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Abstract

We consider invasion percolation on Galton-Watson trees. On almost every Galton-Watson tree,

the invasion cluster almost surely contains only one infinite path. This means that for almost every

Galton-Watson tree, invasion percolation induces a probability measure on infinite paths from the root.

We show that under certain conditions of the progeny distribution, this measure is absolutely continuous

with respect to the limit uniform measure. This confirms that invasion percolation, an efficient self-tuning

algorithm, may be used to sample approximately from the limit uniform distribution. Additionally, we

analyze the forward maximal weights along the backbone of the invasion cluster and prove a limit law

for the process.

Keywords: Backbone, incipient infinite cluster, limit uniform, Poisson point process, pivot, self-organized

criticality.
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1 Introduction

Given an infinite rooted tree, how might one sample, nearly uniformly, from the set of paths from the root

to infinity? One motive for this question is that nearly uniform sampling leads to good estimates on the

growth rate [JS89]. One might be trying to estimate the size of a search tree, or, in the case of [RS00], to

determine the growth rate of the number of self-avoiding paths.

A number of methods have been studied. One is to do a random walk on the tree, with a “homesickness”

parameter determining how much steps back toward the root are favored [LPP96]. The parameter needs to be

tuned near criticality: too much homesickness and the walk gets stuck near the root; too little homesickness

and the walk goes to infinity without taking the time to ensure that the path is well randomized. Randall

and Sinclair [RS00] solve this by estimating the critical parameter as the walk progresses, re-tuning the

homesickness to lie above this by an amount decreasing at an appropriate rate.

Another approach is to use percolation. One conditions the percolation cluster to survive to level N ; as the

percolation parameter decreases to criticality and N is taken to infinity, the law of this cluster approaches

the law of the incipient infinite cluster (IIC). For many graphs—e.g. regular or Galton-Watson trees—the

IIC almost surely contains a unique infinite path, thereby giving a mechanism for sampling such a path. In

practice, the same considerations arise as with homesick random walks: tuning the percolation parameter

too low yields too little likelihood of survival and too great a time cost to rejection sampling; too great

a percolation parameter results in too many surviving paths and a selection problem which leads to poor

randomization.

Invasion percolation was introduced as a model for how viscous fluid creeps through an environment in [WW83].

Each site is given an independent U [0, 1] random variable, representing how great the percolation probability

would have to be before the site would be open. The cluster then grows by adding, at each time step, the

site with the least U value among sites neighboring the cluster but not in the cluster. On trees, it is not

hard to see that the lim sup of U -values of bonds chosen is equal to the critical percolation parameter. In

other words, instead of running percolation at pc and conditioning to survive, one allows slightly supercritical

bonds but less and less as the cluster grows. As is the case for the IIC, the invasion cluster almost surely

contains only one infinite path in the case of regular or Galton-Watson trees, and thus gives a different

mechanism for sampling paths. Unlike the IIC and homesick random walk, invasion percolation requires no

tuning to criticality and is an instance of self-organized criticality.

The invasion cluster has some properties in common with the IIC but not all. For example, results of

Kesten [Kes86] and Zhang [Zha95] show that the growth exponents of the two are equal on the two-

dimensional lattice; however the measures of the two clusters are mutually singular on the lattice [DSV09]

as well as on a regular tree [AGdHS08]. Our focus is the comparison of the laws induced on paths by both

the IIC and invasion percolation.

On a Galton-Watson tree T , there is a natural measure on paths, the limit-uniform measure µT , which

although it does not restrict precisely to the uniform measure on each generation, approximates this as

closely as possible. There is not, however, a fast algorithm for sampling from it. Rules such as “split equally

at each node” lead to rapid sampling but the wrong entropy; in other words, the Radon-Nikodym derivative

with respect µT on generation N will be exponential in N . It is not hard to show that on almost every

Galton-Watson tree (assuming a Z logZ moment for the offspring distribution), the unique path in the IIC

has law µT . Since sampling from the IIC is problematic, it is therefore natural to ask how close the law νT
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of the path chosen by the invasion cluster is to µT . It is easy to see that the two laws are typically not equal.

As an example, consider the set of trees with first three generations given by

When averaged over the remaining generations with the Galton-Watson measure—or equivalently, placing

independent Galton-Watson trees at the terminal nodes—the limit-uniform measure splits equally at the

root, while the invasion measure favors the left subtree regardless of the offspring distribution.

The best comparison one might hope for is that νT be absolutely continuous with respect to µT , perhaps

even with Radon-Nikodym derivative in Lp. Our main result is as follows.

Theorem 1.1. Suppose the offspring distribution Z has at least p moments and P[Z = 0] = 0; set p1 :=

P[Z = 1], let µ := E[Z], and denote q := log µ
log(1/p1) . If

2p2q2 + (3p2 + 5p)q + (−p2 + 11p− 4) < 0,

then νT � µT almost surely.

The condition in Theorem 1.1 is a trade-off between p1 and p. In the case of p =∞, the condition becomes

p1 < 1/µ
3+
√

17
2 . In the case of p1 = 0, the condition is p > 11+

√
105

2 .

A summary of the argument behind Theorem 1.1 is as follows. Let Xn be the KL-distance between the

way that µT and νT split at the nth step γn of a path chosen from νT . A sufficient condition for absolute

continuity is that
∑∞
n=1 EXn < ∞. A precise statement is given in Lemma 2.7 below. A more detailed

outline of the argument is given at the end of this section.

The reason we have a hope of estimating Xn is that there is a backbone decomposition for invasion percolation.

Define the backbone to be the almost surely unique non-backtracking path γ = (0, γ1, γ2, . . .) from the root

to infinity. For any vertex v define the pivot value at v, denoted β(v), to be the least p such that there is a

path from v to infinity in the subtree at v with all U variables (not including the one at v) at most p. On

a regular tree, invasion percolation was studied in [AGdHS08, AGdHS13]. For the purposes of studying νT ,

the regular tree is a degenerate case, because µT and νT are equal to each other and to the equally splitting

measure. Further, on regular trees, the incipient infinite cluster stochastically dominates the invasion cluster;

this fails to hold in the Galton-Watson case due to the fact that µT 6= νT . Despite these differences, the

results on backbones and pivots in the regular case extend in a useful way to the Galton-Watson setting.

In particular, [AGdHS08] prove that the process {β(γn) − pc}n≥0 converges to the Poisson lower envelope

process when properly scaled; we prove similar results, and combine Theorem 6.2 and Corollaries 6.3 and

6.4 into the following:

Theorem 1.2. Define hn := β(γn)− pc. Then
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(i) Let {Uj}∞j=0 be IID random variables each uniformly distributed on (0, 1) and define Mn = min{U0, . . . , Un}.
Then for each ε > 0, the process {hn} may be coupled with {Mn} so that with probability 1, hn satisfies

(1− ε)pcMn ≤ hn ≤ (1 + ε)pcMn for all sufficiently large n.

(ii) For any ε > 0 as k →∞,

(khdkte/pc)t≥ε
∗

=⇒ (L(t))t≥ε

where
∗

=⇒ denotes convergence in distribution of càdlàg paths in the Skorohod space D[0,∞) and L(t)

denotes the Poisson lower envelope process, defined in [AGdHS08] and Section 6.

(iii) The sequence n · hn converges in distribution to pc · exp(1), where exp(1) is an exponential random

variable with mean 1.

Conditioning on T , the way the invasion measure splits at v depends on the whole tree. However, if one

also conditions on the pivot at v, then the way the invasion measure splits at v becomes independent of

everything outside of the subtree at v. A similar statement is true if one conditions on the pivot of v being

less than or equal to a certain value; these are the Markov properties of Propositions 4.4 and 4.6. The

limiting behavior of these values is given in Theorem 4.9 and Section 6. Further, Lemma 5.1 shows that

this conditioned splitting measure is close to a ratio of survival probabilities under supercritical Bernoulli

percolation. The problem is thus reduced to proving estimates of the survival probabilities of Galton-Watson

trees under supercritical Bernoulli percolation as in Section 3.

