ≤
(
1−Q(L)(VL)

)n
=⇒ E[KL|ω(L) = 0] ≤

∞∑
n=1

(
1−Q(L)(VL)

)n
=

1−Q(L)(VL)

Q(L)(VL)
<∞
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Since E[KL] ≤ E[KL|ω(L) = 0] and E[K] ≤ L+ E[KL], we find that

E[K] ≤ L+
1−Q(L)(VL)

Q(L)(VL)
<∞

Hence, we’ve established the implication Q(K = ∞) < 1 =⇒ E[K] < ∞, which then

gives the implication E[K] = ∞ =⇒ Q(K = ∞) = 1, thus completing the proof of the

proposition.

3.1.2 Proving Theorem 3.1.1

Proof of Theorem 3.1.1. Coupling the fact that Theorem 3.1.1 is equivalent to (3.1.3) with

the fact that P(min ω(j) = 0) = 1 ⇐⇒ Q(K ≥ 1) = 1, we find the task of proving

Theorem 3.1.1 is reduced to establishing that

Q(K ≥ 1) = 1 ⇐⇒
∞∑
n=2

n−1∏
j=1

fj

(
1−

(1− pj
pj

)n−j)
=∞ (3.1.9)

Noting that the implication

∞∑
n=2

n−1∏
j=1

fj

(
1−

(1− pj
pj

)n−j)
=∞ =⇒ Q(K ≥ 1) = 1 (3.1.10)

follows immediately from Proposition 3.1.2, as does the fact that

∞∑
n=2

n−1∏
j=1

fj

(
1−

(1− pj
pj

)n−j)
<∞ =⇒ Q(K <∞) = 1

our task is reduced to establishing the implication Q(K < ∞) = 1 =⇒ Q(K = 0) > 0.

Now recalling that (3.1.6) implies that if Q(K <∞) = 1 then ∃ L such that Q(VL|ω(L) =

0) > 0, we find that Q(K = 0) ≥
(

1−p0
p0

)L
Q(VL|ω(L) = 0) > 0 (where

(
1−p0
p0

)L
is the

probability that the frog starting at x = 0 in the F+ model ever hits the point x = L), thus

completing the final step of the proof.
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3.2 A simple proof of Gantert and Schmidt’s result

In order to demonstrate the utility of Theorem 3.1.1, in this section we show how it can be

used to obtain a simple two step proof of Gantert and Schmidt’s result from [5] described in

subsection 1.2.1. Recall that in the Gantert and Schmidt model the number of sleeping frogs

at every non-zero vertex are i.i.d. copies of some random variable η. It begins with a single

active frog at the origin and, once activated, a frog performs a random walk, independent

of the other active frogs, that at each step goes left with probability p (where 1
2 < p < 1)

and right with probability 1− p. Their result stated that the model is recurrent if and only

if E[log+η] =∞ (and otherwise it is transient).

Part 1 of my proof uses a method similar to Gantert and Schmidt’s, while part 2 employs

a more novel approach which simplifies matters considerably.

Part 1: WTS: E[log+η] =∞ =⇒ recurrence

Begin by defining the process {Aj} where for every j ∈ Z/ {0} Aj represents the number

of distinct frogs originating at x = j that ever hit the origin in the Gantert-Schmidt model.

Next we define the triple (Ω∗,F∗,P∗) where Ω∗ represents the set of functions ω : Z/ {0} →

N (i.e. the possible trajectories of {Aj}), F∗ represents the σ-field on Ω∗ generated by the

finite dimensional sets, and P∗ represents the probability measure induced on (Ω∗,F∗) by

the process {Aj}. Additionally, denoting the two sided sequence {..., η−2, η−1, η1, η2, . . . }

that gives the number of sleeping frogs beginning at every nonzero vertex as H, we define

the process
{
A

(H)
j

}
in the same way as {Aj}, but where the number of sleeping frogs

starting at each vertex is given by the terms of H. As with {Aj}, each such process

can be identified with a triple (Ω∗,F∗,P∗H), where P∗H represents the probability measure
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that
{
A

(H)
j

}
induces on (Ω∗,F∗). Now since the activated frogs in this model all have

nonzero leftward drift, this means all frogs that begin to the left of the origin are activated

with probability 1. Hence, for j ≥ 1 and H = {..., η−2, η−1, η1, η2, . . . }, we find that

P∗H(ω(−j) > 0) = 1 −
(

1 −
(

1−p
p

)j)η−j
. Now defining U(ω) = # {j ∈ Z+ : ω(−j) > 0},

noting that the random variables ω(−j) are independent with respect to P∗H , and noting

that if η−j ≥
(

p
1−p

)j
then P∗H(ω(−j) > 0) = 1 −

(
1 −

(
1−p
p

)j)η−j
≥ 1 − e−1 > 0, we see

that the implication

{
η−j ≥

( p

1− p

)j
i.o.

}
=⇒ P∗H(U =∞) = 1 (3.2.1)

follows from B.C. II. Furthermore, if we define Γ =
{
H ∈ (ηj)j∈Z∗ : η−j ≥

( p
1−p
)j

i.o.
}

and

let µ represent the probability measure associated with (ηj)j∈Z∗ , then since

∞∑
j=1

P
(
η ≥

( p

1− p

)j)
=
∞∑
j=1

P
(

log+η ≥ jlog
( p

1− p

))
≥
∞∑
j=1

P
(

log+η ≥ j
⌈

log
( p

1− p

)⌉)

≥ 1⌈
log
(

p
1−p

)⌉(E[log+η]−
⌈

log
( p

1− p

)⌉)
we find that another application of B.C. II gives the implication E[log+η] =∞ =⇒ µ(Γ) =

1. Alongside (3.2.1), this establishes part 1.

Part 2: WTS: E[log+η] <∞ =⇒ transience

Choose a constant C such that 0 < C < 1 and C · p
1−p > 1. Noting that

∞∑
j=1

µ
(
η−j ≥ Cj

( p

1− p

)j)
=

∞∑
j=1

P
(

log+η ≥ jlog
( Cp

1− p

))
≤ 1

log
(
Cp
1−p

)E[log+η]

it follows from B.C. I that

E[log+η] <∞ =⇒ µ
(
η−j ≥ Cj

( p

1− p

)j
i.o.
)

= 0 (3.2.2)
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In addition, since for j ≥ 1 we have P∗H(ω(−j) > 0) = 1 −
(

1 −
(

1−p
p

)j)η−j
(see line

preceding (3.2.1)) and

1−
(

1−
(1− p

p

)j)Cj( p
1−p

)j
= (1 + o(1))Cj as j →∞

we find that if η−j ≥ Cj
(

p
1−p

)j
at only finitely many points, then

∑∞
j=1 P∗H(ω(−j) > 0) <

∞. Now coupling this with (3.2.2) and employing B.C. I, we get (for j ≥ 1)

E[log+η] <∞ =⇒ P∗(ω(−j) > 0 i.o.) = 0 (3.2.3)

Letting A =
∑∞

j=1 ω(−j), it follows from (3.2.3) that E[log+η] <∞ =⇒ P∗(A <∞) =

1. If we now let B =
∑∞

j=1 ω(j), we find that in order to prove that E[log+η] <∞ implies

transience, it suffices to establish that for each k with 0 ≤ k <∞ the following implication

holds.

E[log+η] <∞ =⇒ P∗(B <∞|A = k) = 1 (3.2.4)

Now note that in terms of whether or not B = ∞, the only relevant detail regarding the

frogs beginning to the left of the origin is how far the one(s) that travels the furthest to

the right of the origin gets. Denoting this value as C, if we assume P∗(B = ∞) > 0,

then there would have to exist r ≥ 0 such that P∗(B = ∞|C = r) > 0. Since the frog

beginning at the origin reaches the point x = r with positive probability, it would follow

that P∗(B =∞|A = 0) > 0. Hence, in order to establish (3.2.4), it suffices to establish the

implication E[log+η] <∞ =⇒ P∗(B <∞|A = 0) = 1.

The next step is to observe that
(
B|A = 0

)
has the same distribution as the number of

distinct (initially sleeping) frogs that hit the origin in the non-homogeneous model on Z (in

the case where pj = p for each j ≥ 0 and the Xj ’s are i.i.d. copies of η). Using Theorem
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3.1.1, it then follows that in order to establish that E[log+η] < ∞ implies transience, it is

sufficient to establish the implication

E[log+η] <∞ =⇒
∞∑
n=2

n−1∏
j=1

f
(

1−
(1− p

p

)j)
=∞ (3.2.5)

(where f represents the probability generating function of η). Now noting that

∞∑
n=2

n−1∏
j=1

f
(

1−
(1− p

p

)j)
= E

[ ∞∑
n=2

e
∑n−1
j=1 log(1−( 1−p

p
)j)Xj

]
(3.2.6)

we observe that because log
(
1 −

(1−p
p

)j)
= −(1 + o(1))

(1−p
p

)j
as j → ∞, it follows that if

we have 0 < C < 1 such that Cp
1−p > 1 and Xj ≤

(
Cp
1−p

)j
for all but finitely many j, then

∞∑
n=2

e
∑n−1
j=1 log(1−( 1−p

p
)j)Xj =∞

When coupled with (3.2.2) (where we replace η−j with ηj on the right) and (3.2.6), this

establishes (3.2.5) which, as we saw, indicates that the left side of (3.2.5) implies transience,

thus completing the proof.

3.3 Applications of Theorem 3.1.1

3.3.1 Sharp conditions for the i.i.d. case

Having shown in the previous subsection how Theorem 3.1.1 can be used to obtain a concise

proof of Gantert and Schmidt’s result from [5], this subsection is devoted to establishing

a new result that involves a model similar to the one from [5], but where the drifts of the

individual frogs are dependent on where they originated (it will be assumed that no sleeping

frogs reside to the left of the origin). This result comes in the form of the following theorem.
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Theorem 3.3.1. For any version of the nonhomogeneous frog model on Z for which the

Xj’s are i.i.d. with E[X1] < ∞, pj = 1
2 + aj with g(j) = 1

aj
being concave, and d =

min {j : P(X1 = j) > 0}, the model is transient if and only if
∑∞

n=1
e
− K4an

(an)d/2
= ∞ (where f

represents the generating function of Xj and K = −
∫∞

0 log[f(1− e−x)]dx).

Remark 1. Note that X1 having finite first moment (as stated in the theorem) gives us

E[X1] <∞ =⇒ f ′(1) = E[X1] <∞ =⇒ log[f(1− e−x)] = −q · e−x + o(e−x) =⇒ K <∞

(where q = f ′(1)).

Remark 2. One noteworthy (and immediate) consequence of Theorem 3.3.1 is that for fixed

f , an = K/4
logn (for all but finitely many n) represents a natural critical case in the sense

that for an = C
logn the model is transient if and only if C ≥ K/4. An instance of particular

significance is the case where Xj = 1 ∀ j (i.e. each positive integer point begins with exactly

one sleeping frog). Since in this scenario f(x) = x, we find that

K =

∫ ∞
0
|log(1− e−x)|dx =

∫ ∞
0

∞∑
n=1

e−nx

n
dx =

∞∑
n=1

∫ ∞
0

e−nx

n
dx =

∞∑
n=1

1

n2
=
π2

6

Hence, it follows that if an = C
logn , then the model is transient if and only if C ≥ π2

24 , thus

providing a new phase transition for the model from [2] that was mentioned in subsection

1.3.1 of the introduction.

Proof of Theorem 3.3.1. Given our result in Theorem 3.1.1, it follows that in order to es-

tablish this new result, it will suffice to show that

∞∑
n=1

e−
K

4an

(an)d/2
=∞ ⇐⇒

∞∑
n=2

n−1∏
j=1

f
(

1−
(

1− 4an−j
1 + 2an−j

)j)
=∞ (3.3.1)
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(where the expression on the right in (3.3.1) is obtained by substituting 1
2 + aj for pj and

switching j and n− j in (3.1.1)). Furthermore, if we define wn = 4an
1+2an

and note that

e−
K
wn

(wn)d/2

/
e−

K
4an

(an)d/2
→ Ae−

K
2 as n→∞ (3.3.2)

(where A = lim
n→∞

(
1+2an

4

)d/2
) we find that (3.3.1) is equivalent to the following:

∞∑
n=1

e−
K
wn

(wn)d/2
=∞ ⇐⇒

∞∑
n=2

n−1∏
j=1

f(1− (1− wn−j)j) =∞ (3.3.3)

We’ll first establish (3.3.1) (via (3.3.3)) under the condition that a−1
n is O

(√
n
)

(see steps

(i)-(iv)), following which we’ll address the general case.

