Sojourn Times of Brownian Sheet

D. Khoshnevisan* University of Utah

R. Pemantle ${ }^{\dagger}$
Ohio State University

September 26, 2000

Keyword and Phrases Brownian sheet, arcsine law, Feynman-Kac formula
 AMS 1991 Subject Classification 60G60.

This paper is dedicated to Professor Endré Csáki on the occasion of his 65th birthday.

1 Introduction

Let B denote the standard Brownian sheet. That is, B is a centered Gaussian process indexed by \mathbb{R}_{+}^{2} with continuous trajectories and covariance structure

$$
\mathbb{E}\left\{B_{s} B_{t}\right\}=\min \left\{s_{1}, t_{1}\right\} \times \min \left\{s_{2}, t_{2}\right\}, \quad s=\left(s_{1}, s_{2}\right), t=\left(t_{1}, t_{2}\right) \in \mathbb{R}_{+}^{2}
$$

In a canonical way, one can think of B as "two-parameter Brownian motion".
In this article, we address the following question: "Given a measurable function $v: \mathbb{R} \rightarrow \mathbb{R}_{+}$, what can be said about the distribution of $\int_{[0,1]^{2}} v\left(B_{s}\right) d s$?" The one-parameter variant of this question is both easy-to-state and well understood. Indeed, if b designates standard Brownian motion, the Laplace transform of $\int_{0}^{1} v\left(b_{s}+x\right) d s$ often solves a Dirichlet eigenvalue problem (in x), as prescribed by the Feynman-Kac formula; cf. Revuz and Yor [6], for example. While analogues of Feynman-Kac for B are not yet known to hold, the following highlights some of the unusual behavior of $\int_{[0,1]^{2}} v\left(B_{s}\right) d s$ in case $v=\mathbf{1}_{[0, \infty)}$ and, anecdotally, implies that finding explicit formulæ may present a challenging task.

Theorem 1.1
There exists a $c_{0} \in(0,1)$, such that for all $0<\varepsilon<\frac{1}{8}$,
$\exp \left\{-\frac{1}{c_{0}} \log ^{2}(1 / \varepsilon)\right\} \leqslant \mathbb{P}\left\{\int_{[0,1]^{2}} \mathbf{1}_{\left\{B_{s}>0\right\}} d s<\varepsilon\right\} \leqslant \exp \left\{-c_{0} \log ^{2}(1 / \varepsilon)\right\}$.

[^0]
Remark 1.2

By the arcsine law, the one-parameter version of the above has the following simple form: given a linear Brownian motion b,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon^{-1 / 2} \mathbb{P}\left\{\int_{0}^{1} \mathbf{1}_{\left\{b_{s}>0\right\}} d s<\varepsilon\right\}=\frac{2}{\pi}
$$

see [6, Theorem 2.7, Ch. 6].

Remark 1.3

R. Pyke (personal communication) has asked whether $\int_{[0,1]^{2}} \mathbf{1}\left\{B_{s}>0\right\} d s$ has an arcsine-type law; see [5 , Section 4.3.2] for a variant of this question in discrete time. According to Theorem 1.1, as $\varepsilon \rightarrow 0$, the cumulative distribution function of $\int_{[0,1]^{2}} \mathbf{1}_{\left\{B_{s}>0\right\}} d s$ goes to zero faster than any power of ε. In particular, the distribution of time (in $[0,1]^{2}$) spent positive does not have any simple extension of the arsine law.

Theorem 1.4

Let $v(x):=\mathbf{1}_{[-1,1]}(x)$, or $v(x):=\mathbf{1}_{(-\infty, 1)}(x)$. Then, there exists a $c_{1} \in(0,1)$, such that for all $\varepsilon \in\left(0, \frac{1}{8}\right)$,

$$
\exp \left\{-\frac{\log ^{3}(1 / \varepsilon)}{c_{1} \varepsilon}\right\} \leqslant \mathbb{P}\left\{\int_{[0,1]^{2}} v\left(B_{s}\right) d s<\varepsilon\right\} \leqslant \exp \left\{-c_{1} \frac{\log (1 / \varepsilon)}{\varepsilon}\right\}
$$

For a refinement, see Theorem 2.2 below.