The remainder of the paper is organized as follows. Section 2 sets up the notation and gives some preliminary

results. Some care is required to set up the probability space so that we can easily speak of the random

measures µT and νT , which are conditional on the Galton-Watson tree. Section 2 culminates in Lemma 2.7

and Corollary 2.8. Section 3 estimates near-critical survival probabilities for Galton-Watson trees. Section 4

proves two Markov properties for the subtree from γn together with β(γn). The remainder of the section

extends the work of [AGdHS08] by proving a limit law for β(γn) which then implies an upper bound on

the rate at which β(γn) ↓ pc. In particular, Corollary 6.3 shows convergence to the Poisson lower envelope

process, as in [AGdHS08]. Section 5 completes the proof of Theorem 1.1 by comparing the conditional

invasion measure to the ratio of survival probabilities and utilizing the estimates on survival probabilities

from Section 3.

A glossary of notation by page of reference is included after the references.

Outline of Proof of Theorem 1.1

1. Absolute continuity follows from summability of KL-divergence of splits

Let Xn be the KL-distance between the way that µT and νT split at the nth step γn of a path chosen

from νT . A sufficient condition for absolute continuity is that
∑∞
n=1Xn < ∞. A precise statement is

given in Lemma 2.7. In fact, we may replace the KL-distance with a process that differs from Xn for

only finitely many n (Corollary 2.8).

2. Shifting to the γn is the same as conditioning on the pivot being at most a certain value

We show that shifting to the γn is the same as examining a fresh Galton-Watson tree with the pivot

of the root conditioned to be at most a certain random variable that we call the dual pivot, β∗n. This

is the content of the Markov property given in Proposition 4.4.
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3. Understanding how β∗n behaves for large n

As n → ∞, the variables β∗n approach pc. We in fact will have that the convergence is quite rapid,

as shown by Theorem 4.9. The variables β∗n are closely related to the pivots βn whose rate of decay

is given in Theorem 1.2; the process {β∗n}n is difficult to study by itself, although the pair (βn, β
∗
n) is

Markov with transition kernel given explicitly in Proposition 4.8.

4. Conditioned on the pivot of the root being at most p, the split of the invasion measure is

close to the ratio of survival probabilities

With Steps 2 and 3 in mind, we examine the split of the invasion measure conditioned on the root

having pivot at most p. Lemma 5.1 shows that this splitting measure may be closely approximated by

splitting according to the probability that the subtree survives p-percolation.

5. The ratio of survival probabilities is close to the split of the limit-uniform measure

The last remaining step is to show that if p is close to pc, the ratios of the probabilities of surviving

p-percolation closely approximate the splits of the limit uniform measure (Proposition 5.2). In order

to show this, much work needs to be done to approximate the near-critical survival probabilities of

Galton-Watson trees. This is the content and focus of Section 3.

2 Construction and preliminary results

2.1 Galton-Watson trees

We begin with some notation we use for all trees, random or not. Let U be the canonical Ulam-Harris

tree [ABF13]. The vertex set of U is the set V :=
⋃∞
n=1 Nn, with the empty sequence 0 := ∅ as the root.

There is an edge from any sequence a = (a1, . . . , an) to any extension a t j := (a1, . . . , an, j). The depth of

a vertex v is the graph distance between v and 0 and is denoted |v|. We work with trees T that are locally

finite rooted subtrees of U . The usual notations are in force: Tn denotes the set of vertices at depth n; T (v)

is the subtree of T at v, canonically identified with a rooted subtree of U , in other words the vertex set of

T (v) is {w : v t w ∈ V (T )} ; ∂T denotes the set of infinite non-backtracking paths from the root; if γ ∈ ∂T
then γn (n ≥ 0) denotes the nth vertex in γ; the last common ancestor of v and w is denoted v ∧w and the

last common vertex of γ and γ′ is denoted γ ∧ γ′ ; ~v denotes the parent of v . Let µnT denote the uniform

measure on the nth generation of T . In some cases, for example for almost every Galton-Watson tree, the

limit µT := limn→∞ µnT exists and is called the limit-uniform measure [LP17, Chapter 17.6].

Turning now to Galton-Watson trees, let φ(z) :=
∑∞
n=1 pnz

n be the ordinary generating function for a

supercritical branching process with no death, i.e., φ(0) = 0. We recall,

φ′(1) = EZ =: µ

φ′′(1) = E[Z(Z − 1)]

where Z is a random variable with probability generating function φ. Throughout, we assume E[Z2] <∞; in

particular, this also means that φ′′(1) <∞. Moreover, since our focus is on ∂T , the assumption of φ(0) = 0

can be made without loss of generality by considering the reduced tree, as in [AN72, Chapter I.12].

We will work on the canonical probability space (Ω,F ,P) where Ω = (N× [0, 1])V, F is the product Borel

σ-field, and P is the probability measure making the coordinate functions ωv = (degv, Uv) IID with the
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law of (Z,U), where U is uniform on [0, 1] and independent of Z. The variables {degv}—where degv is

interpreted as the number of children of vertex v—will construct the Galton-Watson tree, while the variables

{Uv} will be used later for percolation. Let T be the random rooted subtree of U which is the connected

component containing the root of the set of vertices that are either the root or are of the form v t j such

that 0 ≤ j < degv. This is a Galton-Watson tree with ordinary generating function φ.

As is usual for Galton-Watson branching processes, we denote Zn := |Tn|. Extend this by letting Zn(v)

denote the number of offspring of v in generation |v| + n; similarly, extend the notation for the usual

martingale Wn := µ−nZn by letting Wn(v) := µ−nZn(v). We know that Wn(v) → W (v) for all v, almost

surely and in Lp if the offspring distribution has p moments. This is stated without proof for integer values of

p ≥ 2 in [Har63, p. 16] and [AN72, p. 33, Remark 3]; for a proof for all p > 1, see [BD74, Theorems 0 and 5].

Further extend this notation by letting v(i) denote the ith child of v, letting Z
(i)
n (v) denote nth generation

descendants of v whose ancestral line passes through v(i), and letting W
(i)
n (v) := µ−nZ

(i)
n (v). Thus, for every

v, W (v) =
∑
iW

(i)(v). For convenience, define pc := 1/µ and recall that pc is almost surely the critical

percolation parameter for T [Lyo90].

2.2 Bernoulli and Invasion Percolation

In this subsection we give the formal construction of percolation on random trees, and for invasion percolation.

Our approach is to define a simultaneous coupling of invasion percolations on all subtrees T of U via the U

variables, then specialize to the random tree T. Let T := σ({degv : v ∈ V}) denote the σ-field generated

by the tree variables. Because T is independent from the U variables, this means we have constructed a

process whose law, conditional on T , is invasion percolation on T. We use the notation E∗ to denote E[· | T ];

similarly P∗[·] := P[· | T ] . Moreover, we use GW := P|T to denote the Galton-Watson measure on trees.

We begin with a similar construction for ordinary percolation. For 0 < p < 1, simultaneously define

Bernoulli(p) percolations on rooted subtrees T of U by taking the percolation clusters to be the connected

component containing 0 of the induced subtrees of T on all vertices v such that Uv ≤ p; note that we always

include the root 0, and thus the uniform variables Uv may equivalently be thought of as being edge-weights

connecting the parent of v to v. Let Fn be the σ-field generated by the variables {Uv,degv : |v| < n}. Let

pc = 1/µ = 1/φ′(1) denote the critical probability for percolation. Write v ↔T,p w if Uu ≤ p for all u on

the geodesic from v to w in T . Informally, v ↔T,p w iff v and w are both in T and are connected in the

p-percolation. The event of successful p percolation on T is HT (p) := {0↔T,p ∞} and the event of successful

p percolation on the random tree T, is denoted HT(p) or simply H(p). Let g(T, p) := P[HT (p)] denote the

probability of p percolation on T . The conditional probability P∗[H(p)] is measurable with respect to T

and we may define g(T, p) := P∗[H(p)]. Furthermore, we may define g(p) = P[H(p)] = Eg(T, p). Since

pc = 1/µ is the critical percolation parameter for a.e. T, note that g(T, p) = 0 for all p ∈ [0, pc].

Define invasion percolation on an arbitrary tree T as follows. Start with IT0 = 0 where we recall that 0 is

the root of T . Inductively define ITn+1 to consist of ITn along with the vertex of minimal weight Uv adjacent

to ITn . The invasion percolation cluster is defined as IT :=
⋃
n I

T
n . Note that IT is measurable with respect

to the U variables. Let I := IT denote the invasion cluster of the random tree T. By independence of the

U variables and T , the conditional distribution of I given T agrees with that of invasion percolation.