(i)
∑∞

n=2

∏n−1
j=1 f(1− (1− wn)j) =∞ ⇐⇒

∑∞
n=2

∏n−1
j=1 f(1− (1− wn−j)j) =∞

Since an is decreasing this means wn is as well, from which it follows that

n−1∏
j=1

f(1− (1− wn−j)j) ≥
n−1∏
j=1

f(1− (1− wn)j)

for all n. Hence, in order to establish (i) it suffices to show that

limsup

n−1∑
j=1

log[f(1− (1− wn−j)j)]− log[f(1− (1− wn)j)] <∞ (3.3.4)

Rewriting the expression in (3.3.4) (see below) we now get the inequality

limsup
n−1∑
j=1

log[f(1− (1−wn)j +
(
(1−wn)j − (1−wn−j)j

)
)]− log[f(1− (1−wn)j)] (3.3.5)

≤ limsup
n−1∑
j=1

(
log[f(1− (1− wn)j +

(
(j · (wn−j − wn)) ∧ (1− wn)

)
· (1− wn)j−1)]

−log[f(1− (1− wn)j)]
)

Since a−1
n being O

(√
n
)

implies w−1
n is as well, this means the larger expression in (3.3.5)

is equal to

limsup
n−1> 1

wn

n−1∑
j=1

(
log[f(1− (1− wn)j +

(
(j · (wn−j − wn)) ∧ (1− wn)

)
· (1− wn)j−1)] (3.3.6)
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−log[f(1− (1− wn)j)]
)

≤ limsup
n−1> 1

wn

∑
j≤ 1

wn

(
log[f(1− (1− wn)j +

(
(j · (wn−j − wn)) ∧ (1− wn)

)
· (1− wn)j−1)]

−log[f(1− (1− wn)j)]
)

+ limsup
n−1> 1

wn

∑
1
wn

<j≤n−1

q · (wn−j − wn) · j · (1− wn)j−1

f(1− (1− wn)
1
wn )

(recall that q = f ′(1)). The second term to the right of the inequality in (3.3.6) can now

be bounded above by

q

f(1− e−1)
limsup
n−1> 1

wn

∑
1
wn

<j≤n−1

(wn−j − wn) · j · (1− wn)j−1 (3.3.7)

≤ q

f(1− e−1)
limsup
n−1> 1

wn

∑
1
wn

<j≤n−1

(
1− wn

wn−j

)
· wn−j
wn

· wn · j · e−wn(j−1)

≤ q · e
f(1− e−1)

limsup
n−1> 1

wn

∑
1
wn

<j≤n−1

1

wn · (n− j)
· (wn · j)2 · e−wnj

(where the final inequality in (3.3.7) follows from the fact that
wn−j
wn
≤ n

n−j , which follows

from the concavity of 1
wn

, which in turn follows from the concavity of 1
an

). Next we bound

the final term in (3.3.7) by

q · e
f(1− e−1) · liminf nw2

n

limsup
n−1> 1

wn

∑
1
wn

<j≤n−1

1

1− j
n

· wn · (wnj)2 · e−wnj (3.3.8)

≤ q · e
f(1− e−1) · liminf nw2

n

limsup
n−1> 1

wn

∑
1
wn

<j≤n−1

wn · (wnj)2 · e
−3wnj

4

(with the last inequality following from the fact, implied by w−1
n being O

(√
n
)
, that for

sufficiently large n we have 1
1− j

n

≤ en
− 2

3 j ≤ e
wnj
4 for 1 ≤ j ≤ n − 1). Finally, comparing

the last sum to the integral of x2e−
3
4
x, we see there must exist K < ∞ (independent of

n) such that the sum is bounded above by
∫∞

0 x2e
−3
4
xdx + K. Combining this with w−1

n

being O(
√
n) then implies that the bottom expression in (3.3.8) is finite which, coupled
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with (3.3.7) and (3.3.8), establishes that the second term on the right of the inequality in

(3.3.6) is finite as well.

To complete the proof of (i), it now just needs to be shown that the first term on the

right of the inequality in (3.3.6) is finite as well. Now because for any probability generating

function of a non negative integer valued random variable with finite mean f ′(x)
f(x) is O

(
1
x

)
,

this means there must exist a constant C <∞ such that f ′(x)
f(x) ≤

C
x ∀ x ∈ (0, 1], from which

it follows that the term in question is bounded above by

limsup
n−1> 1

wn

∑
j≤ 1

wn

C · (wn−j − wn) · j · (1− wn)j−1

1− (1− wn)j
(3.3.9)

Next noting that for x ∈ (0, 1] and m ∈ Z+ we have 1−(1−x)m

mx = 1
m

(
1 + (1− x) + · · ·+ (1−

x)m−1
)
≥ (1− x)m−1, it follows that (3.3.9) can be bounded above by

C · limsup
n−1> 1

wn

∑
j≤ 1

wn

(wn−j − wn)

wn
= C · limsup

n−1> 1
wn

∑
j≤ 1

wn

(
1

wn
− 1

wn−j

)
· wn−j

On account of the concavity of 1
wn

, this last expression can itself be bounded above by

C · limsup
n−1> 1

wn

∑
j≤ 1

wn

j

n
· 1

wn
· n

n− j
· wn = C · limsup

n−1> 1
wn

∑
j≤ 1

wn

j

n− j
=
C

2
· limsup
n−1> 1

wn

1

n · w2
n

<∞

(where the second equality along with the finiteness of the last term both follow from the

fact that w−1
n is O

(√
n
)
). Hence, this establishes that (3.3.9), as well as the first term to

the right of the inequality in (3.3.6), is finite. Now if this is combined with the finiteness of

the second expression to the right of the inequality in (3.3.6), along with the inequality in

(3.3.5), we see that (3.3.4) follows, thus completing the proof of (i).

(ii)
∑∞

n=2

∏n−1
j=1 f(1− e−wn·j) =∞ ⇐⇒

∑∞
n=2

∏n−1
j=1 f(1− (1− wn)j) =∞

Because we know that

1− wn ≤ e−wn =⇒
∞∑
n=2

n−1∏
j=1

f(1− e−wn·j) ≤
∞∑
n=2

n−1∏
j=1

f(1− (1− wn)j)
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it follows that in order to establish (ii), it suffices to show (much like in the case of (i)) that

limsup
n−1∑
j=1

log[f(1− (1− wn)j)]− log[f(1− e−wn·j)] <∞ (3.3.10)

Defining Cn = e−wn−(1−wn)
w2
n

, we have the following string of inequalities (where the expres-

sion on the first line equals the expression in (3.3.10), and with S(n, j) representing the

summand on the second line).

limsup
n−1∑
j=1

log[f(1− e−wn·j +
(
(1−wn +Cnw

2
n)j − (1−wn)j

)
]− log[f(1− e−wn·j)] (3.3.11)

≤ limsup
n−1∑
j=1

log[f(1− e−wn·j +
(
(j · Cn · w2

n) ∧ (1− wn)
)
· e−wn(j−1))]− log[f(1− e−wn·j)]

≤ limsup
n−1> 1

wn

∑
j≤ 1

wn

S(n, j) + limsup
n−1> 1

wn

∑
1
wn

<j≤n−1

S(n, j)

If we can show that both of the expressions on the last line of (3.3.11) are finite, then (3.3.10)

will immediately follow. Beginning with the first expression, observe that if we use the fact

(referenced in the proof of (i)) that there must exist C <∞ such that f ′(x)
f(x) ≤

C
x ∀ x ∈ (0, 1],

then we can obtain the string of inequalities

limsup
n−1> 1

wn

∑
j≤ 1

wn

S(n, j) ≤ limsup
n−1> 1

wn

∑
j≤ 1

wn

C · Cn · j · w2
n · e−wn(j−1)

1− e−wn·j
(3.3.12)

≤ C

2
limsup
n−1> 1

wn

∑
j≤ 1

wn

j · w2
n

1− e−wn·j

(where the second inequality follows from the fact that Cn ≤ 1
2 ∀ n). Now using the fact

that

1− e−wn·j =
(
1− e−wn

)
·
(
1 + e−wn + · · ·+

(
e−wn

)j−1) ≥ j · (1− e−wn) · (e−wn)j−1

and that 1−e−wn
wn

≥ 1 − e−1 (since 0 < wn < 1 ∀ n), we find that the expression on the
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second line in (3.3.12) is bounded above by

C

2(1− e−1)
limsup
n−1> 1

wn

∑
j≤ 1

wn

j · w2
n

j · wn · e−1
=

C · e
2(1− e−1)

limsup
n−1> 1

wn

∑
j≤ 1

wn

wn ≤
C · e

2(1− e−1)
<∞

thus establishing that the first sum on the last line of (3.3.11) is finite.

In order to establish (3.3.10), and thus complete the proof of (ii), it only remains to

show that the second sum on the last line of (3.3.11) is finite as well. We accomplish this

via the following string of inequalities:

limsup
n−1> 1

wn

∑
1
wn

<j≤n−1

S(n, j) ≤ C

2(1− e−1)
limsup
n−1> 1

wn

∑
1
wn

<j<∞

wn · (wnj) · e−wn(j−1)

≤ C · e
2(1− e−1)

∫ ∞
0

x · e−xdx+K

(where the first inequality follows from the same argument used in (3.3.12)). Hence, the

proof of (ii) is complete.

(iii)
∑∞

n=2

∏∞
j=1 f(1− e−wn·j) =∞ ⇐⇒

∑∞
n=2

∏n−1
j=1 f(1− e−wn·j) =∞

Since one direction is immediate, we’re left with just having to show that

limsup
∞∑
j=n

−log[f(1− e−wn·j)] <∞ (3.3.13)

Observing that

limsup

∞∑
j=n

−log[f(1− e−wn·j)] = limsup
1

wn

∞∑
j=n

−wnlog[f(1− e−wn·j)]

≤ limsup
1

wn

∫ ∞
(n−1)·wn

−log[f(1− e−x)]dx

we find that, as a consequence of the fact that f ′(1) = q <∞ and w−1
n is O

(√
n
)
, we have

limsup
1

wn

∫ ∞
(n−1)·wn

−log[f(1− e−x)]dx = limsup
1

wn

∫ ∞
(n−1)·wn

q · e−xdx
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= limsup
1

wn
· q · e−(n−1)·wn ≤ limsup

√
n√
l
· q · e−

n−1
n
·
√
n·
√
l = 0

(where l denotes the value of liminf n ·w2
n). Hence, this establishes (3.3.13), thus completing

the proof of (iii).

(iv)
∑∞

n=1
e
−K
wn

(wn)d/2
=∞ ⇐⇒

∑∞
n=2

∏∞
j=1 f(1− e−wn·j) =∞

Denoting cd = P(X1 = d) (recall d = min {j : P(X1 = j) > 0}), observe that

d(log[f(x)])

dx
=

f ′(x)

f(x)
=
dcd + (d+ 1)cd+1x+ . . .

cdx+ cd+1x2 + . . .
(3.3.14)

=
d

x
·

1 + d+1
d

cd+1

cd
x+ . . .

1 +
cd+1

cd
x+ . . .