Remark 1.5

The one-parameter version of Theorem 1.4 is quite simple. For example, let $\Gamma=\int_{0}^{1} \mathbf{1}_{[-1,1]}\left(b_{s}\right) d s$, where b is linear Brownian motion. In principle, one can compute the Laplace transform of Γ by means of Kac's formula and invert it to calculate its distribution function. However, direct arguments suffice to show that the two-parameter Theorem 1.4 is more subtle than its one-parameter counterpart:

$$
\begin{equation*}
-\infty<\liminf _{\varepsilon \rightarrow 0^{+}} \varepsilon \ln \mathbb{P}\{\Gamma<\varepsilon\} \leqslant \limsup _{\varepsilon \rightarrow 0^{+}} \varepsilon \ln \mathbb{P}\{\Gamma<\varepsilon\}<0 \tag{1.1}
\end{equation*}
$$

where \ln denotes the natural logarithm function. We will verify this later on in the Appendix.

Remark 1.6

The arguments used to demonstrate Theorem 1.4 can be used to also estimate the distribution function of additive functionals of form, e.g., $\int_{[0,1]^{2}} v\left(B_{s}\right) d s$, as long as $\alpha \mathbf{1}_{[-r, r]} \leqslant v \leqslant \beta \mathbf{1}_{[-R, R]}$, where $0<r \leqslant R$ and $0<\alpha \leqslant \beta$. Other formulations are also possible. For instance, when $\alpha \mathbf{1}_{(-\infty, r)} \leqslant v \leqslant \beta \mathbf{1}_{(-\infty, R)}$.

2 Proof of Theorems 1.1 and 1.4

Our proof of Theorem 1.1 rests on a lemma that is close in spirit to a FeynmanKac formula of the theory of one-parameter Markov processes.

Proposition 2.1

There exists a finite and positive constant c_{2}, such that for all measurable $D \subset \mathbb{R}$ and all $0<\eta, \varepsilon<\frac{1}{8}$.

$$
\mathbb{P}\left\{\int_{[0,1]^{2}} \mathbf{1}_{\left\{B_{s} \notin D\right\}} d s<\varepsilon\right\} \leqslant \mathbb{P}\left\{\forall s \in[0,1]^{2}: B_{s} \in D_{\varepsilon^{\frac{1}{4}-2 \eta}}\right\}+\exp \left\{-c_{2} \varepsilon^{-\eta}\right\}
$$

where D_{δ} denotes the δ-enlargement of D for any $\delta>0$. That is,

$$
D_{\delta}:=\{x \in \mathbb{R}: \operatorname{dist}(x ; D) \leqslant \delta\},
$$

where 'dist' denotes Hausdorff distance.

Proof For all $t \in[0,1]^{2}$, let $|t|:=\max \left\{t_{1}, t_{2}\right\}$. Then, it is clear that for any $\varepsilon, \delta>0$, whenever there exists some $s_{0} \in[0,1]^{2}$ for which $B_{s_{0}} \notin D_{\delta}$, either

1. $\sup _{|t-s| \leqslant \varepsilon^{1 / 2}}\left|B_{t}-B_{s}\right|>\delta$, where the supremum is taken over all such choices of s and t in $[0,1]^{2}$; or
2. for all $t \in[0,1]^{2}$ with $\left|t-s_{0}\right| \leqslant \varepsilon^{1 / 2}, B_{t} \in D$, in which case, we can certainly deduce that $\int_{[0,1]^{2}} \mathbf{1}_{D^{\mathrm{C}}}\left(B_{t}\right) d t>\varepsilon$.
Thus,

$$
\begin{array}{r}
\mathbb{P}\left\{\exists s_{0} \in[0,1]^{2}: B_{s_{0}} \notin D_{\delta}\right\} \leqslant \mathbb{P}\left\{\sup _{|t-s| \leqslant \varepsilon^{1 / 2}}\left|B_{t}-B_{s}\right|>\delta\right\}+ \\
+\mathbb{P}\left\{\int_{[0,1]^{2}} \mathbf{1}_{D^{\mathrm{c}}}\left(B_{t}\right) d t>\varepsilon\right\} .
\end{array}
$$