Proposition 2.1. For any p > pc, I almost surely reaches some vertex v such that v ↔p ∞ in T(v).
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Proof: We consider the following coupling that generates I at the same time as T: begin with the root,

and generate children according to Z, giving each new edge a (0, 1) weight uniformly and independently. We

denote this height 1 weighted tree as L1. The sequence of weighted trees {Ln} is now defined inductively as

follows: for each n ≥ 1, Ln+1 is obtained by assigning Z children (using an independent copy of Z) to the

boundary vertex of Ln with the smallest corresponding edge weight, and then giving each of the new edges

a (0, 1) weight uniformly and independently.

For each n ≥ 1, define Fn to be the Borel σ-field inside of F that is generated by Ln. Next, we define the

increasing sequence of stopping times N1, N2, . . . in the following way: set N1 equal to the minimum value of

n such that all edges connected to boundary vertices of Ln have weight at least p, and if no such value exists,

set N1 =∞. For j ≥ 1, set Nj+1 equal to infinity if either Nj =∞, or there is no n > Nj such that all edges

connected to boundary vertices of Ln have weight at least p, and otherwise set Nj+1 equal to the minimum

n > Nj for which this last condition is satisfied. Observing that {N1 =∞} is simply the event that all edges

of the invasion cluster I have weight less than p, we see that P(N1 =∞) = g(p). In addition, since no edges

in LNj are considered until time Nj+1, we also find that for every j, k with 1 ≤ j ≤ k < ∞, the random

variable Nj+1−Nj is independent of Fk with respect to the probability measure P(·|Nj = k). Finally, noting

that (Nj+1 −Nj |Nj = k) has the same distribution as N1, we find that P(Nj+1 =∞|Nj <∞) = g(p).

Now define Ap ∈ F to be the event that I eventually invades a vertex with corresponding edge weight less

than p. Since having a j for which Nj = ∞ implies Ap, we can now conclude from the above observations

that

P(Ap) = E[P(Ap|T)] ≥
∞∑
j=0

g(p)
(
1− g(p)

)j
= 1 =⇒ P∗(Ap) = 1 GW-a.s.,

thus completing the proof. �

Corollary 2.2. For any p > pc, the number of edges in I with weight greater than p is almost surely finite.

This was proven for a large class of graphs by Häggström, Peres and Schonmann [HPS99], but this class

doesn’t cover the case of Galton-Watson trees conditioned on survival; they exploit quite a bit of symmetry

that does not occur in the Galton-Watson case.

Proof: Let x be the first invaded vertex with an infinite subtree below with weights less than p. Then

after x is invaded, no edges of weight larger than p will be invaded. �

Corollary 2.3. There is almost surely only one infinite non-backtracking path from 0 in I. Equivalently, T

is almost surely in the set of trees T such that IT contains almost surely a unique infinite non-backtracking

path from 0.

Proof: Suppose that there are two distinct paths to infinity in I; by Corollary 2.2, there exist maximal

weights M1 and M2 along these paths after they split, P-almost surely. If M1 > M2, the second infinite path

would be invaded before the edge containing M1. Similarly, we cannot have M2 > M1. Finally, M1 = M2

has P-probability 0, completing the proof. �

This proof is stated for invasion percolation on regular trees in [AGdHS08], but is identical for Galton-

Watson trees once Corollary 2.2 is in place; the unique path guaranteed by Corollary 2.3 is typically called

the backbone of I, and we continue this convention. Note that a regular tree is simply a Galton-Watson tree

with Z almost-surely constant.
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Definition 2.4 (the invasion path γ). Let γT := (0, γT1 , γ
T
2 , . . .) be the random sequence whose nth element

is the unique v with |v| = n such that v ↔∞ via a downward path in the invasion cluster IT . Let νT denote

the law of γT given T . Let νT denote the random measure on the random space (T, ∂T) induced by the γT.

In other words, for measurable A ⊆ ∂U , νT(A,ω) = P[γT ∈ A] evaluated at T = T(ω). By Corollary 2.3,

this is a well defined probability measure for almost every ω.

2.3 Preliminary comparison of limit-uniform and invasion measures

Our main goal is to see whether νT is almost surely absolutely continuous with respect to µT. We give

the summability criterion that establishes a sufficient condition for absolute continuity in terms of the KL-

divergence of the two measures along a ray chosen from νT.

Definition 2.5 (the splits p and q at children of u, and their difference, X). Let v be a vertex of T and let

u be the parent of v. Define

p(v) := µT(v)/µT(u)

q(v) := νT(v)/νT(u)

X(u) :=
∑
w

q(w) log[q(w)/p(w)]

where the sum is over all children w of u and νT(v) = νT({γ : v ∈ γ}) and µT(v) is defined similarly. The

quantity X is known as KL-divergence. The KL-divergence K(ρ, ρ′) is defined between any two probability

measures ρ and ρ′ on a finite set {1, . . . , k} by the formula

K(ρ, ρ′) :=

k∑
i=1

ρ′(i) log
ρ′(i)

ρ(i)
.

It is a measure of the difference between the two distributions. It is always non-negative but not symmetric.

The following inequality shows that K behaves like quadratic distance away from ρ = 0.

Proposition 2.6. Let ρ and ρ′ be probability measures on the set {1, . . . , k} and denote εi := ρ′(i)/ρ(i)− 1.

Then

K(ρ, ρ′) ≤
k∑
i=1

ρ(i)ε2
i . (2.1)

Proof: Define the function R on (−1,∞) by

R(x) :=
(1 + x) log(1 + x)− x

x2

if x 6= 0 and R(0) := 1/2. This makes R continuous, positive, and decreasing from 1 to 0 on (−1,∞). When

ε = ρ′/ρ− 1, we may compute

ρ′ log(ρ′/ρ)− (ρ′ − ρ)

ρ
=

(1 + ε)ρ log(1 + ε)− ερ
ρ

= ε2R(ε) .

Because
∑k
i=1 ρ(i) =

∑k
i=1 ρ

′(i) = 1, we see that

K(ρ, ρ′) =

k∑
i=1

(ρ′(i)− ρ(i)) + ρ(i)ε2
iR(εi) =

k∑
i=1

ρ(i)ε2
iR(εi)

and the result follows from 0 < R(εi) < 1. �
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Applying Proposition 2.6 to ρ′ = q and ρ = p gives

X(u) ≤
∑
w

p(w)ε(w)2 (2.2)

where ε(w) = q(w)
p(w) − 1.

Lemma 2.7. Let T be a fixed tree on which νT and µT are well defined on the Borel σ-field B on ∂T . If

∞∑
n=1

∑
|v|=n

X(v)νT (v) <∞ (2.3)

then νT � µT .

Proof: On the measure space (∂T,B), define a filtration {Gn} by letting Gn denote the σ-field generated

by the sets {γ : γn = v}. The Borel σ-field B is the increasing limit σ(
⋃
n Gn). Let

Mn :=
dνT
dµT

∣∣∣∣
Gn

.

In other words, Mn(γ) = νT (γn)/µT (γn). Let M := lim supn→∞Mn. The Radon-Nikodym martingale

theorem [Dur10, Theorem 5.3.3] says that {Mn} is a martingale with respect to (∂T,B, µT , {Gn}) and

that νT � µT is equivalent to νT ({M = ∞}) = 0. This is equivalent to νT ({M = 0}) = 0 where

M = 1/M = lim infn 1/Mn. The sequence {1/Mn} is a νT -martingale, therefore {log(1/Mn)} is a νT -

supermartingale and to conclude that it νT -a.s. does not go to negative infinity, it suffices to show that its

expectation is bounded from below.

We compute the conditional expected increment of log(1/Mn). Letting γ denote the ray (γ1, γ2, . . .),

log
1

Mn+1(γ)
− log

1

Mn(γ)
= log

νT (γn)

µT (γn)
− log

νT (γn+1)

µT (γn+1)
= − log

q(γn+1)

p(γn+1)
.

Conditioning on Gn, if γn = u, then the νT -probability of γn+1 = v is q(v), whence

EνT

[
log

1

Mn+1
− log

1

Mn

∣∣∣∣Gn] =
∑

v child of u

−q(v) log
q(v)

p(v)
= −X(u) .

