
Planar first-passage percolation times are not tight
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We consider first-passage percolation on the two-dimensional integer lattice Z2 with passage

times that are IID exponentials of mean one; see Kesten (1986) for an overview. It has been

conjectured, based on numerical evidence, that the variance of the time T (0, n) to reach the

vertex (0, n) is of order n2/3. Kesten (1992) showed that the variance of T (0, n) is at O(n).

He also noted that the variance is bounded away from zero. This note improves the lower

bound on the variance of T (0, n) to C log n. Simultaneously and independently, Newman and

Piza have achieved the same result for {0, 1}-valued passage times. Their methods (Newman

and Piza 1993) extend to more general passage times, while ours work only for exponential

times. On the other hand, our theorem shows that the variance comes from fluctuations of

nonvanishing probability in the sense that, as n→∞, the law of T (0, n) is not tight about its

median. Very recently, Newman and Piza showed that the log n may be improved to a power

of n for directions in which the shape is not flat (it is not known whether the shape can be flat

in any direction; see Durrett and Liggett (1981) for a relevant example). As pointed out to us

by Harry Kesten, in the exponential case this may also be obtained via the method given here.

Theorem 1 Let v be any unit vector in IR2 and let v(n) be the vector in Z2 whose coordinates

are the integer parts of the coordinates of nv. Let T (0,v(n)) denote the passage time from the

origin to the vertex v(n), under IID mean 1 exponential passage times on the edges of Z2. Then

Var(T (0,v(n))) ≥ C log n and in fact any intervals [an, bn] with bn − an = o(log n)1/2 satisfy

P(T (0,v(n)) ∈ [an, bn])→ 0.
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Remark: The theorem extends to Richardson’s model with other passage time distributions

(restart all clocks after an edge is crossed).

Proof: We compute the conditional distribution of T (0,v(n)) given a σ-field F and show that

with probability 1 − o(1), this conditional distribution is close to a normal with variance at

least C log n; clearly this implies the conclusion of the theorem.

Let F be the σ-field determined by the order in which vertices are reached. Formally, if T (v)

is the passage time from the origin to the vertex v, then F is the σ-field generated by the events

T (v) < T (w) for v, w ∈ Z2. Let V0, V1, V2, . . . be the vertices of Z2 listed in the order they

are reached, so (V0, V1, . . .) is an F-measurable random sequence. Let Cn = {V0, V1, . . . , Vn}
be the cluster of the first n elements to be reached from the origin, and let Yn be the number

of edges connecting elements Cn−1 to elements of Z2 \ Cn−1. The key observation is that the

conditional joint distribution of the variables T (Vn)−T (Vn−1) given F is identical to a sequence

of independent exponentials with means 1/Yn. This is in fact an immediate consequence of

the lack of memory of the exponential distribution and of the fact that the minimum of n

independent exponentials of mean 1 is an exponential of mean 1/n. This observation leads to

Lemma 2

lim inf
n→∞

(log n)−1
n∑
j=1

1
Y 2
j

≥ c0 a.s.

for some positive constant c0.

Assuming this lemma for the moment, define M(n) to satisfy VM(n) = v(n). Let

µn = E(T (Vn) | F) =
n∑
j=1

1
Yj

and

σ2
n = Var(T (Vn) | F) =

n∑
j=1

1
Y 2
j

.

The Lindeberg-Feller theorem implies that the conditional distribution of the variable

(T (v(n))−µM(n))/σM(n) converges weakly to a standard normal whenever σM(n) →∞. Subad-

ditivity implies that that T (v(n))/n → c1 = c1(v) almost surely, and the shape theorem (Cox
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and Durrett 1981) implies that c1 > 0 and that the number of vertices Nt reached by time t

is almost surely (c2 + o(1))t2. (Equivalently, T (Vn) = (c−1/2
2 + o(1))n1/2.) From this it follows

that
M(n)
n2

→ c2c
2
1 a.s., (1)

and hence from Lemma 2 that

lim inf(log n)−1σ2
M(n) ≥ 2c0 a.s.