By the general theory of Gaussian processes, there exists a universal positive and finite constant c_{2} such that

$$
\begin{equation*}
\mathbb{P}\left\{\sup _{|t-s| \leqslant \varepsilon^{1 / 2}}\left|B_{t}-B_{s}\right|>\delta\right\} \leqslant \exp \left\{-c_{2} \delta^{2} \varepsilon^{-1 / 2}\right\} . \tag{2.1}
\end{equation*}
$$

Although it is well known, we include a brief derivation of this inequality for completeness. Indeed, we recall C. Borell's inequality from Adler [1, Theorem 2.1]: if $\left\{g_{t} ; t \in T\right\}$ is a centered Gaussian process such that $\|g\|_{T}=\mathbb{E}\left\{\sup _{t \in T}\left|g_{t}\right|\right\}<\infty$ and whenever T is totally bounded in the metric $d(s, t)=\sqrt{\mathbb{E}\left\{\left(g_{t}-g_{s}\right)^{2}\right\}}$ $(s, t \in T)$,

$$
\mathbb{P}\left\{\sup _{t \in T}\left|g_{t}\right| \geqslant \lambda+\|g\|_{T}\right\} \leqslant 2 \exp \left\{-\frac{\lambda^{2}}{2 \sigma_{T}^{2}}\right\},
$$

where $\sigma_{T}^{2}=\sup _{t \in T} \mathbb{E}\left\{g_{t}^{2}\right\}$. Eq. (2.1) follows from this by letting $T=\{(s, t) \in$ $\left.(0,1)^{2} \times(0,1)^{2}:|s-t| \leqslant \varepsilon^{1 / 2}\right\}, g_{t, s}=B_{t}-B_{s}$ and by making a few lines of standard calculations. Having derived (2.1), we can let $\delta:=\varepsilon^{\frac{1}{4}-\frac{n}{2}}$ to obtain the proposition.

Proof of Theorem 1.1 Let $D=(-\infty, 0)$ and use Proposition 2.1 to see that

$$
\mathbb{P}\left\{\int_{[0,1]^{N}} \mathbf{1}_{\left\{B_{s}>0\right\}}<\varepsilon\right\} \leqslant \mathbb{P}\left\{\sup _{s \in[0,1]^{2}} B_{s} \leqslant \varepsilon^{\frac{1}{4}-2 \eta}\right\}+\exp \left\{-c_{2} \varepsilon^{-\eta}\right\} .
$$

Thus, the upper bound of Theorem 1.1 follows from Li and Shao [4], which states that

$$
\limsup _{\varepsilon \rightarrow 0^{+}} \frac{1}{\log ^{2}(1 / \varepsilon)} \log \mathbb{P}\left\{\sup _{s \in[0,1]^{2}} B_{s} \leqslant \varepsilon\right\}<-\infty
$$

(An earlier, less refined version, of this estimate can be found in Csáki et al. [2].) To prove the lower bound, we note that

$$
\begin{aligned}
& \mathbb{P}\left\{\int_{[0,1]^{2}} \mathbf{1}_{\left\{B_{s}>0\right\}} d s<2 \varepsilon-\varepsilon^{2}\right\} \\
& \quad \geqslant \mathbb{P}\left\{\sup _{s \in[\varepsilon, 1]^{2}} B_{s}<0\right\} \\
& \quad=\mathbb{P}\left\{\forall(u, v) \in\left[0, \ln \left(\frac{1}{\varepsilon}\right)\right]^{2}: e^{(u+v) / 2} B\left(e^{-u}, e^{-v}\right)<0\right\}
\end{aligned}
$$

and observe that the stochastic process $(u, v) \mapsto B\left(e^{-u}, e^{-v}\right) / e^{-(u+v) / 2}$ is the 2-parameter Ornstein-Uhlenbeck sheet. All that we need to know about the latter process is that it is a stationary, positively correlated Gaussian process whose law is supported on the space of continuous functions on $[0,1]^{2}$. We define $c_{3}>0$ via the equation

$$
e^{-c_{3}}:=\mathbb{P}\left\{\forall(u, v) \in[0,1]^{2}: \frac{B\left(e^{-u}, e^{-v}\right)}{e^{-(u+v) / 2}}<0\right\} .
$$