Taking the unconditional expectation,

EνT

[
log

1

Mn+1
− log

1

Mn

]
= −

∑
|v|=n

νT (v)X(v)

and summing over n shows that (2.3) implies that log(1/Mn) has expectation bounded from below, estab-

lishing νT � µT . �

Corollary 2.8. Recall that γ denotes the invasion path on T and let Xn denote X(γn).

(i) If
∑∞
n=1 EXn <∞ then νT � µT GW-almost surely.

(ii) Define the filtration {G′n} on (Ω,F) by letting G′n be the σ-field generated by T together with γ1, . . . , γn.

Let Y (v) be non-negative random variables such that Y (v) ∈ G′|v| and

P[X(γn) 6= Y (γn) infinitely often] = 0 .

Then
∑∞
n=1 EYn <∞ implies that GW-almost surely, νT � µT.
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Proof:

(i) Writing EXn = E [E∗Xn] we see that the hypothesis of (i), namely
∑∞
n=1 EXn <∞, implies E

∑∞
n=1 E∗Xn <

∞. This implies
∑∞
n=1 E∗Xn < ∞ almost surely. A version of E∗Xn is

∑
|v|∈Tn X(v)νT(v), whence (2.3)

holds for GW-almost every T, implying almost sure absolute continuity of µT with respect to νT.

(ii) The argument used to prove Lemma 2.7 may be adapted as follows. Let Mn :=
dνT
dµT

∣∣∣∣
G′n

, a version of

which is the function taking the value
νT(v)

µT(v)
on {γn = v}. Again {Mn} is a martingale and log(1/Mn) is a

supermartingale which we need to show converges almost surely. The sequence

SM :=

M∑
n=1

(
log

1

Mn+1
− log

1

Mn

)
1X(γn)=Y (γn)

is a convergent supermartingale because its expected increments are either 0 or −Y (γn); convergence of the

unconditional expectations EY (γn) implies almost sure convergence of the expected increments, implying

almost sure convergence of the supermartingale {SM}. The hypotheses of (ii) imply that the increments

of SM differ from the increments of log(1/Mn) finitely often almost surely, implying convergence of the

supermartingale log(1/Mn) and hence νT � µT. �

3 Survival function conditioned on the tree

This section is concerned with estimating the quenched survival function g(T, p). The ultimate goal will

be to examine the behavior of g(T, p) for small p − pc, as estimates on g(T, ·) will be central to step 5 of

the outline. Before studying the random function g(T, p), we record some basic properties of the annealed

function g(p) = E[g(T, p)]. For a more complete analysis of the function g(T, ·), see [MPR18].

3.1 Properties of the annealed function g(p)

Proposition 3.1. The derivative from the right K := g′(pc) exists and is given by

K :=
2

p3
cφ
′′(1)

. (3.1)

Proof: Let φp(z) := φ(1−p+pz) be the offspring generating function for the Galton-Watson tree thinned

by p-percolation for p ∈ (pc, 1). The fixed point of φp is 1−g(p). In other words, g(p) is the unique s ∈ (0, 1)

for which 1− φp(1− s) = s. The first two derivatives of φp at 1 are given by

φ′p(1) =
p

pc
;

φ′′p(1) = p2φ′′(1) .

By a Taylor expansion, this leads to

1− φp(1− s) =
p

pc
s− 1 + o(1)

2
φ′′(1)p2s2

as p ↓ pc. Setting this equal to s and solving for s ∈ (0, 1) yields the conclusion of the proposition. �

10



Corollary 3.2. As p ↓ pc, g′(p)→ K.

Proof: The existence of g′(p) on (pc, 1) follows from the implicit function theorem. To obtain an expression

for g′(p), we differentiate both sides of the expression φ(1−p · g(p)) = 1− g(p) with respect to p, which gives

(−g(p)− p · g′(p))φ′(1− p · g(p)) = −g′(p).

Rearranging this expression to isolate g′(p), while using Proposition 3.1, along with the fact that φ′(1−x) =

µ− φ′′(1)x+ o(x) as x→ 0, we get

g′(p) =
g(p)φ′(1− p · g(p))

1− p · φ′(1− p · g(p))
=

2µ3

φ′′(1)
+ o(1)

as p ↓ pc. �

3.2 Preliminary estimates of g(T, p)

We now move to estimating g(T, p), a random variable measurable with respect to T . We first prove an

upper bound on g which gives a uniform bound on the Lq norm of g. Additionally, we show that conditioning

on only the first n levels gives a random variable exponentially close to g. Estimating this averaged random

variable is a key element in the proof of Theorem 1.1, and is the content of Section 3.3.

The following result from [LP17] will be useful for obtaining an a.s. upper bound on g(T, pc + ε).

Theorem 3.3 ([LP17, Theorem 5.24]). For p-percolation, we have

1

R(0↔∞) + 1
≤ P∗[0↔∞] ≤ 2

R(0↔∞) + 1

where R(0↔∞) denotes the effective resistance from 0 to infinity when an edge connecting ~u to u is given

resistance

r(e) =
1− p
p|u|

.

�

From this, we deduce:

Proposition 3.4. For any ε ∈ (0, 1− pc) and GW-almost surely,

g(T, pc + ε) <
2εW

(1− pc − ε)pc
(3.2)

where W := sup
n
Wn(T) is almost surely finite because limn→∞Wn exists almost surely.

Proof: To get an upper bound on g, we need a lower bound on the resistance. For each height n, short

together all nodes at this height. For every p = pc + ε this gives a lower bound of

R(0↔∞) ≥
∞∑
n=1

1− pc − ε
Zn(pc + ε)n

11



= (1− pc − ε)
∞∑
n=1

pnc
Wn(pc + ε)n

≥ (1− pc − ε)
W

∞∑
n=1

pnc
(pc + ε)n

=
(1− pc − ε)pc

Wε
.

Using Theorem 3.3, we get

g(T, pc + ε) ≤ 2

1 + (1−pc−ε)pc
Wε

≤ 2εW

(1− pc − ε)pc
. (3.3)

�

Proposition 3.5 (uniform Lq bound). Suppose the offspring distribution has a finite q > 1 moment. Then

for any δ > 0, there is a constant cq such that for all ε ∈ (0, 1− pc − δ),

Eg(T, pc + ε)q ≤ cqεq

where cq = cq(δ) > 0.

Proof: First recall that if the offspring has a finite q-moment, then Mq := EW q is finite as well. By the

Lq maximal inequality (e.g., [Dur10, Theorem 5.4.3]), we have that

E

[(
sup

1≤k≤n
Wk

)q]
≤
(

q

q − 1

)q
EW q

n ≤
(

q

q − 1

)q
Mq

because {W q
n} is a submartingale.

Note that

(
sup

1≤k≤n
Wk

)q
↑W q

as n→∞. By monotone convergence, this implies E[W
q
] ≤ (q/(q − 1))qMq.

In particular, for any ε < 1− pc − δ, this together with Proposition 3.4 implies

E[g(T, pc + ε)q] ≤
(

2ε

(1− pc − ε)pc

)q
E[W

q
] ≤

(
2ε

δpc

)q (
q

q − 1

)q
Mq ,

proving the proposition with cq =

(
2q

(q − 1)δpc

)q
Mq. �

Let Tn denote σ(degv : |v| ≤ n). Because Tn ↑ T and g is bounded, we know that E[g(T, p) | Tn] → g(T, p)

almost surely and in L1. It turns out that gn := E[g(T, p) | Tn] is much easier to estimate than g itself. Our

strategy is to show this convergence is exponentially rapid, transferring the work from estimation of g to

estimation of gn.