=
d

x
+O(1)

Now we want to approximate

−K
wn
− log

[ ∞∏
j=1

f(1− e−wn·j)
]

=
1

wn

∫ b 1
wn
cwn

0
log[f(1− e−x)]dx (3.3.15)

− 1

wn

b 1
wn
c∑

j=1

wnlog[f(1−e−wn·j)]+ 1

wn

∫ ∞
b 1
wn
cwn

log[f(1−e−x)]dx− 1

wn

∞∑
d 1
wn
e

wnlog[f(1−e−wn·j)]

within an order of O(1). First noting that the expression on the second line of (3.3.15) is

O(1) as n → ∞ (this follows from the fact that it is bounded above by 0 and below by

log
[
f
(

1− e−wn·b
1
wn
c
)]

), we see that our task is reduced to approximating

1

wn

∫ b 1
wn
cwn

0
log[f(1− e−x)]dx− 1

wn

b 1
wn
c∑

j=1

wn · log[f(1− e−wn·j)] (3.3.16)

=
1

wn

b 1
wn
c∑

j=2

∫ wn

0
log[f(1− e−(wn·j−t))]− log[f(1− e−wn·j)]dt+O(1)

(where the O(1) term represents 1
wn

∫ wn
0 log[f(1−e−x)]dx−log[f(1−e−wn)]). Using (3.3.14),

we then find that the integrand in the bottom expression equals

−
∫ 1−e−wn·j

1−e−(wn·j−t)

d

x
+O(1)dx = dlog

[1− e−(wn·j−t)

1− e−wn·j
]

+O(e−(wn·j−t) − e−wn·j)
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= dlog
[1− e−(wn·j−t)

1− e−wn·j
]

+O(t) = dlog

[
1 +

e−wn·j(1− et)
1− e−wn·j

]
+O(t)

= dlog
[
1− t

wn · j
+O(t)

]
+O(t) = dlog

[
1− t

wn · j

]
+O(t)

(with the final equality following from the fact that n ≥ 2 =⇒ 1 − t
wn·j ≥

1
2 > 0 ∀ t).

Plugging this back into the expression on the second line of (3.3.16) now gives

1

wn

b 1
wn
c∑

j=2

∫ wn

0
dlog

[
1− t

wn · j

]
+O(t)dt =

d

wn

b 1
wn
c∑

j=2

−(j − 1) · wn · log
[
1− 1

j

]
− wn +O(w2

n)

= d

b 1
wn
c∑

j=2

−(j−1)·log
[
1− 1

j

]
−1+O(wn) = d

b 1
wn
c∑

j=2

−1

2j
+O

( 1

j2

)
+O(wn) =

−d
2

log
[ 1

wn

]
+O(1)

(where the O(t) expressions indicate that the absolute value of the term in question is

bounded above by ct for some c < ∞ that is independent of both n and t). Looking back

now at the first line of (3.3.15), we find that

−K
wn
− log

[ ∞∏
j=1

f(1− e−wn·j)
]

=
−d
2

log
[ 1

wn

]
+O(1)

=⇒ C1 ·
e
−K
wn

(wn)d/2
≤
∞∏
j=1

f(1− e−wn·j) ≤ C2 ·
e
−K
wn

(wn)d/2

(for some 0 < C1 < C2 <∞ independent of n), thus completing the proof of (iv).

Having now established (3.3.1) via (i)-(iv) when a−1
n is O

(√
n
)
, our final task is to address

the general case. To do this, we first note that because the proof of (iv) does not use that

a−1
n is O

(√
n
)
, it follows that it continues to hold without this assumption. Coupling this

with (3.3.2), along with the fact that

∞∑
n=2

∞∏
j=1

f(1− e−wn·j) ≤
∞∑
n=2

n−1∏
j=1

f(1− e−wn·j)

≤
∞∑
n=2

n−1∏
j=1

f(1− (1− wn)j) ≤
∞∑
n=2

n−1∏
j=1

f(1− (1− wn−j)j)
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we find that the implication going from left to right in (3.3.1) holds regardless of whether

or not a−1
n is O

(√
n
)
. Hence, to complete the proof of the theorem we simply need to show

that when a−1
n is not O

(√
n
)
, finiteness of the expression on the left side of (3.3.1), still

implies finiteness of the expression on the right.

If we define the sequence ãn so that

1

ãn
=


1
an

if 1
an
< 3
√
n

3
√
n otherwise

it then follows that 1
ãn

is concave and O
(√
n
)

(also note 1
2 < 1

2 + ãn < 1 still holds). In

addition, since we’re assuming that the expression on the left side of (3.3.1) is finite, this

means
∞∑
n=1

e
−K
4ãn

(ãn)d/2
≤
∞∑
n=1

e
−K
4an

(an)d/2
+
∞∑
n=1

e
−K·3

√
n

4 · 3d/2 · nd/4 <∞

Hence, the proof of (3.3.1), for the case where a−1
n is O

(√
n
)
, implies that

∞∑
n=2

n−1∏
j=1

f
(

1−
(

1− 4ãn−j
1 + 2ãn−j

)j)
<∞

Coupling this with the fact that an ≤ ãn, we can now conclude that

∞∑
n=2

n−1∏
j=1

f
(

1−
(

1− 4an−j
1 + 2an−j

)j)
<∞

which, along with the argument in the previous paragraph, establishes that (3.3.1) continues

to hold when a−1
n is not O

(√
n
)
. Hence, the proof of the theorem is complete.

3.3.2 Sharp conditions for the Poiss(λj) scenario

In this section we’ll address the non-uniform frog model with drift on Z (see Section 2.2),

establishing sharp conditions for the case where the drift values of individual frogs are

dependent on where they originate. The result is as follows.
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Theorem 3.3.2. For Xj = Poiss(λj) and pj = 1
2 + aj (with the sequences 1

aj
and λj both

being concave), the nonhomogeneous frog model on Z is transient if and only if

∞∑
n=1

e−λn
(

1
4an
− 1

2

)
=∞ (3.3.17)

Proof. Since Poiss(λj) has generating function eλj(x−1), applying Theorem 3.1.1 reduces our

task to showing that

∞∑
n=1

e−λn
(

1
4an
− 1

2

)
=∞ ⇐⇒

∞∑
n=2

e
−

∑n−1
j=1 λn−j

(
1−

4an−j
1+2an−j

)j
=∞

Noting also that
∞∑
n=2

e−λn
(

1
4an
− 1

2

)
=
∞∑
n=2

e−
∑∞
j=1 λn

(
1− 4an

1+2an

)j

≤
∞∑
n=2

e−
∑n−1
j=1 λn

(
1− 4an

1+2an

)j
≤
∞∑
n=2

e
−

∑n−1
j=1 λn−j

(
1−

4an−j
1+2an−j

)j
we see that it will in fact suffice to establish the implication

∞∑
n=1

e−λn
(

1
4an
− 1

2

)
<∞ =⇒

∞∑
n=2

e
−

∑n−1
j=1 λn−j

(
1−

4an−j
1+2an−j

)j
<∞ (3.3.18)

To do this we’ll begin by proving (3.3.18) for the case where λn and a−1
n are both O

(
n1/3

)
.

Much like with the proof of Theorem 3.3.1, this will be accomplished by showing that

limsup λn

( 1

4an
− 1

2

)
−
n−1∑
j=1

λn−j

(
1− 4an−j

1 + 2an−j

)j
<∞ (3.3.19)

As a first step towards establishing (3.3.19), we observe the following string of inequal-

ities (with εj denoting
aj

1+2aj
).

limsup

n−1∑
j=1

λn(1−4εn−j)
j−λn−j(1−4εn−j)

j = limsup

n−1∑
j=1

(λn−λn−j) ·(1−4εn−j)
j (3.3.20)

≤ limsup

n−1∑
j=1

(λn − λn−j) · (1− 4εn)j ≤ limsup

n−1∑
j=1

j

n
· λn · e−4jεn
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≤ limsup
λn/ε

2
n

n

∞∑
j=1

εn · (εnj) · e−4jεn <∞

(where the inequality between the two sums on the second line of (3.3.20) follows from the

fact that λj is concave and (1 − 4εn)j ≤ e−4jεn , and the finiteness of the last expression

derives from the fact that λn and ε−1
n are both O

(
n1/3

)
, along with the fact that the sum

is bounded above by
∫∞

0 xe−4xdx + K for some K < ∞). Next, we present another string

of inequalities as shown.

limsup

n−1∑
j=1

λn(1−4εn)j−
n−1∑
j=1

λn(1−4εn−j)
j = limsupλn

n−1∑
j=1

(1−4εn)j−(1−4εn−j)
j (3.3.21)

≤ limsup 4λn

n−1∑
j=1

(εn−j−εn)·j·(1−4εn)j−1 = limsup 4λn

n−1∑
j=1

(ε−1
n −ε−1

n−j)·εnεn−j ·j·(1−4εn)j−1

Because ε−1
n is concave (since it equals a−1

n +2), it follows that the expression on the second

line of (3.3.21) is less than or equal to

limsup 4λn

n−1∑
j=1

j

n
· εn−j · j · (1− 4εn)j−1 ≤ limsup 4λn

n−1∑
j=1

εn−j ·
j2

n
· e−4(j−1)εn

≤ limsup 4eλn

n−1∑
j=1

εn

1− j
n

· j
2

n
· e−4jεn = limsup

4eλn/ε
2
n

n

n−1∑
j=1

1

1− j
n

· (jεn)2 · e−4jεnεn

≤ limsup
4eλn/ε

2
n

n

∞∑
j=1

εn · (εnj)2 · e−3jεn <∞

(where the inequality on the second line follows from the fact that for sufficiently large n

we have 1
1− j

n

< ejεn for all j with 1 ≤ j < n, and where the finiteness of the last term

follows from λn and ε−1
n both being O

(
n1/3

)
, along with the fact that the sum is once again

bounded above by
∫∞

0 x2e−3xdx + K for some K < ∞). Combining this last string of

inequalities with (3.3.21), we see that

limsup

n−1∑
j=1

λn(1− 4εn)j −
n−1∑
j=1

λn(1− 4εn−j)
j <∞ (3.3.22)
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Finally, we observe that

limsup λn

( 1

4an
− 1

2

)
−
n−1∑
j=1

λn(1−4εn)j = limsup
∞∑
j=1

λn(1−4εn)j−
n−1∑
j=1

λn(1−4εn)j (3.3.23)

= limsup

∞∑
j=n

λn(1− 4εn)j = limsupλn ·
(1− 4εn)n

4εn
≤ limsup

λn
4εn
· e−4nεn = 0

(where the last equality again follows from λn and ε−1
n both being O

(
n1/3

)
). Now putting

(3.3.20), (3.3.22), and (3.3.23) together, we see that (3.3.19) (and therefore (3.3.18)) does

indeed hold if λn and a−1
n are O

(
n1/3

)
.

To complete the proof of the theorem, (3.3.18) now just needs to be proven for the

general case (i.e. without the condition that λn and a−1
n are O

(
n1/3)). To do this we begin

by defining λ̃n and ãn as

λ̃n =


λn if λn < n1/3

n1/3 otherwise

and

1

ãn
=


1
an

if 1
an
< 3n1/3

3n1/3 otherwise

(again the coefficient 3 has been chosen so that 1
2 <

1
2 + ãn < 1 ∀ n). Now noting that

∞∑
n=1

e−λ̃n
(

1
4ãn
− 1

2

)
≤

( ∞∑
n=1

e−n
1/3
(

3n1/3

4
− 1

2

)
+

∞∑
n=1

e−n
1/3
(

1
4an
− 1

2

)

+
∞∑
n=1

e−λn
(

3n1/3

4
− 1

2

)
+
∞∑
n=1

e−λn
(

1
4an
− 1

2

))
<∞

(where the finiteness of the middle two sums on the right of the inequality follows from the

fact that an <
1
2 and λn > 0 ∀ n ≥ 1), it follows from the proof of (3.3.18) for the case

where λn and a−1
n are O

(
n1/3

)
, that

∞∑
n=2

e
−

∑n−1
j=1 λn−j

(
1−

4an−j
1+2an−j

)j
≤
∞∑
n=2

e
−

∑n−1
j=1 λ̃n−j

(
1−

4ãn−j
1+2ãn−j

)j
<∞
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(where the first inequality follows from the fact that λ̃j ≤ λj and ã−1
j ≤ a−1

j ). Hence, this

establishes (3.3.18) for the general case, and thus completes the proof of the theorem.
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Chapter 4

The frog model on trees

4.1 Recurrence on T3,2

As noted in the introduction, the frog model on T3,2 features one sleeping frog at every non-

root vertex, and a single active frog starting at the root. Once activated, a frog performs

an unbiased random walk on the tree, independent of those performed by the other active

frogs. The main result that will be presented for this model is the following theorem.