By the support theorem, $0<c_{3}<\infty$; this is a consequence of the CameronMartin theorem on Gauss space; cf. Janson [3, Theorem 14.1]. Moreover, by stationarity and by Slepian's inequality (cf. [1, Corollary 2.4]),

$$
\begin{aligned}
& \mathbb{P}\left\{\int_{[0,1]^{2}} \mathbf{1}_{\left\{B_{s}<0\right\}} d s<\varepsilon\right\} \\
& \quad \geqslant \prod_{0 \leqslant i, j \leqslant \ln (1 / \varepsilon)+1} \mathbb{P}\left\{\forall(u, v) \in[i, i+1] \times[j, j+1]: \frac{B\left(e^{-u}, e^{-v}\right)}{e^{-(u+v) / 2}}<0\right\} \\
& \quad=\exp \left\{-c_{3} \ln ^{2}\left(e^{2} / \varepsilon\right)\right\} .
\end{aligned}
$$

This proves the theorem.
Next, we prove Theorem 1.4.
Proof of Theorem 1.4 Let $\mathcal{D}_{\varepsilon}$ denote the collection of all points $(s, t) \in[0,1]^{2}$, such that $s t \leqslant \varepsilon$. Note that

1. Lebesgue's measure of $\mathcal{D}_{\varepsilon}$ is at least $\varepsilon \ln (1 / \varepsilon)$; and
2. if $\sup _{s \in \mathcal{D}_{\varepsilon}}\left|B_{s}\right| \leqslant 1$, then $\int_{[0,1]^{2}} \mathbf{1}_{(-1,1)}\left(B_{s}\right) d s>\varepsilon \ln (1 / \varepsilon)$.

Thus,

$$
\mathbb{P}\left\{\int_{[0,1]^{2}} \mathbf{1}_{(-1,1)}\left(B_{s}\right) d s<\varepsilon \ln (1 / \varepsilon)\right\} \leqslant \mathbb{P}\left\{\sup _{s \in \mathcal{D}_{\varepsilon}}\left|B_{s}\right|>1\right\}
$$

A basic feature of the set $\mathcal{D}_{\varepsilon}$ is that whenever $s \in \mathcal{D}_{\varepsilon}$, then $\mathbb{E}\left\{B_{s}^{2}\right\} \leqslant \varepsilon$. Since $\mathbb{E}\left\{\sup _{s \in \mathcal{D}_{\varepsilon}}\left|B_{s}\right|\right\} \leqslant \mathbb{E}\left\{\sup _{s \in[0,1]^{2}}\left|B_{s}\right|\right\}<\infty$, we can apply Borell's inequality to deduce the existence of a finite, positive constant $c_{4}<1$, such that for all $\varepsilon>0$, $\mathbb{P}\left\{\sup _{s \in \mathcal{D}_{\varepsilon}}\left|B_{s}\right|>1 / c_{4}\right\} \leqslant \exp \left\{-c_{4} / \varepsilon\right\}$. We apply Brownian scaling and possibly adjust c_{4} to conclude that

$$
\mathbb{P}\left\{\sup _{s \in \mathcal{D}_{\varepsilon}}\left|B_{s}\right|>1\right\} \leqslant e^{-c_{4} / \varepsilon}
$$

Consequently, we can find a positive, finite constant c_{5}, such that for all $\varepsilon \in$ (0, $\frac{1}{8}$),

$$
\begin{equation*}
\mathbb{P}\{\Gamma<\varepsilon\} \leqslant \exp \left\{-c_{5} \frac{\ln (1 / \varepsilon)}{\varepsilon}\right\} . \tag{2.2}
\end{equation*}
$$