Lemma 3.6. For any δ > 0, there are constants ci > 0 such that for all p ∈ (pc,
√
pc − δ)∣∣ g(T, p)− gn(T, p)

∣∣ ≤ c1e−c2n
with probability at least 1− e−c3n.
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Proof: Define a random set S = S(n, p) to be the set of vertices v ∈ Tn such that 0↔p v. Let πT denote

the law of the random variable S, an atomic probability measure on the subsets of the random set Tn. Using

g(T, p) = P[H(p) | T ] = E [P[H(p) | F ′n] | T ]

where F ′n be the σ-field generated by Fn and T , we obtain the explicit representation

g(T, p) =
∑
S

πT(S)

[
1−

(∏
v∈S

(1− g(T(v), p))

)]
. (3.4)

Order the vertices in Tn arbitrarily and define the revealed martingale {Mk} by

Mk := E [g(T, p) | Tn, {T(vj) : j ≤ k}] (3.5)

as k ranges from 0 to |Tn|. By definition, M0 = gn. Also, M|Tn| = g(T, p) because from Tn together with

{T(v) : v ∈ Tn} one can reconstruct T. Arguing as in (3.4), we obtain the explicit representation

Mk =
∑
S

πT(S)

1−
∏

v∈S≤k

(1− g(T(v), p)(1− g(p))|S>k|

 (3.6)

where for a given set S ⊂ Tn, S≤k denotes the vertices in S indexed ≤ k and S>k denotes the set indexed

> k.

We claim the increments of {Mk} are bounded by pn. Indeed, (3.6) implies

|Mk −Mk−1| ≤
∑
S3vk

πT(S)|g(T(vk), p)− g(p)| ≤
∑
S3vk

πT(S) = P[0↔p vk] = pn.

Azuma’s inequality [Azu67] implies that for any c1, c2 > 0, the bounded increments translate to an upper

bound

P
[
|g(T, p)− gn(T, p)| > c1e

−c2n | Tn
]
≤ exp

(
− c

2
1e
−2c2n

2|Tn|p2n

)
. (3.7)

Recall that for any γ > 0,

P[|Tn| ≥ (µ(1 + γ))n] = P[Wn ≥ (1 + γn)] ≤ (1 + γ)−n

by Markov’s inequality. Since µp2 < 1 uniformly for p ∈ [pc,
√
pc − δ], we therefore may pick c2 so that

e−2c2n is exponentially larger in n than |Tn|p2n with exponentially high probability. Conditioning on this

event and applying (3.7) completes the proof. �

3.3 Bounds on the difference between g(T, pc + ε) and Wg(pc + ε)

For the purposes of proving Theorem 1.1, we will show that g(T, pc + ε) is close to Wg(pc + ε) for small

ε > 0. For a fixed vertex v in a tree T define E(v, ε) by

g(T(v), pc + ε) = g(pc + ε) (W (v) + E(v, ε)) .
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Proposition 3.7. Suppose the offspring distribution of Z has p ≥ 2 moments. Then for any δ, ` for which

both 0 < δ < 1 and 0 < ` < 1
2 , there exist constants Ci > 0 so that for all ε sufficiently small

|E(0, ε)| ≤ C1Wε1−δ + C2ε
1−2`

dε−δe−1∑
j=1

Wj (3.8)

with probability at least 1− C3ε
p`−δ.

Proof: Let c1, c2, c3 be the constants from Lemma 3.6, and fix δ > 0. Then for m = dε−δe, we have

|gm(T, pc + ε)− g(T, pc + ε)| < c1e
−c2/εδ (3.9)

with probability at least 1− e−c3/εδ , which implies that (3.9) holds for the root and all children of the root

with probability at least 1 − (µ + 1)e−c3/ε
δ

. Utilizing (3.9) and the fact that g(pc + ε) = Θ(ε) as ε → 0+

(while also making sure to select c3 < c2) gives

1

g(pc + ε)
|gm(T, pc + ε)− g(T, pc + ε)| < c1

1

g(pc + ε)
e−c2/ε

δ

= O
(
e−c3/ε

δ
)
. (3.10)

By [Dub71], there exist positive constants C ′1 and c′2 so that

P[W ≤ a] ≤ C ′1ac
′
2 .

This implies that C1e
−c3/εδ ≤ Wε1−δ with probability at least 1 − Ce−c/εδ for some new constants. Thus,

to show equation (3.8), it is sufficient to examine gm(T, pc + ε).

The Bonferroni inequalities imply that

F.O.m(0, ε)− S.O.m(0, ε) ≤ gm(T, pc + ε) ≤ F.O.m(0, ε)

where

F.O.m(0, ε) :=

(
1 +

ε

pc

)m
Wmg(pc + ε)

and S.O.m(0, ε) := g(pc + ε)2
∑

u,w∈Tm
u 6=w

(pc + ε)2m−|u∧w|.

To bound gm(T, pc + ε)− g(pc + ε)W , we first bound F.O.m(0,ε)
g(pc+ε)

−W . Write

F.O.m(0, ε)

g(pc + ε)
−W = W

((
1 +

ε

pc

)m
− 1

)
+ [Wm −W ](1 + ε/pc)

m.

Note first that |(1 + ε/pc)
m − 1| ≤ Cmε/pc for some C > 0. Recalling that m = dε−δe gives a bound of

Cε1−δ. Additionally, we have (1 + ε/pc)
m ≤ 2 for ε sufficiently small. We now look towards |Wm −W |.

By [AN72, Chapter I.13], we have that

Var [Wm −W |Wm] =
Wm

µm

(
Var [Z]

µ2 − µ

)
.
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By the law of total variance, this implies that

Var [Wm −W ] =
1

µm
Var [Z]

µ2 − µ
=:

CZ
µm

.

Chebyshev’s inequality then gives

P[|Wm −W | > µ−m/3] ≤ CZµ−m/3.

Since µ−m/3 ≤ µ−ε−δ/3 ≤ C2e
−c1/εc2 for some positive constants C2 and c1, c2, we have that

|F.O.m(0, ε)− g(pc + ε)W |
g(pc + ε)

≤ C1Wε1−δ + C2e
−c1/εc2 (3.11)

with probability at least 1− CZµ−m/3 = 1− C3e
−c3/εc4 .

By computing the lower probabilities of W again, recall that there exist constants C ′1 and c′2 so that

P[W ≤ a] ≤ C ′1ac
′
2 .

This implies that C2e
−c1/εc2 < C1Wε1−δ with probability at least 1 − Ce−c′2c1/εc2 . Relabeling constants,

this means that for sufficiently small ε, we can upgrade (3.11) to

|F.O.m(0, ε)− g(pc + ε)W |
g(pc + ε)

≤ C1Wε1−δ (3.12)

with probability at least 1− e−c1/εc2 .

The last piece is to bound S.O.m(0, ε)/g(pc + ε). By Fubini’s theorem,

S.O.m(0, ε)

g(pc + ε)
= g(pc + ε)

∑
u,w∈Tm
u 6=w

(pc + ε)2m−|u∧w|

≤ 2g(pc + ε)

m−1∑
j=0

p2m−j
c

∑
u,w:|u∧w|=j

1

≤ 2g(pc + ε)

m−1∑
j=0

pjc
∑
v∈Tj

∑
1≤i<k

W
(i)
m−j−1(v)W

(k)
m−j−1(v)

≤ g(pc + ε)

m−1∑
j=0

pjc
∑
v∈Tj

Wm−j(v)2

where the second inequality is from the bound (1 + ε
pc

)2m ≤ 2 for sufficiently small ε.

Note that for each j the innermost sum is a sum of IID random variables. We utilize the Fuk-Nagaev

inequality from [FN71] which states

P

∑
u∈Tj

[Wm−j(u)2 −EW 2
m−j ] > t

∣∣∣∣Zj
 ≤ Cpt−p/2Zp/4j + exp

(
−C t2

Zj

)
.
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Applying this bound for t = EW 2
m−jZjε

−2` gives

P

∑
u∈Tj

[Wm−j(u)2 −EW 2
m−j ] > (EW 2

m−j)Zjε
−2`

∣∣∣∣Zj
 ≤ C ′pεp`(Zj)−p/4 + exp

(
−C ′Zj/ε4`

)
≤ C ′′p εp`

for some choice of C ′′p > C ′p. By applying this bound and a union bound, we get

S.O.m(0, ε)

g(pc + ε)
≤ g(pc + ε)(1 + ε−2`)

m−1∑
j=0

(
EW 2

m−j
)
Zjp

j
c ≤ Cg(pc + ε)ε−2`

m−1∑
j=0

Wj

with probability at least 1− C ′′pmεp` for some new choice of C. This means that

P

S.O.m(0, ε)

g(pc + ε)
> Cg(pc + ε)ε−2`

m−1∑
j=0

Wj

 ≤ mC ′′p εp`.
Recalling that g(pc + ε) = Θ(ε) now gives

S.O.m(0, ε)

g(pc + ε)
≤ C2ε

1−2`
m−1∑
j=0

Wj

with probability at least 1−Cεp`−δ for some new C. Along with equations (3.9) and (3.12), this now implies

the proposition. �

From here, we extract the estimate that will be used to prove Theorem 1.1:

Corollary 3.8. Suppose the offspring distribution of Z has p > 1 moments and p1 := P[Z = 1]. Let δ, `, d

be positive constants such that

α = 1− 3`− (1 + d)δ (3.13)

is greater than 1
2 . Then there exists a constant C > 0 such that for all ε > 0 sufficiently small

|E(v, ε)| ≤ CW (v)εα (3.14)

for the root and its children with probability at least 1− Cεδ′ for δ′ = min
{
p`− δ, log(1/p1)

log(µ) dδ
}

.