Theorem 4.1.1. The frog model on T3,2 is recurrent.

Since the proof of this result centers around modifying the approach used by Hoffman,

Johnson, and Junge in [7] to prove recurrence on T2, I will begin by providing a brief

outline of their proof. They begin by constructing a new self-similar model on T2 (the 2-ary

tree), by having active particles perform non-backtracking random walks that can terminate

under certain carefully chosen conditions. After the introduction of the self-similar model

it is shown how it can be coupled with the original model so that the number of returns

to the root in the original case always dominates that of the self-similar, thus reducing the
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problem to establishing recurrence in the self-similar case. From here, the self-similarity

properties of the new model are exploited in order to show that the generating function f

of the number of particles that return to the root is a fixed point of an operator A given by

Ag(x) =
x+ 2

3
g
(x+ 1

2

)2
+
x+ 1

3
g
(x

2

)(
1− g

(x+ 1

2

))
.

A bootstrapping argument called Poisson thinning is then employed, wherebye A is repeat-

edly applied to the generating functions of a series of Poisson random variables of gradually

increasing mean, in order to show that the only fixed point of A is the zero function, thus

establishing recurrence for both the self-similar and original models.

The difficulty in extending the above result to the 3-ary tree seems to derive from the

3-ary case (it appears) being very close to criticality. Specifically, various constructions of

alternate models that are dominated by the original and possess some reasonable degree of

self similarity, when analyzed both through simulations and iterative applications of their

corresponding operators on generating functions, appear to produce cases that cease to be

recurrent. Hence the decision to address the intermediate case of the 3,2-alternating tree.

The strategy that I use in order to establish recurrence of the frog model on T3,2 (the

3,2-alternating tree) is similar to the one just described. However, many of the techniques

have to be modified substantially in order to accommodate the additional complexity of

the new model. First, a set of constraints similar to those used to define the self-similar

model on the 2-ary tree need to be chosen very carefully in the 3,2 case. This is because

we face the competing necessities of both preserving recurrence and also obtaining enough

self-similarity so that the corresponding operator on generating functions is simple enough

to work with. In attempting to perform this delicate balancing act, we obtain a quasi-

self-similar model which appears to be recurrent. In order to confirm recurrence for the
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new model via a bootstrapping argument similar to the one used for T2, it is necessary to

establish that the corresponding operator is monotone (i.e. that h ≥ g =⇒ Ah ≥ Ag).

This turns out to be one of the more difficult parts of the proof, and is accomplished by

expressing A as a composition of several other operators, each of which is then shown to be

monotone increasing. Once this has been done, a combination of techniques, including the

use of a Python program in which an interval arithmetic package is imported in order to

escape rounding errors, are used to complete the proof. A print out of the Python program

can be found in Appendix A at the end of this dissertation.

4.1.1 The non-backtracking frog model

In order to construct the self-similar frog model referenced above, we first introduce an in-

termediate model called the non-backtracking frog model, in which individual frogs perform

uniformly random non-backtracking walks (i.e. at each step a frog chooses randomly from

the set of all adjacent vertices except the one from which it just came) that are stopped

at the root. As with the original model, we start with one sleeping frog at each non-root

vertex and a single active frog at the root (note that due to the non-backtracking property,

the frog starting at the root will only take steps away from the root). Ultimately, we will

show that the non-backtracking frog model can be embedded inside of the original model,

but we will first need to address some technical details related to non-backtracking random

walks on T3,2.

We start by defining the Markov process Υ : N → T3,2 as follows: If Υ(0) = ∅ (where

∅ represents the root) then Υ simply proceeds as an unbiased random walk on T3,2. If

Υ(0) 6= ∅ then Υ proceeds as an unbiased random walk except that if Υ(n) = ∅ (for some
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∅

a

bb′

c

Figure 4.1: The first four levels of T3,2 with relevant nodes labeled.

n) and Υ(n+1) is one of the two nodes that does not belong to the sub-tree containing Υ(0),

then with probability 5
8 the process terminates at Υ(n+1) (i.e. Υ(j) = Υ(n+1) ∀ j ≥ n+1).

Next Υ is used to define the sequence {tn} in the following way: Let t0 = 0 and, for k ≥ 0,

let sk = sup{s ≥ tk : Υ(s) = Υ(tk)}. If sk <∞ let tk+1 = sk + 1. Otherwise, let tk+1 = tk

(note that, modulo a set of measure 0, sk only equals infinity in the case where Υ is stopped

at one of the children of the root as described above).

We now use Υ and {tk} to define the new process Φ : N → T3,2 as follows: First, if

Υ(0) = ∅ then we just let Φ(k) = Υ(tk) ∀ k ≥ 0. Otherwise, let Φ(0) = Υ(0) and for each

k ≥ 0 let

Φ(k + 1) =


∅ if Φ(k) = ∅

Υ(tk+1) otherwise

Next an important result regarding the process Φ will be established.

Proposition 4.1.2. The process Φ is identical (in terms of its transition probabilities) to

an unbiased non-backtracking random walk on T3,2 that terminates upon hitting the root.

Proof. In the case where Φ(0) = ∅ the process Φ moves one step away from the root each

time, so the conclusion follows by symmetry. When Φ(0) 6= ∅ a more complicated argument
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will be required. We start by making some preliminary computations. Let p1 represent the

probability that an unbiased random walk on T3,2 that starts at a (see Figure 4.1 above)

ever hits the root. Likewise, let p2 represent the probability that an unbiased random walk

on T3,2 starting at b ever hits a. More generally we see by symmetry that the probability an

unbiased random walk on T3,2 starting at a node on an odd numbered level (even resp.) ever

hits the parent of this node is p1 (p2 resp.). Calculating these values we get the expressions

p1 =
1

3
+

2

3
p2p1, p2 =

1

4
+

3

4
p1p2 =⇒ p1 =

1

3− 2p2
, p2 =

1

4− 3p1

Solving for p1 then gives

p1 =
1

3− 2
4−3p1

=
4− 3p1

10− 9p1
=⇒ 9p2

1 − 13p1 + 4 = 0 =⇒ p1 =
4

9
or 1

Since the value 1 can clearly be disregarded this then gives p1 = 4
9 . Plugging this into the

formula for p2 above we get p2 = 3
8 .

Returning now to the task of establishing that the transition probabilities of Φ match

those of the non-backtracking random walk, we begin by addressing the task of showing

that P(Φ(1) = ∅|Φ(0) = a) = 1
3 . Denoting P(Φ(1) = ∅|Φ(0) = a) as p and P(Υ(n + j) =

a for some j > 0|Υ(n) = ∅) as q (where we’re assuming here that Υ originates in the

sub-tree rooted at a), we find (based on the definition of Φ) that

p =
2

3
p2p+

1

3
(1− q) +

1

3
qp =

1

4
p+

1

3
(1− q) +

1

3
qp =⇒ p =

4− 4q

9− 4q

Noting that

q =
1

3
+

1

4
p1q =

1

3
+

1

9
q =⇒ q =

3

8

it then follows from the above formula for p in terms of q, that indeed p = 1
3 . Using this,

symmetry implies that P(Φ(1) = b|Φ(0) = a) = P(Φ(1) = b′|Φ(0) = a) = 1
3 . Hence, we find
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that in the case where t = 0 and Φ(0) = a, the transition probabilities of Φ do agree with

those of the non-backtracking random walk that is stopped at the root.

Moving on, we now want to show that P(Φ(1) = a|Φ(0) = b) = 1
4 . Denoting this last

probability as p and the value P(Υ(n+j) = b for some j > 0|Υ(n) = a) as q (again assuming

Υ originates in the sub-tree rooted at a), it follows from the definition of Φ that

p =
1

4
(1− q) +

1

4
qp+

3

4
p1p =

1

4
(1− q) +

1

4
qp+

1

3
p =⇒ p =

3− 3q

8− 3q

Using the fact that

q =
1

3
+

1

3
p2q +

1

8
q =

1

3
+

1

4
q =⇒ q =

4

9

our formula for p in terms of q then tells us that p = 1
4 . Again using symmetry, we find

that if Φ starts at b at time t = 0, it then goes to each of the four adjacent nodes with

equal probability. Generalizing these results, if we now let p′n represent the probability that

the first step made by Φ is towards the root (given that Φ(0) resides at level n) and let q′n

represent the probability that Υ (starting at level n-1) ever hits a particular child node of

its starting node (e.g. the rightmost node), we find that it follows from induction, along

with the computations for the base cases p′1, p
′
2, q
′
1, and q′2 given above, that

p′n =


1
3 for n odd

1
4 for n even

Once again exploiting symmetry, we find that the above result implies that when beginning

at a non-root vertex, Φ moves to each of the adjacent vertices with equal probability.

Now note that by the same symmetry considerations which ensure that the transition

probabilities for Φ, when begun at the root, match those in the non-backtracking case, it

also follows that, following a down step, Φ’s transition probabilities again match those of
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the non-backtracking random walk (stopped at ∅). Coupling this with the results from

the previous paragraph, the only remaining task involved in establishing the proposition is

addressing the case of Φ’s transition probabilities after it has just taken a step towards the

root. Since Φ always stops upon hitting the root, the case where its previous step brought

it to ∅ is immediate. Now if we let rn (for n ≥ 1) represent the probability of Φ taking a

step towards the root, conditioned on its previous step having brought it from level n + 1

of T3,2 to level n, we find that

rn =


p2p′n
p′n+1

if n is odd

p1p′n
p′n+1

if n is even

Plugging in the values for p1, p2, and p′n, then gives rn = 1
2 for n odd and rn = 1

3 for n

even. From this it then follows that, conditioned on having just moved from a node to its

parent (not the root), Φ then moves to each of the available adjacent nodes (other than the

one it just came from) with equal probability. Hence, we’ve completed the task of showing

that the transition probabilities of Φ match those of the non-backtracking random walk

that is stopped at the root, and thus, have completed the proof of the proposition.

Having obtained the above result, the proceeding corollary regarding the non-backtracking

frog model on T3,2 follows as an almost immediate consequence.

Corollary 4.1.3. There exists a coupling between the non-backtracking and original frog

models on T3,2 where the path of each non-backtracking frog is a subset of the path of the

corresponding frog in the original model.

Proof. First recalling how the process Φ was constructed using Υ, we can see that the col-

lection of vertices landed on for an instance of Φ is a subset of the collection of vertices
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landed on for the corresponding instance of Υ. Likewise, since the process Υ is just a (po-

tentially) truncated version of an unbiased random walk on T3,2, it follows from Proposition

4.1.2 that the non-backtracking random walk on T3,2 that terminates upon hitting the root

can be coupled with the unbiased random walk on T3,2 so that the path traversed in the

non-backtracking case is a subset of the path traversed in the unbiased case. From here

the entire non-backtracking frog model on T3,2 can be coupled with the original model by

starting with the original, and defining a corresponding non-backtracking model for which

the path of each activated frog is determined by the instance of Φ corresponding to the

path traversed by the same frog in the original model. Using this coupling, we find that

the path of each frog in the non-backtracking model is a subset of that of its counterpart

in the original model.

4.1.2 Coupling the original and self-similar models

The self-similar frog model on T3,2 is obtained by refining the non-backtracking frog model

through the addition of the following constraints: (i) Any frog that goes down an edge (i.e.

travels away from the root) from an even to an odd level, where that edge has already

been traveled along by another frog, is immediately stopped. If multiple frogs go down a

previously untraveled edge simultaneously then all but one are stopped. (ii) The same rule

applies for frogs traveling down an edge from an odd to an even level except that a node on

an even level can have up to two frogs land on it without being stopped (the frog originating

at its parent node along with whichever frog activated the frog at its parent node) provided

that the frog residing at the sibbling of the node in question has yet to be activated (see

Figure 4.2 below).
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∅

ba

Figure 4.2: A depiction of a scenario in which a node on an even level (node b) has two

frogs land on it without being stopped. Note that in order for such an event to accord with

the specifications of the self-similar model, the sibling node (labeled a in the figure) cannot

yet have been landed on by an active frog.