This implies the upper bound in the conclusion of Theorem 1.4. For the lower bound, we note that for all $\varepsilon \in\left(0, \frac{1}{8}\right)$, Lebesgue's measure of $\mathcal{D}_{\varepsilon}$ is bounded above by $c_{6} \varepsilon \log (1 / \varepsilon)$. Thus,

$$
\mathbb{P}\left\{\int_{[0,1]^{2}} \mathbf{1}_{(-\infty, 1)}\left(B_{s}\right) d s<c_{6} \varepsilon \log (1 / \varepsilon)\right\} \geqslant \mathbb{P}\left\{\inf _{s \in[0,1]^{2} \backslash \mathcal{D}_{\varepsilon}} B_{s}>1\right\} .
$$

On the other hand, whenever $s \in[0,1]^{2} \backslash \mathcal{D}_{\varepsilon}, s_{1} s_{2} \geqslant \varepsilon$. Thus,

$$
\begin{aligned}
\mathbb{P}\left\{\int_{[0,1]^{2}} \mathbf{1}_{(-\infty, 1)}\left(B_{s}\right) d s<c_{6} \varepsilon \log (1 / \varepsilon)\right\} & \geqslant \mathbb{P}\left\{\inf _{\substack{s \in[0,1]^{2} \backslash \mathcal{D}_{\varepsilon}}} \frac{B_{s}}{\sqrt{s_{1} s_{2}}}>\frac{1}{\sqrt{\varepsilon}}\right\} \\
& =\mathbb{P}\left\{\inf _{\substack{u, v \geqslant 0 \\
u+v \leqslant \ln (1 / \varepsilon)}} O_{u, v}>\varepsilon^{-1 / 2}\right\},
\end{aligned}
$$

where $O_{u, v}:=B\left(e^{-u}, e^{-v}\right) / e^{-(u+v) / 2}$ is an Ornstein-Uhlenbeck sheet. Consequently,

$$
\mathbb{P}\left\{\int_{[0,1]^{2}} \mathbf{1}_{(-\infty, 1)}\left(B_{s}\right) d s<c_{6} \varepsilon \log (1 / \varepsilon)\right\} \geqslant \mathbb{P}\left\{\inf _{0 \leqslant u, v \leqslant \ln (1 / \varepsilon)} O_{u, v}>\varepsilon^{-1 / 2}\right\}
$$

By appealing to Slepian's inequality and to the stationarity of O, we can deduce that

$$
\begin{align*}
& \mathbb{P}\left\{\int_{[0,1]^{2}} \mathbf{1}_{(-\infty, 1)}\left(B_{s}\right) d s<c_{3} \varepsilon \log (1 / \varepsilon)\right\} \\
& \geqslant \prod_{0 \leqslant i, j \leqslant \ln (1 / \varepsilon)} \mathbb{P}\left\{\inf _{i \leqslant u \leqslant i+1} \inf _{j \leqslant v \leqslant j+1} O_{u, v}>\varepsilon^{-1 / 2}\right\} \\
&=\left[\mathbb{P}\left\{\inf _{0 \leqslant u, v \leqslant 1} O_{u, v}>\varepsilon^{-1 / 2}\right\}\right]^{\ln ^{2}(e / \varepsilon)} . \tag{2.3}
\end{align*}
$$

On the other hand, recalling the construction of O, we have

$$
\begin{aligned}
\mathbb{P}\{ & \left.\inf _{0 \leqslant u, v \leqslant 1} O_{u, v}>\varepsilon^{-1 / 2}\right\} \\
& \geqslant \mathbb{P}\left\{\inf _{1 \leqslant s, t \leqslant e} B_{s, t} \geqslant e \varepsilon^{-1 / 2}\right\} \\
& \geqslant \mathbb{P}\left\{B_{1,1} \geqslant 2 e \varepsilon^{-1 / 2}, \sup _{1 \leqslant s_{1}, s_{2} \leqslant e}\left|B_{s}-B_{1,1}\right| \leqslant e \varepsilon^{-1 / 2}\right\} \\
& =\mathbb{P}\left\{B_{1,1} \geqslant 2 e \varepsilon^{-1 / 2}\right\} \cdot \mathbb{P}\left\{\sup _{1 \leqslant s_{1}, s_{2} \leqslant e}\left|B_{s}-B_{1,1}\right| \leqslant e \varepsilon^{-1 / 2}\right\} \\
& \geqslant c_{7} \mathbb{P}\left\{B_{1,1} \geqslant 2 e \varepsilon^{-1 / 2}\right\},
\end{aligned}
$$

for some absolute constant c_{7} that is chosen independently of all $\varepsilon \in\left(0, \frac{1}{8}\right)$. Therefore, by picking c_{8} large enough, we can insure that for all $\varepsilon \in\left(0, \frac{1}{8}\right)$,

$$
\mathbb{P}\left\{\inf _{0 \leqslant u, v \leqslant 1} O_{u, v}>\varepsilon^{-1 / 2}\right\} \geqslant \exp \left\{-c_{8} \varepsilon^{-1}\right\} .
$$