Thus a conditional distribution of T (v(n)) is close to a normal with variance at least 2c0 + o(1),

which establishes the theorem.

To prove Lemma 2, we first observe from the isoperimetric inequality that the distribution

of T (Vn) is stochastically bounded by the sum of independent exponentials of means cj−1/2,

j = 1, . . . , n. Thus the variables n−1/2T (Vn) are dominated by a variable in L1 and hence

µn
n1/2

= E(n−1/2T (Vn) | F)→ c
−1/2
2

almost surely. Lemma 2 then follows from a fact about sequences of real numbers:

Lemma 3 Let x1, x2, . . . be positive real numbers with Sn =
∑n
j=1 xj and suppose that

lim inf n−1/2Sn = c. Then

lim inf(log n)−1
n∑
j=1

x2
j ≥

c2

4
.

Proof: It suffices to show that the condition

Sn ≥ an1/2 − b for all n

implies lim inf(log n)−1∑n
j=1 x

2
j ≥ a2/4, since one may then take a = c− ε for arbitrarily small

ε. Also, replacing x1 with x1 + b, we may assume without loss of generality that b = 0. Define

qn = n1/2 − (n− 1)1/2 ≥ 1
2
n−1/2.

3



Assuming Sn ≥ an1/2 for all n, we show that
∑n
j=1 x

2
j ≥ a2 log n/4. Rearranging the terms

{xj : 1 ≤ j ≤ n} in decreasing order does not change
∑n
j=1 x

2
j and only increases each Sj , so we

may assume without loss of generality that these terms appear in decreasing order. Summing

by parts three times we obtain

n∑
j=1

x2
j = Snxn +

n−1∑
k=1

Sk(xk − xk+1)

≥ a

[
n1/2xn +

n−1∑
k=1

k1/2(xk − xk+1)

]

= a
n∑
j=1

qjxj

= a

[
qnSn +

n−1∑
k=1

(qk − qk+1)Sk

]

≥ a

[
qnn

1/2 +
n−1∑
k=1

(qk − qk+1)k1/2

]
.

Summing once more by parts and using the definition of qk we see that this is equal to a
∑n
k=1 q

2
k,

which is at least a2 log n/4. This proves the lemma and hence the theorem. 2

When the asymptotic shape has a finite radius of curvature in the direction v, Newman and

Piza have shown, using results of Kesten (1992) and Alexander (1992), that the minimizing

path from 0 to v(n) deviates from a straight line segment by at most cnα for some α < 1, with

probability 1 − o(1) as n → ∞. Thus the time T ′(0,v(n)) to reach v(n), in a new percolation

where only bonds in a strip of width nα are permitted, differs from T (0,v(n)) by o(1) in

total variation. The shape theorem for Z2 implies that the number of sites reached in the new

percolation by this time is O(n1+α). Defining M ′(n), µ′n, Y
′
n and σ′n analogously to M(n), µn, Yn

and σn but for the new percolation, we have µ′n =
∑n
k=1(1/Y ′n), while now M ′(n) = O(n1+α).

By Cauchy-Schwartz – no summing by parts is needed – it follows that (σ′M ′(n))
2 ≥ cn1−α, and

applying Lindeberg-Feller as before proves the extension mentioned before Theorem 1.

4



References

[1] Alexander, K. (1992). Fluctuations in the boundary of the wet region for first-passage

percolation in two and three dimensions. Preprint.

[2] Cox, J.T. and Durrett, R. (1981). Some limit theorems for percolation processes with

necessary and sufficient conditions. Ann. Probab. 9 583 - 603.

[3] Durrett, R. and Liggett, T. (1981). The shape of the limit set in Richardson’s growth

model. Ann. Probab. 9 186 - 193.

[4] Kesten, H. (1986). Aspects of first passage percolation. In Lecture Notes in Mathemat-

ics, vol. 1180, 125 - 264.

[5] Kesten, H. (1992). On the speed of convergence in first passage percolation. Ann. Appl.

Prob. to appear

[6] Newman, C. and Piza, M. (1993). Divergence of shape fluctuations in two dimensions.

Preprint.

5