Since the frogs in the self-similar model defined above conduct truncated non-backtracking

random walks stopped at the root, this yields a natural coupling between the self-similar

and non-backtracking frog models in which the frogs in the self-similar model follow paths

which are subsets of the paths followed by the corresponding non-backtracking frogs. Com-

posing this coupling with the coupling described in the proof of Corollary 4.1.3 then gives a

coupling between the self-similar and original frog models that also possesses this property.

Letting V and Z represent the number of frogs that hit the root in the self-similar and

original models respectively, we obtain the following proposition.

Proposition 4.1.4. There exists a coupling between the self-similar and original frog models

on T3,2 in which V is dominated by Z.

Armed with this result, we now find that to prove Theorem 4.1.1 it suffices to prove recur-

rence of the self-similar frog model (i.e. that P(V =∞) = 1).
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4.1.3 Constructing the operator A

Let f(x) := E[xV ] be the generating function for V . Establishing that P(V = ∞) = 1

will involve showing that f(x) is a fixed point for an operator A. This will be done by

introducing operators L and H. We can initially think of all three operators as acting on

C0([0, 1]) (though we’ll restrict our focus to a much smaller class of functions later on).

To start, define the random variable Vc to be the number of frogs (in the self-similar frog

model) originating from the sub-tree rooted at c (see Figure 4.1 in subsection 4.1.1), which

hit b (conditioned on the frog at c being activated). Letting T3,2(c) represent the sub-tree

rooted at c, we find that if we ignore frogs originating from outside {b} ∪ T3,2(c) which are

stopped at b or c after the frog at c has been activated (this can be done since these frogs

do not activate any other frogs in {b} ∪ T3,2(c)), then the self-similar frog model restricted

to {b} ∪ T3,2(c) (following the activation of the frog at c) looks exactly like the self-similar

frog model on T3,2 following the initial step taken by the frog originating at the root. From

this it then follows that V and Vc have the same distribution, and therefore that Vc also

has f as its probability generating function.

Next define the random variable Vb to be the number of frogs originating from the sub-

tree rooted at b (see Figure 4.1 again), which hit a (conditioned on the frog at b being

activated by exactly one frog from the pair consisting of the frog starting at the root and

the frog starting at a). Now letting l(x) represent the probability generating function of Vb,

we present the lemma below relating the functions l(x) and f(x) via the following operator.

Definition 4.1.5. Lg(x) := x+3
4 g(x+2

3 )3 + 2 · x+2
4

(
g(x+1

3 )2− g(x+2
3 )g(x+1

3 )2
)

+ x+1
4

(
g(x3 )−

2g(x+1
3 )g(x3 )− g(x+2

3 )2g(x3 ) + 2g(x+2
3 )g(x+1

3 )g(x3 )
)

.
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a

b

c′′ c′ c

Figure 4.3: The right side of the first three levels of the subtree of T3,2 rooted at a.

Lemma 4.1.6. l(x) = Lf(x).

Now the operatorH will be introduced, along with another important lemma. In the lemma,

h(x) will refer to E[xV
′
b ], where V ′b is the random variable representing the number of frogs

originating from the sub-tree rooted at b which hit a (see Figures 4.1 and 4.3), conditioned

on vertex b being hit by both the frog starting at the root and the frog that started at a.

Definition 4.1.7. Hg(x) := 1
3Lg(x) + x+3

6 g(x+2
3 )3 + x+2

6

(
g(x+1

3 )2 − g(x+2
3 )g(x+1

3 )2
)

.

Lemma 4.1.8. h(x) = Hf(x)

Next we define A and state the main result of this section, following which are the proofs

of our two lemmas.

Definition 4.1.9. Ag(x) := x
3L[g](x2 )+ x+1

3

(
L[g](x+1

2 )
)2
− x

3L[g](x+1
2 )L[g](x2 )+ 1

3H[g](x2 )+

1
3L[g](x+1

2 )H[g](x+1
2 )− 1

3L[g](x+1
2 )H[g](x2 ).

Remark 1. Note the brackets in expressions of the form L[g](x2 ) above, which are there to

indicate that the expression is to be interpreted as the value of the function Lg at x
2 .

Theorem 4.1.10. Af = f .
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a

b

c′′ c′ c

a

b

c′′ c′ c

a

b

c′′ c′ c

a

b

c′′ c′ c

Figure 4.4: Diagrams representing the four events (from left to right) A1, A2, A3, and A4.

Proof of Lemma 4.1.6. Observe Figure 4.3 on the previous page, which shows the relevant

portion of T3,2. Since we are conditioning on the frog at b being activated by either the

frog from a or the frog from the root (but not both), it follows from property (ii) of the

self-similar model (see beginning of subsection 4.1.2) that no additional frogs can enter

the sub-tree rooted at b (meaning any such frogs are stopped at b). Hence, once the frog

beginning at b is activated, we are starting with two active frogs there where one of them

(we’ll call it #1) can go in any of the four available directions and the other (call it #2)

must travel away from vertex a. Letting A represent the event that #1 goes to a, l(x) can

then be expressed as l(x) = E[xVb ] = E[xVb ;A] + E[xVb ;Ac].

Now A is split up into the four separate events A1, A2, A3, and A4 (see Figure 4.4

above) as follows: A1 represents having the sub-tree activated by #2 fail to activate either

of its two sibling sub-trees (represented by c′ and c′′ in leftmost figure); A2 represents the

sub-tree activated by #2 activating exactly one of its sibling sub-trees, which itself fails

to activate the other sibling; A3 represents the sub-tree activated by #2 activating exactly

one of its sibling sub-trees, which itself activates the other sibling; and A4 represents the

sub-tree activated by #2 activating both of its sibling sub-trees.
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The next step is to evaluate E[xVb ;Ai] for each i as follows:

E[xVb ;A1] =
x

4

∞∑
k=0

P(Vc = k)
(1

3

)k
xk =

x

4
f
(x

3

)
(4.1.1)

E[xVb ;A2] =
x

4

∞∑
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E[xVb ;A3] =
x
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Figure 4.5: Illustrations representing the three events (from left to right) B1, B2, and B3.

E[xVb ;A4] =
x
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Having obtained expressions for the Ai’s, we now split up Ac into the three separate

events B1, B2, and B3 (see Figure 4.5 above) in the following way: B1 represents having

#1 and #2 activate the same sub-tree; B2 represents #1 and #2 activating different sub-

trees (represented by c and c′ in middle figure above), neither of which activates the third

sub-tree; and B3 represents #1 and #2 activating different sub-trees, which then activate

the third sub-tree. Next the expression E[xVb ;Bi] is evaluated for each i as follows:

E[xVb ;B1] =
1

x
E[xVb ;A] (4.1.5)
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(this follows from the fact that P(A) = P(B1) and
(
Vb − 1

)
|A = Vb|B1)
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Using the calculations from (4.1.1)-(4.1.7) we now find that

l(x) = E[xVb ] =
4∑
i=1

E[xVb ;Ai] +
3∑
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E[xVb ;Bi] (4.1.8)
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=
x+ 3

4
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(x+ 2
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= Lf(x)

Hence, the proof of Lemma 4.1.6 is complete.

Proof of Lemma 4.1.8. The scenario under consideration (see Figure 4.3 again) begins with

three active frogs at vertex b, where one (call it #1) is free to go in any of the four available

directions, and the other two (call them the #2 frogs) can go in any of the three directions

away from the root. Letting A0 represent the event that the two #2 frogs travel to the same

node from b (call this node c), h(x) can be expressed as E[xV
′
b ] = E[xV

′
b ;A0] + E[xV

′
b ;Ac0].

If the event A0 occurs, since one of the two #2 frogs is stopped at c, it follows that V ′b |A0

has the same distribution as Vb. Hence, this implies that E[xV
′
b ;A0] = P(A0)E[xV

′
b |A0] =

P(A0)E[xVb ] = 1
3Lf(x).

Turning next to the event Ac0, it will be split up into the events C1, C2, and C3 (see

Figure 4.6 below) as follows: C1 represents having the #2 frogs go to different nodes and

the #1 frog go to a; C2 represents the #2 frogs going to different nodes and the #1 frog

going to the same node as one of the #2 frogs; and C3 represents the #2 frogs going to

different nodes and the #1 frog going to the third sibling node. Evaluating E[xV
′
b ;Ci] for

each i now gives the following:
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Figure 4.6: Illustrations representing the three events (from left to right) C1, C2, and C3.

E[xV
′
b ;C1] =
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Adding the expressions (4.1.9)-(4.1.11) to our expression for E[xV
′
b ;A0] then gives

h(x) = E[xV
′
b ] =

1

3
Lf(x) +

x+ 3

6
f
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3

)3
+
x+ 2
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(
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)
f
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= Hf(x)

Hence, the proof is complete.
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∅

a

bb′

Figure 4.7: A representation of D1, defined as the event in which the frog coming from the

root and the frog at the first vertex it hits (labelled a in the figure above) go to different

children of a.

∅

a

bb′

Figure 4.8: A representation of D2, defined as the event in which the frog at the first vertex

hit, upon being activated, returns to the root.

∅

a

bb′

Figure 4.9: A representation of D3, defined as the event in which the frog coming from the

root and the frog coming from a (where a once again represents the first vertex landed on)

go to the same child of a.
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With Lemmas 4.1.6 and 4.1.8 established, the proof of Theorem 4.1.10 can now be

presented.

Proof of Theorem 4.1.10. Begin by separating the collection of possible outcomes into the

three events D1, D2, and D3 (see Figures 4.7, 4.8, and 4.9 above). Next we compute

E[xV ;Di] for each i beginning with i = 1.

E[xV ;D1] =
1

3

( ∞∑
k=0

P(Vb = k)
k∑
j=0

(1

2

)k
xj
(
k

j

))2
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3

(
L[f ]

(x+ 1

2

))2
(4.1.12)

(where above we use the fact, shown in (4.1.8), that E[xVb ] = Lf(x)). D2 can be separated

into the two events D
(1)
2 and D

(2)
2 as follows: D

(1)
2 represents having all frogs that go to a

from the sub-tree rooted at b then travel to the root; and D
(2)
2 represents having at least one

frog that travels to a from the sub-tree rooted at b then go to b′ (i.e. D2/D
(1)
2 ). Computing

E[xV ;D
(i)
2 ] for i = 1, 2 now gives

E[xV ;D
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2 ] =

x
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Moving on to D3, it can also be broken up into two separate events in the following way:

D
(1)
3 represents having all frogs that go to a from the sub-tree rooted at b then travel to

the root; and D
(2)
3 represents having at least one frog that travels to a from the sub-tree

rooted at b then go to b′ (note the only difference between these two events and the events
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D
(1)
2 and D

(2)
2 respectively is the behavior of the frog starting at a; as seen in Figures 4.8

and 4.9). Computing E[xV ;D
(i)
3 ] for i = 1, 2 gives
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Now adding together the expressions (4.1.12)-(4.1.16) gives
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= Af(x)

Hence, the proof of Theorem 4.1.10 is complete.

4.1.4 Monotonicity of A

In order to prove Theorem 4.1.1 (i.e. show that P(V = ∞) = 1) it suffices to show that

f(x) = 0 on [0, 1). With the proof of Theorem 4.1.10 now complete, this task is reduced

to showing that Anf(x) → 0 as n → ∞ ∀ x ∈ [0, 1). The first major step involved in

accomplishing this will be to prove the following proposition.
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bb′

U U U U U U

Figure 4.10: A depiction of the construction used to show that AS ⊆ S.

Proposition 4.1.11. Define S to be the space of all probability generating functions (on

[0, 1]) associated with probability distributions on {0, 1, . . . } ∪ {∞}. Let g1, g2 ∈ S with

g1 ≥ g2 on [0, 1]. Then Ag1 ≥ Ag2 on [0, 1].

The proof of 4.1.11 will require the lemma below.

Lemma 4.1.12. LS ⊆ S, HS ⊆ S, and AS ⊆ S.