Proof: The first term in equation (3.8) is always eventually smaller than W (v)εα since the exponent on

ε is larger. The final term in equation (3.8) can now be dealt with separately.

By [BD74, Theorems 0 and 5], if Z is in Lp, then Wk
Lp−−→ W , implying E[|Wk −W |p] ≤ C for some C > 0.

Therefore,

P[|Wk −W | > ε−`] ≤ Cεp`.

For m = dε−δe, condition on Z1, apply a union bound, and take expectation to see that

m∑
k=1

Wk ≤ m(ε−` +W )
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for the root and all of its children with probability at least 1 − C(1 + µ)εp`−δ. Applying this to the latter

term in equation (3.8) gives

|E(v, ε)| ≤ C1W (v)ε1−2`−δ + C2ε
1−3`−δ

with probability at least 1− Cεp`−δ.

In the case where p1 = 0, the lower tails on W provided by [Dub71] show that for any r1, r2 > 0 we have

P[W (v) < εr1 ] = o(εr2), thereby showing W (v) < εr1 with probability less than εr2 for ε sufficiently small.

Setting r1 = dδ and r2 = p`− δ completes the proof when p1 = 0.

When p1 > 0, there exists a constant C so that for all a ∈ (0, 1)

P[W < a] ≤ Calog(1/p1)/ log(µ).

This implies that for α as in (3.13),

P[W (v) < ε1−3`−δ−α] = O
(
ε

log(1/p1)

log(µ)
dδ
)
. (3.15)

Performing a union bound for the root and all of its children again completes the proof. �

4 Pivot Sequence on the Backbone

Define the shift function θ : Ω→ Ω by

(θ(ω))v := ωγ1tv . (4.1)

Informally, θ shifts the values of random variables at nodes γ1 t v in T (γ1) back to node v; these values

populate the whole Ulam tree; values of variables not in T (γ1) are discarded; this is a tree-indexed version

of the shift for an ordinary Markov chain. The n-fold shift θn shifts n steps down the backbone.

The main purpose of this section will be to understand the shift function θ, and thereby understand the

behavior of the pivots. While this section contains many intermediate results—a fair number of which may

be of independent interest—only a handful will be directly of use in the proof of Theorem 1.1: the pair of

Propositions 4.4(i) and 4.5 demonstrating that shifting down the backbone is the same as conditioning on

the pivot being at most a certain value (this is step 2 in the outline in the introduction); also of use will be

Theorem 4.9, which accomplishes step 3 of the outline by showing that β∗n − pc approaches 0 rapidly.

4.1 Markov properties

Before showing the necessary Markov properties, a fair bit of notation is necessary. We begin with the

definition of the dual pivots β∗n; these variables will be central to the proof of Theorem 1.1, primarily due to

their appearance in Proposition 4.4.

Definition 4.1 (dual trees and pivots). Recall that T (v) denotes the subtree from v, moved to the root. Let

T ∗(v) denote the rooted subtree induced on all vertices w /∈ T (v), and let β∗v,w represent the pivot of the

vertex w on T ∗(v), that is, the least x such that w is connected to infinity by a path with weights ≤ x that

avoids going through v. The dual pivot β∗v is defined to be min
w<v

β∗v,w. In keeping with the notation for pivots,

we denote β∗n := β∗γn .
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Definition 4.2. We define the following σ-fields.

(i) For fixed v 6= 0, define Cv to be the σ-field generated by degw and Uw for all w 6= v in T (v) along with

degv. Define B∗v to be the σ-field generated by all the other data: Uw and degw for all w ∈ T ∗(v), along

with Uv.

(ii) For n ≥ 1, let B∗n denote the σ-field containing γn and all sets of the form {γn = v}∩B where B ∈ B∗v.

Informally, B∗n is generated by γn and B∗γn .

(iii) Let Cn be the σ-field generated by θnω; in other words it contains deg(γn) and all pairs (degγntx, Uγntx).

It is not important, but this definition does not allow Cn to know the identity of γn.

It is elementary that {B∗n} is a filtration, that B∗n ∩ Cn is trivial, and that B∗n ∨ Cn = F .

Definition 4.3. We define the following conditioned measures.

(i) For x ∈ (pc, 1), let Qx := (P |β0 ≤ x) denote the conditional law given 0 ↔x ∞, in other words,

Qx[A] = gA(x)
g(x) where

gA(x) := P[A ∩ {β0 ≤ x}] .

(ii) Let L denote the law of β0, the pivot at the root. By [Dur10, Theorem 5.1.9], one may define regular

conditional distributions Px := (P |β0 = x). These satisfy Px[β0 = x] = 1 and
∫

Px dL(x) = P. Also,

Qy = (1/g(y))
∫

Px dL|[0,y](x).

A common null set for all the conditioned measures is the set where either the invasion ray is not well defined

or β(v) = β∗v for some v. Statements such as (4.3) below are always interpreted as holding modulo this null

set.

Proposition 4.4 (Markov property for dual pivots).

(i) For any A ∈ F ,

P[θnω ∈ A | B∗n] = Qβ∗n
[A] .

(ii) More generally, if 0 < y ≤ 1 then for any A ∈ F ,

Qy[θnω ∈ A | B∗n] = Qβ∗n∧y[A] .

(iii) Under P, the sequence {β∗n} is a time homogeneous Markov chain adapted to B∗n with transition kernel

p(x, S) = Qx[β∗1 ∧ x ∈ S] and initial distribution δ1.

Proof: (i) By definition of conditional probability, the conclusion is equivalent to P[θnω ∈ A;G] =∫
G

Qβ∗n
[A] dP for all G ∈ B∗n. Writing G as the countable union of B∗n-measurable sets

⋃
v(G ∩ {γn = v}),

it suffices to verify the previous identity for each piece G ∩ {γn = v}. By the definition of B∗n, each of these

may be written as {γn = v} ∩B∗ for B∗ ∈ B∗v . Thus, it suffices to prove∫
{γn=v}∩B∗

Qβ∗v
[A] dP =

∫
{γn=v}∩B∗

1A(θnω) dP (4.2)

for all v ∈ Tn, B∗ ∈ B∗v and A ∈ F .
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Fixing v, identify (Ω,F ,P) as a product space (Ω1,F1,P1)×(Ω2,F2,P2) where Ω1 = (N× [0, 1])T (v)\{v}×N
and Ω2 = (N × [0, 1])T

∗(v) × [0, 1]. Let πi : Ω → Ωi denote the coordinate maps; then π2 is a measure

preserving map on (Ω,B∗v ,P) and π1 is a measure preserving map on (Ω, Cv,P). In particular, B∗ = π−1
2 B

for some B ∈ F2.

Working on the left-hand side of (4.2), observe that β◦π2 = β∗v (where β is defined on Ω2 by ignoring ×[0, 1])

and hence, if we let H represent the event that the invasion percolation ever gets to v, then we have

{γn = v} = {β(v) ≤ β∗v} ∩H = {β0(π1ω) < β∗v(π2ω)} ∩H . (4.3)

Using this, we obtain∫
{γn=v}∩B∗

Qβ∗v
[A] dP =

∫
Ω

1B(π2ω)1{β(π1ω)<β∗v(π2ω)}∩HQβ∗v(π2ω)[A] dP

=

∫
Ω2

1B(ω2)Qβ∗v(ω2)[A]

[∫
Ω1

1{β(ω1)<β∗v(ω2)}∩H2
dP1(ω1)

]
dP2(ω2)

=

∫
Ω2

1B(ω2)
gA(β∗v(ω2))

g(β∗v(ω2))

[∫
Ω1

1{β(ω1)<β∗v(ω2)}∩H2
dP1(ω1)

]
dP2(ω2)

where H2 above denotes π2(H). The integral over Ω1 is equal to g(β∗v(ω2))1H2
(ω2) so we may simplify and

continue. Writing gA(x) as
∫

Ω1
1A∩{β0<x}(ω) dP1(ω) in the second line, (4.2) is finished as follows.