Plugging this in to Eq. (2.3), we obtain

$$
\begin{equation*}
\mathbb{P}\left\{\int_{[0,1]^{2}} \mathbf{1}_{(-\infty, 1)}\left(B_{s}\right) d s<c_{6} \varepsilon \log (1 / \varepsilon)\right\} \geqslant \exp \left\{-c_{8} \frac{\ln ^{2}(1 / \varepsilon)}{4 \varepsilon}\right\} \tag{2.4}
\end{equation*}
$$

The lower bound of Theorem 1.4 follows from replacing ε by $\varepsilon / \ln (1 / \varepsilon)$.
The methods of this proof go through with few changes to derive the following extension of Theorem 1.4.

Theorem 2.2

Suppose $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a measurable function such that (a) as $r \downarrow 0, \varphi(r) \uparrow$ ∞; and (b) there exists a finite constant $\gamma>0$, such that for all $r \in\left(0, \frac{1}{2}\right)$, $\varphi(2 r) \geqslant \gamma \varphi(r)$. Define $J_{\varphi}=\int_{[0,1]^{2}} \mathbf{1}_{\left\{\left|B_{s}\right| \leqslant \sqrt{s_{1} s_{2}} \varphi\left(s_{1} s_{2}\right)\right\}} d s$. Then, there exist a finite constant $c_{9}>1$, such that for all $\varepsilon \in\left(0, \frac{1}{2}\right)$,

$$
\exp \left\{-c_{9} \varphi^{2}\left(\frac{\varepsilon}{\log (1 / \varepsilon)}\right) \log ^{2}(1 / \varepsilon)\right\} \leqslant \mathbb{P}\left\{J_{\varphi}<\varepsilon\right\} \leqslant \exp \left\{-\frac{1}{c_{9}} \varphi^{2}\left(\frac{\varepsilon}{\log (1 / \varepsilon)}\right)\right\}
$$

Appendix: On Remark 1.5

In this appendix, we include a brief verification of the exponential form of the distribution function of Γ; cf. Eq. (1.1). Given any $\lambda>\frac{1}{2}$ and for $\zeta=(2 \lambda)^{-1 / 2}$, we have

$$
\begin{align*}
\mathbb{E}\left\{e^{-\lambda \Gamma}\right\} & \leqslant \mathbb{E}\left\{\exp \left(-\lambda \int_{0}^{\zeta} v\left(b_{s}\right) d s\right)\right\} \\
& \leqslant e^{-\lambda \zeta}+\mathbb{P}\left\{\sup _{0 \leqslant s \leqslant \zeta}\left|b_{s}\right|>1\right\} \tag{2.5}\\
& \leqslant e^{-\lambda \zeta}+e^{-1 /(2 \zeta)} \\
& =2 e^{-\sqrt{\lambda / 2}} . \tag{2.6}
\end{align*}
$$

By Chebyshev's inequality, $\mathbb{P}\left\{\int_{0}^{1} v\left(b_{s}\right) d s<\varepsilon\right\} \leqslant 2 \inf _{\lambda>1} e^{-\sqrt{\lambda / 2}+\lambda \varepsilon}$. Choose $\lambda=\frac{1}{8} \varepsilon^{-2}$ to obtain the following for all $\varepsilon \in\left(0, \frac{1}{2}\right)$:

$$
\begin{equation*}
\mathbb{P}\{\Gamma<\varepsilon\} \leqslant 2 e^{-1 /(8 \varepsilon)} \tag{2.7}
\end{equation*}
$$