Proof. Begin by defining the following model: Start with a single active frog at the root

and sleeping frogs at the other three nodes (see Figure 4.10 above). The frog at the root

performs a non-backtracking random walk that is stopped upon hitting any one of the six

boxes, and any time an active frog hits a vertex with a sleeping frog, that frog is activated

and begins performing its own non-backtracking random walk that is stopped upon hitting

either the root or one of the boxes. In addition, the first time a box is hit by a frog, it

releases frogs which also perform non-backtracking random walks that are stopped upon

hitting either the root or another box.

The number of frogs released by the different boxes, conditioned on being hit, are i.i.d.

random variables with distribution U . Furthermore, the model obeys property (ii) with
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respect to the nodes b and b′ (see beginning of subsection 4.1.2). Now let A∗U represent

the distribution of the number of frogs that hit the root in this model. It then follows that

A∗Ṽc = Ṽ (where Ṽ and Ṽc represent the distributions of V and Vc). Now recall that the

proof of Theorem 4.1.10 involved calculating the generating function of V (denoted as f(x))

in terms of the generating function of Vc (also denoted as f(x) on account of our recognition

that V and Vc share the same distribution) and showing that V has generating function

Af (i.e. Af is the generating function associated with the distribution A∗Ṽc). Since the

derivation of this formula was carried out purely symbolically (meaning without taking into

account the particular properties of Vc or its generating function f), this means that for

any probability distribution U (concentrated on {1, 2, . . . }∪{∞}) with generating function

η, the generating function of the distribution A∗U is Aη. Hence, it follows that AS ⊆ S.

The proofs of LS ⊆ S and HS ⊆ S are very similar to the proof of AS ⊆ S, so some

of the details will therefore be omitted. In both cases we define a model using the diagram

below (see Figure 4.11). For L, begin with two active frogs at vertex b, one of which must

go in one of the three downward directions, while the other is free to go in any of the four

available directions. Active frogs are to perform non-backtracking random walks which stop

upon hitting either a or any of the boxes. The first time a box is hit by an active frog,

it releases active frogs according to the distribution U . The numbers of frogs released by

the different boxes (conditioned on being hit) are independent. Letting L∗U represent the

distribution of the number of frogs that hit a, we find (by a similar argument to the one

used for A∗) that the generating function of L∗U is Lη (where η once again represents the

generating function associated with the distribution U). From this it follows that LS ⊆ S.

Furthermore, using a model which differs from this one only in that a single additional
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Figure 4.11: A depiction of the construction used to show that HS ⊆ S and LS ⊆ S.

active frog that can go in any of the three downward directions is positioned at b, we also

find that H∗U has generating function Hη, from which it follows that HS ⊆ S. Hence, the

proof is complete.

Proof of Proposition 4.1.11. The first step will be to show that Lg1(x) ≥ Lg2(x) on [0, 1].

Letting Ft(x) = tg1(x) + (1− t)g2(x), it will suffice to show that ∂(LFt(x))
∂t ≥ 0 ∀ x, t ∈ [0, 1].

Using the formula for L (see Definition 4.1.5) along with the fact that ∂Ft(x)
∂t = g1(x)−g2(x),

then gives the following equalities:
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4

(
g1

(x
3

)
− g2

(x
3

))

=
[(

2 · x+ 3

4
Ft

(x+ 2

3

)2
− 2 · x+ 2

4
Ft

(x+ 1

3

)2)
+
(x+ 3

4
Ft

(x+ 2

3

)2
− x+ 1

2
Ft

(x+ 2

3

)
Ft

(x
3

))
+
(x+ 1

2
Ft

(x+ 1

3

)
Ft

(x
3

))](
g1

(x+ 2

3

)
− g2

(x+ 2

3

))
+
[(

1− Ft
(x+ 2

3

))(
(x+ 2)Ft

(x+ 1

3

)
− x+ 1

2
Ft

(x
3

))](
g1

(x+ 1

3

)
− g2

(x+ 1

3

))
+
[x+ 1

4

(
1 + Ft

(x+ 2

3

)
− 2Ft

(x+ 1

3

))(
1− Ft

(x+ 2

3

))](
g1

(x
3

)
− g2

(x
3

))

Since Ft is a convex combination of the probability generating functions g1 and g2, this

means Ft ∈ S (for any t ∈ [0, 1]). It follows that 0 ≤ Ft ≤ 1 on [0, 1] and that Ft is

increasing on [0, 1] (w.r.t. x). This then implies that each of the three terms inside the first

set of brackets above is non-negative. Likewise, it also follows that the expressions inside

the second and third sets of brackets are non-negative. Coupling this with the fact that

g1 ≥ g2, it can then be concluded that ∂(LFt(x))
∂t ≥ 0 ∀ x, t ∈ [0, 1], from which it follows

that Lg1 ≥ Lg2 on [0, 1].

It is also necessary to establish thatHg1 ≥ Hg2 on [0, 1]. Recalling the formula forH (see

Definition 4.1.7) and using the fact, established above, that Lg1 ≥ Lg2, this task amounts

to showing that Gg1 ≥ Gg2 (where Gg(x) = x+3
6 g(x+2

3 )3 + x+2
6 (g(x+1

3 )2 − g(x+2
3 )g(x+1

3 )2)).
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Once again letting Ft(x) = tg1(x) + (1− t)g2(x), we find that

∂(GFt(x))

∂t
=
x+ 3

6
· 3Ft

(x+ 2

3

)2(
g1

(x+ 2

3

)
− g2

(x+ 2

3

))
+
x+ 2

6
· 2Ft

(x+ 1

3

)(
g1

(x+ 1

3

)
− g2

(x+ 1

3

))
− x+ 2

6
Ft

(x+ 1

3

)2(
g1

(x+ 2

3

)
− g2

(x+ 2

3

))
− x+ 2

6
· 2Ft

(x+ 2

3

)
Ft

(x+ 1

3

)(
g1

(x+ 1

3

)
− g2

(x+ 1

3

))

=
[
3 · x+ 3

6
Ft

(x+ 2

3

)2
− x+ 2

6
Ft

(x+ 1

3

)2](
g1

(x+ 2

3

)
− g2

(x+ 2

3

))
+
[x+ 2

3
Ft

(x+ 1

3

)
− x+ 2

3
Ft

(x+ 1

3

)
Ft

(x+ 2

3

)](
g1

(x+ 1

3

)
− g2

(x+ 1

3

))
It then follows from the three facts –(i) 0 ≤ Ft ≤ 1, (ii) Ft is increasing with respect to x,

and (iii) g1 ≥ g2 – that both terms in the above sum are non-negative, which means

∂(GFt(x))

∂t
≥ 0 ∀ x, t ∈ [0, 1] =⇒ Gg1 ≥ Gg2 =⇒ Hg1 ≥ Hg2

as desired.

Having established the monotonicity of L and H on S, we are now ready to prove the

proposition. To start, define Ã to be an operator on S × S where

Ã[f1, f2](x) =
1

3
f1

(x+ 1

2

)2
+
x

3
f1

(x
2

)
+
x

3
f1

(x+ 1

2

)(
f1

(x+ 1

2

)
− f1

(x
2

))
+

1

3
f2

(x
2

)
+

1

3
f1

(x+ 1

2

)(
f2

(x+ 1

2

)
− f2

(x
2

))
Noting that Ag(x) = Ã[Lg,Hg](x) and that LS ⊆ S, HS ⊆ S, Lg1 ≥ Lg2, and Hg1 ≥ Hg2,

it suffices to show that if H1, H2, G1, G2 ∈ S with H1 ≥ G1 and H2 ≥ G2, then the following

inequality holds:

Ã[H1, H2](x) ≥ Ã[G1, G2](x) (4.1.17)
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Defining F
(i)
t = tHi + (1− t)Gi (for i = 1, 2), if it can be established that

∂(Ã[F
(1)
t , F

(2)
t ](x))

∂t
≥ 0 (4.1.18)

∀ t, x ∈ [0, 1], then (4.1.17) will follow. Now writing out the formula for the left side of

(4.1.18) gives the following expression:

2

3
F

(1)
t

(x+ 1

2

)(
H1

(x+ 1

2

)
−G1

(x+ 1

2

))
+
x

3

(
H1

(x
2

)
−G1

(x
2

))
+

2x

3
F

(1)
t

(x+ 1

2

)(
H1

(x+ 1

2

)
−G1

(x+ 1

2

))
− x

3
F

(1)
t

(x+ 1

2

)(
H1

(x
2

)
−G1

(x
2

))
− x

3
F

(1)
t

(x
2

)(
H1

(x+ 1

2

)
−G1

(x+ 1

2

))
+

1

3

(
H2

(x
2

)
−G2

(x
2

))
+

1

3
F

(1)
t

(x+ 1

2

)(
H2

(x+ 1

2

)
−G2

(x+ 1

2

))
+

1

3
F

(2)
t

(x+ 1

2

)(
H1

(x+ 1

2

)
−G1

(x+ 1

2

))
− 1

3
F

(1)
t

(x+ 1

2

)(
H2

(x
2

)
−G2

(x
2

))
− 1

3
F

(2)
t

(x
2

)(
H1

(x+ 1

2

)
−G1

(x+ 1

2

))

=
1

3

([(
2 · (x+ 1)F

(1)
t

(x+ 1

2

)
− xF (1)

t

(x
2

))
+
(
F

(2)
t

(x+ 1

2

)
− F (2)

t

(x
2

))]
(
H1

(x+ 1

2

)
−G1

(x+ 1

2

))
+
[
x− xF (1)

t

(x+ 1

2

)](
H1

(x
2

)
−G1

(x
2

))
+
[
F

(1)
t

(x+ 1

2

)](
H2

(x+ 1

2

)
−G2

(x+ 1

2

))
+
[
1− F (1)

t

(x+ 1

2

)](
H2

(x
2

)
−G2

(x
2

)))

Now noting that F
(1)
t , F

(2)
t ∈ S (implying they are increasing and between 0 and 1), and

recalling that Hi ≥ Gi for i = 1, 2, we see that (4.1.18) follows. This then implies (4.1.17),

which implies Ag1 ≥ Ag2. Hence, the proof of the proposition is complete.

4.1.5 Completing the proof of Theorem 4.1.1

Having established that A is monotone, it follows that Anf ≤ An1 ∀ n ≥ 1. Hence, to show

that the expression on the left goes to 0, it suffices to show that An1 → 0 on [0, 1). This

will be achieved by employing a method referred to in [6] as Poisson thinning. Specifically,
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it involves establishing the existence of a sequence 0 = a0 < a1 < a2 < . . . (diverging to

infinity) such that An1 ≤ ean(x−1) (the probability generating function for Poiss(an)) for

all n ≥ 0. The existence of this sequence is established in two parts. First, in Proposition

4.1.13 it is shown that ∀ a ≥ 15, A[ea(x−1)] ≤ e(a+ε)(x−1) on [0, 1] (where ε = 1
20). It then

follows from a simple induction argument which relies on the monotonicity of A established

in Proposition 4.1.11, that An[ea(x−1)] ≤ e(a+nε)(x−1) ∀ n ≥ 1. From this point, establishing

the existence of the sequence {an} reduces to establishing the existence of a finite sequence

0 = a0 < a1 < · · · < aN (where aN ≥ 15) such that An1 ≤ ean(x−1) on [0, 1] ∀ n with

0 ≤ n ≤ N . This is accomplished (with the help of a Python program) in Proposition

4.1.15, where we inductively construct a sequence 0 = a0 < a1 < · · · < aN satisfying the

above constraints. Along with Proposition 4.1.13, this will then establish the existence of

{an}. The result An1 → 0 on [0, 1) follows immediately, which then implies Anf → 0

on [0, 1). As explained at the beginning of the previous section, this is then sufficient for

establishing Theorem 4.1.1.

Proposition 4.1.13. If a ≥ 15 then A[ea(x−1)] ≤ e(a+ 1
20

)(x−1) on [0, 1].