=

∫
Ω2

1B(ω2)gA(β∗v(ω2))1H2
(ω2) dP2

=

∫
Ω1×Ω2

1B(ω2)1A(ω1)1β(ω1)<β∗v(ω2)1H2(ω2) dP1(ω1) dP2(ω2)

=

∫
{γn=v}∩B∗

1A(π1ω) dP

=

∫
{γn=v}∩B∗

1A(θnω) dP

because π1ω = θnω on {γn = v}.

(ii) Begin with the observation that

{β0 < y} ∩ {γn = v} = {β(π1ω) < y} ∩ {Uw < y for all w ≤ v} ∩ {β(π1ω) < β∗v(π2ω)} ∩H . (4.4)

As before, letting G = {γn = v} ∩ π−1
2 (B), we aim to prove the second identity in∫

G

Qβ∗v∧y[A] dQy =

∫
G

gA(β∗v ∧ y)

g(β∗v ∧ y)
dQy =

∫
G

1A(θnω) dQy , (4.5)

the first being definitional. Also by definition, Qy[·] = (1/g(y))P[· ∩ {β0 < y}], whence, using (4.4), the

left-hand side of (4.5) becomes

1

g(y)

∫
Ω1×Ω2

1B∩H2
(ω2) 1Uw<y∀w≤v(ω2)

gA(β∗v(ω2) ∧ y)

g(β∗v(ω2) ∧ y)
1β(ω1)<y 1β(ω1)<β∗v(ω2) d(P1 ×P2) .

Integrating over Ω1 turns the last two indicator functions into g(β∗v(ω2)∧y), again canceling the denominator

and yielding
1

g(y)

∫
Ω2

1B(ω2) 1Uw<y∀w≤v(ω2) gA(β∗v(ω2) ∧ y)1H2(ω2) dP2(ω2) .

19



Rewriting gA(x) as
∫

Ω1
1A∩{β0<x} dP1, this becomes

1

g(y)

∫
Ω

1B(π2ω) 1Uw<y∀w≤v(π2ω) 1β(π1ω)<β∗v(π2ω) 1β(π1ω)<y 1A(ω1)1H2(ω2) dP .

Observing that the first, third and last indicator functions define G, this simplifies to

1

g(y)

∫
G∩{β0(ω)<y}

1A(π1ω) dP =
1

g(y)

∫
G

1A(π1ω)1β0<y(ω) dP

=

∫
G

1A(π1ω) dQy

=

∫
G

1A(θnω) dQy

where the last inequality follows from the fact that γn = v on G, which implies π1ω = θnω. Hence, that

completes the proof of (ii).

(iii) Begin by observing that γn+1 = vt j if and only if γn = v and β(vt j) < β∗1 ◦π1. In other words, given

that the backbone contains v, the next backbone vertex depends only on θnω and is chosen in the same way

the first backbone vertex of ω was chosen. From this it follows that

β∗n+1 = β∗n ∧ β∗1 ◦ θn .

Therefore,

P[β∗n+1 ∈ S | B∗n] = P[β∗n ∧ (β∗1 ◦ θn) ∈ S | B∗n]

= P[θnω ∈ {ω′ : β∗1(ω′) ∧ β∗n(ω) ∈ S} | B∗n]

= Qy[β∗1 ∧ y ∈ S] | y=β∗n

as desired. �

Remark. Note that the final equality in the proof of (iii) does not immediately follow from the proof of (i)

since {ω′ : β∗1ω
′∧β∗nω ∈ S} is not a fixed set, but rather depends on β∗n. Nevertheless, the proof of this equality

follows from a slight modification of the proof of (i), where we simply replace the expressions Qβ∗v(π2ω)[A],

gA(β∗v(ω2)), and 1A(π1ω) by the expressions Qβ∗v(π2ω)[β
∗
1 ∧ β∗v ∈ S], P[{β0 < β∗v(ω2)} ∩ {β∗1 ∧ β∗v ∈ S}], and

1{β∗1 (π1ω)∧β∗v(ω)∈S} respectively.

It is immediate that Qx � P for all x. The following more quantitative statement will be useful, especially

when used in conjunction with Proposition 4.4(i).

Proposition 4.5. Let q > 1 and suppose that the offspring distribution has a finite q-moment. Then there

exists a constant Cq such that for all A ∈ T and for all δ > 0 and all x ∈ (pc, 1),

P[A] ≤ δ implies Qx[A] ≤ Cqδ1−1/q .

Proof: On T , the density of Qx with respect to P is given by

dQx

dP
(T ) =

g(T, x)

g(x)
.
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Combining Corollary 3.2, which implies g(x) ∼ K(x − pc), with Proposition 3.5, which shows
∫
g(T, pc +

ε)q dGW(T ) ≤ cqεq provided pc + ε is bounded away from 1, we see that∫ ∣∣∣∣dQx

dP
(T )

∣∣∣∣q dGW(T ) ≤ c′q

for some constant c′q and all x ∈ (pc, 1). Applying Hölder’s inequality with 1/p+ 1/q = 1 then gives

Qx[A] =

∫
1A

dQx

dP
dP ≤

[∫
1A dP

]1/p [∫ (
dQx

dP

)q
dP

]1/q

≤ Cqδ1−1/q

when Cq = (c′q)
1/q. �

The measures Px are in some sense more difficult to compute with than Qx because of the condition-

ing on measure zero sets. Relations such as the Markov property, however, are conceptually somewhat

simpler. The following statement of the Markov property generalizes what was proved in [AGdHS08, The-

orem 1.2 and Proposition 3.1], with B+
n representing the σ-field generated by B∗n together with βn. Note,

however, that the only role Propositions 4.6, 4.7 and 4.8 play in the proof of Theorem 1.1 is that they are

utilized to prove Theorem 4.9. The proposition below is also of independent interest, and will be crucial for

studying the forward maximal weight process in Section 6.

Proposition 4.6 (Markov property for pivots). For any A ∈ F ,

P
[
θnω ∈ A | B+

n

]
= Pβn [A]

on (Ω,F ,Px).

Proof: By definition of conditional probability, the conclusion is equivalent to

P[B ∩ {θnω ∈ A}] =

∫
B

Pβn [A] dP (4.6)

holding for all B ∈ B+
n and A ∈ F . It is enough to prove (4.6) for sets that are subsets of {γn = v} for some

v: if it holds for sets of this form, then

P[B ∩ {θnω ∈ A}] =
∑
v

P[B ∩ {γn = v} ∩ {θnω ∈ A}]

=
∑
v

∫
B∩{γn=v}

Pβn [A] dP

=

∫
B

Pβn [A] dP .

We now fix v and assume without loss of generality that B ⊆ {γn = v}. The identity (4.6) we need to prove

now reduces to

P[B ∩ {σvω ∈ A}] =

∫
B

Pβ(v)[A] dP (4.7)

and we need to show it holds for all B ∈ B+
v where B+

v denotes the σ-field generated by B∗v together with βv
and σv denotes shifting to v.

We claim it is enough to prove (4.7) for sets B of the form B1 × B2 where B2 = {β(v) ≤ b} and B1 is an

element of B∗v contained in the event {β∗v ≥ a} for real numbers 0 < b < a < 1. To see why this is enough,
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observe that the set of all B for which (4.7) holds is a λ-system, meaning it is closed under increasing union

and set theoretic difference of nested sets. The class of sets of the form B1 × B2 above are closed under

intersection, whence by Dynkin’s Theorem [Dur10, Theorem 2.1.2], if (4.6) holds when B is in this class,

then it holds for all B in the σ-field generated by this class, which is B+
v .