Conversely, we can choose $\delta=(2 \lambda)^{-1 / 2}$ and $\eta \in\left(0, \frac{1}{100}\right)$ to see that

$$
\begin{aligned}
\mathbb{E}\left\{e^{-\lambda \Gamma}\right\} & \geqslant \mathbb{E}\left\{\exp \left(-\lambda \int_{0}^{\delta} v\left(b_{s}\right) d s\right) ; \inf _{\delta \leqslant s \leqslant 1}\left|b_{s}\right|>1\right\} \\
& \geqslant e^{-\lambda \delta} \mathbb{P}\left\{\left|b_{\delta}\right|>1+\eta, \sup _{\delta<s<1+\delta}\left|b_{s}-b_{\delta}\right|<\eta\right\} .
\end{aligned}
$$

Thus, we can always find a positive, finite constant c_{10} that only depends on η and such that

$$
\mathbb{E}\left\{e^{-\lambda \Gamma}\right\} \geqslant c_{10} \exp \left\{-\sqrt{\frac{\lambda}{2}}\left[1+(1+\eta)^{2}\left(1+\psi_{\delta}\right)\right]\right\}
$$

where $\lim _{\delta \rightarrow 0^{+}} \psi_{\delta}=0$, uniformly in $\eta \in\left(0, \frac{1}{100}\right)$. In particular, after negotiating the constants, we obtain

$$
\begin{equation*}
\liminf _{\lambda \rightarrow \infty} \lambda^{-1 / 2} \ln \mathbb{E}\left\{e^{-\lambda \Gamma}\right\} \geqslant-2^{1 / 2} \tag{2.8}
\end{equation*}
$$

Thus, for any $\varepsilon \in\left(0, \frac{1}{100}\right)$,

$$
e^{-\sqrt{2 \lambda}\left(1+o_{1}(1)\right)} \leqslant \mathbb{E}\left\{e^{-\lambda \Gamma}\right\} \leqslant \mathbb{P}\{\Gamma<\varepsilon\}+e^{-\lambda \varepsilon}
$$

where $o_{1}(1) \rightarrow 0$, as $\lambda \rightarrow \infty$, uniformly in $\varepsilon \in\left(0, \frac{1}{100}\right)$. In particular, if we choose $\varepsilon=(1+\eta) \sqrt{2 / \lambda}$, where $\eta>0$, we obtain

$$
\mathbb{P}\{\Gamma<(1+\eta) \sqrt{2 / \lambda}\} \geqslant e^{-\sqrt{2 \lambda}\left(1+o_{2}(1)\right)}
$$

where $o_{2}(1) \rightarrow 0$, as $\lambda \rightarrow \infty$. This, Eq. (2.7) and a few lines of calculations, together imply Eq. (1.1).

References

[1] R. J. Adler (1990). An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, Institute of Mathematical Statistics, Lecture Notes-Monograph Series, Volume 12, Hayward, California.
[2] E. Csáki, D. Khoshnevisan and Z. Shi (2000). Boundary crossings and the distribution function of the maximum of Brownian sheet. Stochastic Processes and Their Applications (To appear).
[3] S. Janson (1997). Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, UK
[4] W. V. Li and Q.-M. Shao (2000) Lower tail probabilities of Gaussian processes. Preprint.
[5] R. Pyke (1973). Partial sums of matrix arrays, and Brownian sheets. In Stochastic Analysis, 331-348, John Wiley and Sons, London, D. G. Kendall and E. F. Harding: Ed.'s.
[6] D. Revuz and M. Yor (1991). Continuous Martingales and Brownian Motion, Second Edition, Springer-Verlag, Berlin.

Davar Khoshnevisan
University of Utah
Department of Mathematics
155 S 1400 E JWB 233
Salt Lake City, UT 84112-0090
davar@math.utah.edu
http://www.math.utah.edu/~davar

Robin Pemantle
Ohio State University
Department of Mathematics
231 W. 18 Ave., Columbus, OH 43210
Columbus, OH 43210
pemantle@math.ohio-state.edu
http://www.math.ohio-state.edu/~pemantle

[^0]: *Research supported in part by grants from NSF and NATO
 ${ }^{\dagger}$ Research supported in part by NSF grant 98-03249