Proof. The first step will be to define a simple expression Ψ(x, a) to serve as an upper

bound on A[ea(x−1)] (for a ≥ 15). To start, note that

A[g](x) =
x

3
L[g]

(x
2

)
+
x+ 1

3

(
L[g]

(x+ 1

2

))2
− x

3
L[g]

(x+ 1

2

)
L[g]

(x
2

)
(4.1.19)

+
1

3
H[g]

(x
2

)
+

1

3
L[g]

(x+ 1

2

)
H[g]

(x+ 1

2

)
− 1

3
L[g]

(x+ 1

2

)
H[g]

(x
2

)

≤ x

3
L[g]

(x
2

)
+
x+ 1

3

(
L[g]

(x+ 1

2

))2
+

1

3
H[g]

(x
2

)
+

1

3
L[g]

(x+ 1

2

)
H[g]

(x+ 1

2

)

∀ g ∈ S. To bound the larger expression in (4.1.19) above (for g(x) = ea(x−1)) we’ll first

79



obtain upper bounds for L[ea(x−1)] and H[ea(x−1)] as follows:

L[ea(x−1)] =
x+ 3

4
ea(x−1) + 2 · x+ 2

4

(
e

2a
3

(x−2) − ea(x− 5
3

)
)

+
x+ 1

4

(
e
a
3

(x−3) − 2e
2a
3

(x− 5
2

) − ea(x− 5
3

) + 2ea(x−2)
)

Observing that for all x ∈ [0, 1], 2·x+2
4 ea(x− 5

3
) ≥ e−

a
3 e

2a
3

(x−2), 2·x+1
4 e

2a
3

(x− 5
2

) ≥ 1
2e
−a

3 e
2a
3

(x−2),

and x+1
4 ea(x− 5

3
) ≥ 1

4e
−a

3 e
2a
3

(x−2), along with the fact that 2 · x+2
4 e

2a
3

(x−2) ≤ 3
2e

2a
3

(x−1) and

2 · x+1
4 ea(x−2) ≤ e−

a
3 e

2a
3

(x−2), we find that if we make the given substitutions in the expres-

sion for L[ea(x−1)] above, it gives

L[ea(x−1)] ≤ x+ 3

4
ea(x−1) +

x+ 1

4
e
a
3

(x−3) + ce
2a
3

(x−2)

(where c = 3
2 −

3
4e
−a

3 ). The above upper bound on L[ea(x−1)] will be denoted as la(x). Now

noting that

H[ea(x−1)] =
x+ 3

4
ea(x−1) + 2 · x+ 2

6

(
e

2a
3

(x−2) − ea(x− 5
3

)
)

+
x+ 1

12

(
e
a
3

(x−3) − 2e
2a
3

(x− 5
2

) − ea(x− 5
3

) + 2ea(x−2)
)

applying a similar set of inequalities then gives the bound

H[ea(x−1)] ≤ x+ 3

4
ea(x−1) +

x+ 1

12
e
a
3

(x−3) + de
2a
3

(x−2)

(where d = 1− 7
12e
−a

3 ). This upper bound on H[ea(x−1)] will be denoted as ha(x).

Combining the above bounds with (4.1.19) we obtain the inequality

A[ea(x−1)] ≤ x

3
la

(x
2

)
+
x+ 1

3
la

(x+ 1

2

)2
+

1

3
ha

(x
2

)
+

1

3
la

(x+ 1

2

)
ha

(x+ 1

2

)
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Writing out this full expression gives the following:

A[ea(x−1)] ≤ x

3

(x+ 6

8
e
a
2

(x−2) +
x+ 2

8
e
a
6

(x−6) + ce
a
3

(x−4)
)

+
x+ 1

3

((x+ 7

8

)2
ea(x−1) +

(x+ 3

8

)2
e
a
3

(x−5) + c2e
2a
3

(x−3)

+ 2 · x+ 7

8
· x+ 3

8
e

2a
3

(x−2) + 2 · x+ 7

8
· ce

5a
6

(x− 9
5

) + 2 · x+ 3

8
· ce

a
2

(x− 11
3

)
)

+
1

3

(x+ 6

8
e
a
2

(x−2) +
x+ 2

24
e
a
6

(x−6) + de
a
3

(x−4)
)

+
1

3

((x+ 7

8

)2
ea(x−1) +

x+ 3

8
· x+ 3

24
e
a
3

(x−5) + cde
2a
3

(x−3)

+
4

3
· x+ 7

8
· x+ 3

8
e

2a
3

(x−2) + (c+ d)
x+ 7

8
e

5a
6

(x− 9
5

) + (
c

3
+ d)

x+ 3

8
e
a
2

(x− 11
3

)
)

=
x+ 2

3

(x+ 7

8

)2
ea(x−1) +

x+ 1

3
· x+ 6

8
e
a
2

(x−2) +
x+ 1

3

3
· x+ 2

8
e
a
6

(x−6)

+ e
2a
3

(x−2)
(x

3
· ce−

a
3
x +

x+ 1

3
·
(x+ 3

8

)2
e−

a
3

(x+1) +
x+ 1

3
· c2e−

2a
3

+ 2 · x+ 1

3
· x+ 7

8
· x+ 3

8
+ 2 · x+ 1

3
· x+ 7

8
· ce

a
6

(x−1)

+ 2 · x+ 1

3
· x+ 3

8
· ce−

a
6

(x+3) +
d

3
e−

a
3
x +

(x+ 3

24

)2
e−

a
3

(x+1) +
c

3
de−

2a
3

+
4

9
· x+ 7

8
· x+ 3

8
+ (c+ d)

x+ 7

24
e
a
6

(x−1) +
1

3

( c
3

+ d
)x+ 3

8
e−

a
6

(x+3)
)

An upper bound for the long expression in parentheses above can be obtained by replacing

x with 1 wherever it is part of an increasing expression (such as x
3 or eax) and replacing

it with 0 wherever it is part of a decreasing expression. After simplifying, this gives the

following inequality:

A[ea(x−1)] ≤ x+ 2

3

(x+ 7

8

)2
ea(x−1) +

x+ 1

3
· x+ 6

8
e
a
2

(x−2) +
x+ 1

3

3
· x+ 2

8
e
a
6

(x−6)

+
(41

9
− 61

36
e−

a
3 +

5

4
e−

a
2 + 2e−

2a
3 − 23

36
e−

5a
6 − 49

24
e−a +

25

48
e−

4a
3

)
e

2a
3

(x−2)

Note that for a ≥ 3 the following string of inequalities holds

41

9
−61

36
e−

a
3 +

5

4
e−

a
2 +2e−

2a
3 −23

36
e−

5a
6 −49

24
e−a+

25

48
e−

4a
3 ≤ 41

9
+e−

a
3

(5

4
e−

a
6 +2e−

a
3−61

36

)
≤ 41

9
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Hence, we now finally define Ψ(x, a) to be

Ψ(x, a) =
x+ 2

3

(x+ 7

8

)2
ea(x−1) +

x+ 1

3
· x+ 6

8
e
a
2

(x−2) +
x+ 1

3

3
· x+ 2

8
e
a
6

(x−6) +
41

9
e

2a
3

(x−2)

From the above computations, it follows that A[ea(x−1)] ≤ Ψ(x, a) on [0, 1] for a ≥ 15 as

desired (though as we saw above, having a ≥ 3 is sufficient for this inequality to hold).

Now that Ψ(x, a) has been defined, we’ll proceed to prove the proposition by splitting up

the interval [0, 1] into four parts, and showing that the inequality stated in the proposition

holds for all x in each one of them.

(i) x ∈ [1− c(a), 1] (where c(a) = a−
9
4 ).

Since A[ea(x−1)] is a convex function of x (this follows from it being a probability gener-

ating function), this means that for any c ∈ [0, 1] we have A[ea(x−1)] ≤ A[ea(c−1)] +
(

1 −

A[ea(c−1)]
)(

x−c
1−c

)
∀ x ∈ [c, 1]. Using the fact that A[ea(x−1)] ≤ Ψ(x, a) (for a ≥ 15), it fol-

lows that A[ea(x−1)] ≤ Ψ(c, a) +
(

1 − Ψ(c, a)
)(

x−c
1−c

)
on [c, 1]. Noting that e(a+ 1

20
)(x−1)

is itself a convex function of x that has derivative a + 1
20 at x = 1, it follows that

e(a+ 1
20

)(x−1) ≥ 1− (a+ 1
20)(1−x) on [0, 1]. Putting these last two observations together, we

find that if we can establish

Ψ(1− c(a), a) ≤ 1− (a+
1

20
)(1− (1− c(a))) (4.1.20)

then it will follow that

A[ea(x−1)] ≤ 1−
(
a+

1

20

)(
1− (1− c(a))

)
+
(
a+

1

20

)(
1− (1− c(a))

)(x− (1− c(a))

1− (1− c(a))

)
= 1−

(
a+

1

20

)(
1− x

)
≤ e(a+ 1

20
)(x−1)

for all x ∈ [1− c(a), 1].
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Now using the formula for Ψ, we get the string of inequalities

Ψ(1− c(a), a) ≤
(

1− c(a)

3

)(
1− c(a)

8

)2
e−ac(a) +

7

12
e−

a
2 +

1

6
e−

5a
6 +

41

9
e−

2a
3

≤ e−(a+ 7
12

)c(a) +
7

12
e−

a
2 +

85

18
e−

2a
3

≤ 1−
(
a+

7

12

)
c(a) +

13

24
a2c(a)2 +

7

12
e−

a
2 +

85

18
e−

2a
3

(where the last inequality follows from the fact that e−x ≤ 1 − x + x2

2 for x ∈ [0, 1], and

the fact that
(
a+ 7

12

)2
≤ 13

12a
2 for a ≥ 15). Plugging c(a) = a−

9
4 into the above expression

then gives

Ψ(1− c(a), a) ≤ 1−
(
a+

7

12

)
c(a) +

(13

24
a−

1
4 +

7

12
a

9
4 e−

a
2 +

85

18
a

9
4 e−

2a
3

)
c(a)

Now to establish (4.1.20) it just needs to be shown that

13

24
a−

1
4 +

7

12
a

9
4 e−

a
2 +

85

18
a

9
4 e−

2a
3 ≤ 7

12
− 1

20
(4.1.21)

for a ≥ 15. So observe the string of inequalities below (which holds for a ≥ 9
2), where the

left side is equal to the derivative of the left side of (4.1.21).

− 13

96
a−

5
4 +

9

4
a

5
4

( 7

12
e−

a
2 +

85

18
e−

2a
3

)
− a

9
4

(1

2
· 7

12
e−

a
2 +

2

3
· 85

18
e−

2a
3

)
<
(9

4
a

5
4 − 1

2
a

9
4

)( 7

12
e−

a
2 +

85

18
e−

2a
3

)
< 0

Combining this with the fact that the left side of (4.1.21) equals .513 < 7
12 −

1
20 at a =

15, we find that (4.1.21) does indeed hold for a ≥ 15 which, as was shown, implies that

A[ea(x−1)] ≤ e(a+ 1
20

)(x−1) on [1− c(a), 1].

(ii) x ∈ [1
2 , 1− c(a)).

Denoting e−a(x−1)Ψ(x, a) as Q(x, a) (for a ≥ 15), it suffices to show that Q(x, a) ≤ e
1
20

(x−1)

on [1
2 , 1−c(a)). Since we saw in (i) that Ψ(1−c(a), a) ≤ 1−

(
a+ 1

20

)
c(a) ≤ e(a+ 1

20
)((1−c(a))−1),
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it follows that Q(1−c(a), a) ≤ e
1
20

((1−c(a))−1), which implies that to prove Q(x, a) ≤ e
1
20

(x−1),

it suffices to prove that the right side of

∂
(
e

1
20

(x−1)
)

∂x
≤ 1

20
≤ ∂Q(x, a)

∂x

holds on [1
2 , 1− c(a)). Computing the formula for the expression on the right, we get

∂Q(x, a)

∂x
=

1

3

(x+ 7

8

)2
+

1

4
· x+ 2

3
· x+ 7

8
+

1

3
· x+ 6

8
e−

a
2
x +

1

8
· x+ 1

3
e−

a
2
x

− a

2
· x+ 1

3
· x+ 6

8
e−

a
2
x +

1

3
· x+ 2

8
e−

5a
6
x +

1

8
·
x+ 1

3

3
e−

5a
6
x

− 5a

6
·
x+ 1

3

3
· x+ 2

8
e−

5a
6
x − a

3
· 41

9
e−

a
3

(x+1)

≥ 1

3

(x+ 7

8

)2
+

1

4
· x+ 2

3
· x+ 7

8
− a

2
· x+ 1

3
· x+ 6

8
e−

a
2
x

− 5a

6
·
x+ 1

3

3
· x+ 2

8
e−

5a
6
x − a

3
· 41

9
e−

a
3

(x+1)

Plugging in x = 1
2 for the exponential functions and the polynomial expressions that follow

a plus sign, and x = 1 for the polynomial expressions that follow a minus sign, we find that

the expression on the right side of the inequality is greater than or equal to

1

3

(15

16

)2
+

1

4
· 5

6
· 15

16
− a

2
· 2

3
· 7

8
e−

a
4 − 5a

6
· 4

9
· 3

8
e−

5a
12 − a

3
· 41

9
e−

a
2

on [1
2 , 1− c(a)). Simplifying, and using the string of inequalities above, gives

∂Q(x, a)

∂x
≥ 125

256
− 7a

24
e−

a
4 − 5a

36
e−

5a
12 − 41a

27
e−

a
2 (4.1.22)

on this interval. If we differentiate this expression with respect to a we get

(a
4
− 1
)
· 7

24
e−

a
4 +

(5a

12
− 1
)
· 5

36
e−

5a
12 +

(a
2
− 1
)
· 41

27
e−

a
2 ≥ 0

(recall we’re assuming a ≥ 15). Coupling this with the fact that the expression on the

right side of (4.1.22), when evaluated at a = 15, is equal to .369 > 1
20 , we indeed find that
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∂Q(x,a)
∂x ≥ 1

20 on [1
2 , 1− c(a)) for a ≥ 15. As was shown, this implies that Q(x, a) ≤ e

1
20

(x−1),

which implies A[ea(x−1)] ≤ e(a+ 1
20

)(x−1) on [1
2 , 1− c(a)) for a ≥ 15 as desired.

(iii) x ∈ [1
8 ,

1
2).

Once again it suffices to show that Q(x, a) ≤ e
1
20

(x−1) (this time on [1
8 ,

1
2)). Taking the

formula forQ(x, a) = e−a(x−1)Ψ(x, a) and substituting 1
2 for x when it is part of a polynomial

function, and 1
8 when it is part of an exponential expression (with negative exponent), we

find that

Q(x, a) ≤ 375

512
+

13

32
e−

a
16 +

25

288
e−

5a
48 +

41

9
e−

3a
8

for x ∈ [1
8 ,

1
2). Since the expression on the right is a decreasing function of a, plugging in

a = 15 shows that

Q(x, a) ≤ 375

512
+

13

32
e−

15
16 +

25

288
e−

25
16 +

41

9
e−

45
8 ≈ .926 < e

1
20

( 1
8
−1) ≤ e

1
20

(x−1)

on [1
8 ,

1
2) for a ≥ 15, thus giving the desired inequality.

(iv) x ∈ [0, 1
8).

Using the exact same method that was used in (iii), but plugging in 0 and 1
8 in place of 1

8

and 1
2 respectively, we find that

Q(x, a) ≤ 17

24

(57

64

)2
+

3

8
· 49

64
+

11

72
· 17

64
+

41

9
e−5 ≈ .9203 < e−

1
20 ≤ e

1
20

(x−1)

on [0, 1
8) for a ≥ 15, once again yielding the desired inequality.

Combining parts (i)-(iv) we find that A[ea(x−1)] ≤ e(a+ 1
20

)(x−1) does hold on [0, 1] for a ≥ 15,

thus completing the proof of the proposition.
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Corollary 4.1.14. If a ≥ 15 and n ≥ 1 then An[ea(x−1)] ≤ e(a+nε)(x−1) (where ε = 1
20).

Proof. We know from the previous result that the statement holds for n = 1. Now assume

it holds for some n ≥ 1. Then by the monotonicity of A on S (established in Proposition

4.1.11), along with Proposition 4.1.13, it follows that

An+1[ea(x−1)] = A
[
An[ea(x−1)]

]
≤ A[e(a+nε)(x−1)] ≤ e(a+(n+1)ε)(x−1)

on [0, 1]. By induction we then find that An[ea(x−1)] ≤ e(a+nε)(x−1) on [0, 1] for all n ≥ 1.

Having proven Proposition 4.1.13 and it’s corollary, our last significant task is to estab-

lish the following result.

Proposition 4.1.15. There exists a finite sequence 0 = a0 < a1 < · · · < aN (with aN ≥ 15)

such that An1 ≤ ean(x−1) on [0, 1] for all n with 0 ≤ n ≤ N .

The proof of Proposition 4.1.15 will make use of the following lemma.

Lemma 4.1.16. Let f1 and f2 be convex increasing functions on [0, 1] where f1 is differ-

entiable and f1(1) = f2(1). Suppose there is a finite sequence 1 = c0 > c1 > · · · > cn = 0

that satisfies

f2(cj+1) ≤ f1(cj)− (cj − cj+1)f ′1(cj) (4.1.23)

for all j with 0 ≤ j < n. Then f1(x) ≥ f2(x) ∀ x ∈ [0, 1].

Proof. Assume f1(cj) ≥ f2(cj) for some j < n. We know by the convexity (and differentia-

bility) of f1 that f1(t) ≥ f1(cj) − f ′1(cj)(cj − t) for t ∈ [cj+1, cj ]. By the convexity of f2 it

follows that

f2(t) ≤ f2(cj)−
f2(cj)− f2(cj+1)

cj − cj+1
(cj − t) ≤ f1(cj)− f ′1(cj)(cj − t) ≤ f1(t)
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for t ∈ [cj+1, cj ] (where the middle inequality follows from f1(cj) ≥ f2(cj), (4.1.23), and

the fact that both functions are linear). Since f1(1) ≥ f2(1), it follows by induction that

f1(t) ≥ f2(t) ∀ t ∈ [0, 1].

Proof of Proposition 4.1.15. Let u ≥ 0, a > 0, and ci = 256−i
256 for 0 ≤ i ≤ 256. Recalling

that A[eu(x−1)] is a probability generating function (implying it is increasing and convex on

[0, 1]) and noting that e(u+a)(x−1) is increasing, convex, and differentiable on [0, 1], along

with the fact that the two functions both equal 1 at x = 1, we find that if (4.1.23) holds

for each i with 0 ≤ i < 256 (where f1(x) = e(u+a)(x−1) and f2(x) = A[eu(x−1)]), then it

will follow from Lemma 4.1.16 that A[eu(x−1)] ≤ e(u+a)(x−1) on [0, 1]. Now observe the

attached Python program. For each pass through the while loop it checks to see if (4.1.23)

holds (at each ci) for a = 1
16 , f1(x) = e(u+a)(x−1), and f2(x) = A[eu(x−1)]. If (4.1.23)

does hold at each ci then u is increased by 1
16 and we repeat the process with the new

values of u, f1, and f2. If not, a is set to 1
32 and it tests to see if (4.1.23) holds for

each i for this value of a. If so, u is increased by 1
32 and the process is repeated for the

new u, f1, and f2 (again starting with a = 1
16). If not, it tests again with a = 3

256 . If

(4.1.23) holds at each ci then the process repeats with u, f1, and f2 adjusted accordingly.

If not, then the while loop terminates. The loop keeps running until either it terminates

(as described above) because (4.1.23) fails to hold at some ci for a equal to each of the

three specified values ( 1
16 , 1

32 , and 3
256), or because m = 341 (i.e. we’ve passed through the

loop 340 times). In order to ensure that the program does not return a false negative (as

a result of rounding) when evaluating the inequality inside the loop, interval arithmetic is

employed (see https://en.wikipedia.org/wiki/Interval arithmetic for a definition) so that,

for each a, u, i combination that is considered, the loop only fails to break if A (an interval
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containing the precise value of f1(cj)− (cj − cj+1)f ′1(cj)) lies entirely to the right of B (an

interval containing the precise value of f2(cj+1)). At the end, the program prints the final

values of m and u. Upon running the program you will find that these values are 341 and

15.203125 respectively (the program prints the current value of m as it runs, and should

take about eight minutes to finish).

Now for 0 ≤ n ≤ 340 let an represent the value taken by u following the nth pass through

the loop. Hence, 0 = a0 < a1 < · · · < a340 = 15.203125 and aj+1 − aj ∈
{

1
16 ,

1
32 ,

3
256

}
for

each 0 ≤ j < 340. Furthermore, since the program output indicates that 340 passes through

the loop were completed, this implies that (4.1.23) holds (at each ci for 0 ≤ i < 256) for

each 0 ≤ j ≤ 340 (where f1(x) = eaj+1(x−1) and f2(x) = A[eaj(x−1)]). By Lemma 4.1.16,

this implies that A[eaj(x−1)] ≤ eaj+1(x−1) on [0, 1] for every 0 ≤ j < 340. It then follows from

the same induction argument that was used to prove Corollary 4.1.14 that An1 ≤ ean(x−1)

for every n with 0 ≤ n ≤ 340. Hence, we find that the an terms satisfy the conditions given

in the statement of the proposition. Hence, the proof is complete.

With Proposition 4.1.15 established, the proof of Theorem 4.1.1 can now be completed.

Proof of Theorem 4.1.1. Proposition 4.1.15 and Corollary 4.1.14 together indicate that on

[0, 1), An1→ 0 as n→∞. Since the monotonicity of A implies that Anf ≤ An1 ∀ n ≥ 0,

it follows that Anf → 0 on [0, 1) as n → ∞. Since f is known to be a fixed point of

A, this then means that f(x) = 0, which implies that P(V = ∞) = 1. Recalling from

Proposition 4.1.4 that V (the number of times the root is hit in the self-similar model on

T3,2) is dominated by Z (the number of times it is hit in the original model on T3,2), it

follows that P(Z = ∞) = 1. Thus we find that the frog model on T3,2 is indeed recurrent.

88



Hence, the proof of Theorem 4.1.1 is complete.
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Appendix A

from mpmath import *

u=mpi(0)

def h(x):

return iv.exp(u*(x-1))

def f_1(x,a):

return h(x)*iv.exp(a*(x-1))

def h_1(x,y,a):

return (1-y*(u+a))*f_1(x,a)

def L_3(f):

def g(x):
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return ((x+3)/4 * f((x+2)/3)**3 + (x+2)/2 * ( f((x+1)/3)**2

-f((x+2)/3)*f((x+1)/3)**2 ) - (x+1)/4 * (f((x+2)/3)**2

* f(x/3) + 2*f((x+1)/3)*f(x/3) - 2*f((x+2)/3)*f((x+1)/3)

*f(x/3) - f(x/3)))

return g

def H_3(f):

def g(x):

return ((x+3)/4 * f((x+2)/3)**3 + (x+2)/3 * ( f((x+1)/3)**2

- f((x+2)/3)*f((x+1)/3)**2 ) - (x+1)/12 * (f((x+2)/3)**2

* f(x/3) + 2*f((x+1)/3)*f(x/3) - 2*f((x+2)/3)*f((x+1)/3)

*f(x/3) - f(x/3)))

return g

def G_1(f):

def G_1f(x):

a=L_3(f)(x/2)

b=L_3(f)((x+1)/2)

c=H_3(f)(x/2)

d=H_3(f)((x+1)/2)

return (x/3)*a+((x+1)/3)*b**2-(x/3)*a*b+(1/3)*c+(1/3)*b*d-(1/3)*b*c

return G_1f
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m=1

while m < 341:

f_2=G_1(h)

for a in map(mpi, [1/16,1/32,3/256]):

for j in range(256):

A = f_2( mpi(j/256) )

B = h_1( mpi(j+1)/256, mpi(1/256), a)

if A.b>B.a:

break

else: break

else: break

print(m)

m=m+1

u+=a

print(m, u)
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