Working on the left-hand side of (4.7),

P[B ∩ {σvω ∈ A}] = P[B1 ∩ {σvω ∈ A, β(v) ≤ b}]
= P[B1]P[σvω ∈ A, β(v)(ω) ≤ b]
= P[B1]P[σvω ∈ A ∩ {β0 ≤ b}]
= P[B1]P[A ∩ {β0 ≤ b}] .

Here, the first equality is definitional, the second uses independence of B∗v and β(v), the third uses β(v)(ω) ≤ b
if and only if β(0)(σvω) ≤ b, and the last holds because σv preserves the measure P.

Working on the right-hand side of (4.7), identify (Ω,F ,P) as a product (Ω(1),B∗v ,P(1))× (Ω(2), Cv,P(2)) in

the obvious way and compute∫
B

Pβ(v)[A] dP =

(∫
B1

1 dP1

)
·

(∫
β(v)≤b

Pβ(v)[A] dP2

)

= P[B1]

∫
Px[A ∩ {β0 ≤ b}] dL(x)

= P[B1]P[A ∩ {β0 ≤ b}]

because the P(2)-law of β(v) is L. This finishes the proof. �

Proposition 4.7. The sequence {βn, β∗n} is a time-homogeneous Markov chain adapted to {B+
n } with initial

distribution L × δ1.

Proof: For any Borel A ⊆ [0, 1]× [0, 1] and any x, y ∈ [0, 1], define

Ã := {ω ∈ F : (β1(ω), β∗1(ω)) ∈ A}
Ãy := {ω ∈ F : (β1(ω), β∗1(ω) ∧ y) ∈ A}

and Px,y[A] := Px[Ãy] .

To show that {βn, β∗n} is a time homogeneous Markov chain adapted to B+
n , it will suffice to show that for

any Borel A ⊆ [0, 1]× [0, 1] and any B ∈ B+
n ,

P
[{

(βn+1, β
∗
n+1) ∈ A

}
∩B

]
=

∫
B

Pβn,β∗n
[A] dP . (4.8)

Starting with the case where A = [0, x]× [0, y] for x, y ∈ (0, 1], we have{
(βn+1, β

∗
n+1) ∈ A

}
∩B = {βn+1 ≤ x} ∩

{
β∗n+1 ≤ y

}
∩B

= {βn+1 ≤ x} ∩ ({β∗n ≤ y} ∩B) ∪
(
{βn+1 ≤ x} ∩

{
β∗n+1 ≤ y

})
∩ ({β∗n > y} ∩B)

=
{
ω : θnω ∈ Ã′

}
∩ ({β∗n ≤ y} ∩B) ∪

{
ω : θnω ∈ Ã

}
∩ ({β∗n > y} ∩B)
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where A′ := [0, x]× [0, 1]. It now follows from Proposition 4.6 that

P
[{

(βn+1, β
∗
n+1) ∈ A

}
∩B

]
=

∫
{β∗n≤y}∩B

Pβn [Ã′] dP +

∫
{β∗n>y}∩B

Pβn [Ã] dP

=

∫
B

Pβn [Ã′]1β∗n<y + Pβn [Ã]1β∗n>y dP

=

∫
B

Pβn,β∗n
[A] dP .

Hence, (4.8) has been proven for all A of the form [0, x]× [0, y]. Since the set of all A for which (4.8) holds

is a λ-system, and the collection of all sets of the form [0, x] × [0, y] is a π-system that generates the Borel

sets in [0, 1]× [0, 1], it now follows from Dynkin’s π-λ Theorem that (4.8) holds for all Borel sets A. �

4.2 Decay of β∗
n − pc

To study the decay rate of β∗n, we work with the pair (βn, β
∗
n) rather than β∗n individually. In this vein, we

show that the pair (βn − pc, β∗n − pc) is Markov, and compute the transition probabilities.

Proposition 4.8. Define h∗n := β∗n− pc and f(x) := φ′(1− (pc +x)g(pc +x)). Then {hn, h∗n} has transition

probabilities given by p({a, b}, ·) = νa × ν̃a,b where

dνa
dx

=
f(a)g′(pc + x)

g′(pc + a)
1x<a + Caδa

and
dν̃a,b
dx

= −f
′(x)

f(a)
1a<x<b + C̃a,bδb

with Ca = f(a)(pc + a) and C̃a,b = f(b)
f(a) .

Proof: Note first that g(·) is differentiable on (pc, 1) as described in Corollary 3.2.

(i) Since h∗n+1 = min{β∗n − pc, β∗γn+1,γn − pc}, it follows that

P[hn+1 ∈ (a, a+ da), h∗n+1 ∈ (b, b+ db) |hn ∈ (a, a+ da), h∗n ∈ (b, b+ db)]

= P[βn+1 ∈ (pc + a, pc + a+ da), β∗γn+1,γn > pc + b |βn ∈ (pc + a, pc + a+ da)]

= P[β1 ∈ (pc + a, pc + a+ da), β∗γ1,0 > pc + b |β0 ∈ (pc + a, pc + a+ da)]

=

(∑∞
k=1 P[Z = k]k(pc + a)g′(pc + a)(1− (pc + b)g(pc + b))k−1 da

)
+ o(da)

g′(pc + a) da+ o(da)

= (pc + a)φ′(1− (pc + b)g(pc + b)) + o(1)

= (pc + a)f(b) + o(1).

(ii) For a < x < b we have

P[hn+1 ∈(a, a+ da), h∗n+1 ∈ (x, x+ dx) |hn ∈ (a, a+ da), h∗n(b, b+ db)]

= P[β1 ∈ (pc + a, pc + a+ da), β∗γ1,0 ∈ (pc + x, pc + x+ dx) |β0 ∈ (pc + a, pc + a+ da)]

=

(∑∞
k=2 P[Z = k]k(pc + a)g′(pc + a)

(
− d
dx (1− (pc + x)g(pc + x))

k−1
)
dx da

)
+ o(dx da)

g′(pc + a)da+ o(da)
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= (pc + a)(g(pc + x) + (pc + x)g′(pc + x))φ′′(1− (pc + x)g(pc + x)) dx+ o(dx)

= −(pc + a)f ′(x) dx+ o(dx)

where we used f ′(x) = − [g(pc + x) + (pc + c)g′(pc + x)]φ′′(1− (pc + x)g(pc + x)).

(iii) For z < a < b we have

P[hn+1 ∈ (z, z + dz), h∗n+1 ∈ (b, b+ db) |hn ∈ (a, a+ da), h∗n ∈ (b, b+ db)]

= P[β1 ∈ (pc + z, pc + z + dz), β∗γ1,0 > b |β0 ∈ (pc + a, pc + a+ da)]

=

(∑∞
k=1 P[Z = k]kg′(pc + z)(1− (pc + b)g(pc + b))k−1 dz da

)
+ o(dz da)

g′(pc + a) da+ o(da)

=
g′(pc + z)

g′(pc + a)
φ′(1− (pc + b)g(pc + b)) dz + o(dz)

=
g′(pc + z)

g′(pc + a)
f(b) dz + o(dz).

(iv) For z < a < x < b, we have

P[hn+1 ∈(z, z + dz), h∗n+1 ∈ (x, x+ dx) |hn ∈ (a, a+ da), h∗n ∈ (b, b+ da)]

= P[β1 ∈ (pc + z, pc + z + dz), β∗γ1,0 ∈ (pc + x, pc + x+ dx) |β0 ∈ (pc + a, pc + a+ da)]

=

(∑∞
k=2 P[Z = k]kg′(pc + z)

(
− d
dz (1− (pc + x)g(pc + x))

k−1
)
da dx dz

)
+ o(da dx dz)

g′(pc + a) da+ o(da)

=
g′(pc + z)

g′(pc + a)

(
− d

dx
(φ′(1− (pc + x)g(px + x)))

)
dx dz + o(dx dz)

= −g
′(pc + z)

g′(pc + a)
f ′(x) dx dz + o(dx dz) .

Noting that hn < h∗n, it follows from (i), (ii), (iii), and (iv) that

p ({a, b}, {A,B}) = (pc + a)1a∈A · f(b)1b∈B

−
(∫

B

1a<x<bf
′(x) dx

)
(pc + a)1a∈A +

(∫
A

1z<a
g′(pc + z)

g′(pc + a)
dz

)
f(b)1b∈B

−
∫
A×B

1a<x<bf
′(x)1z<a

g′(pc + z)

g′(pc + a)
dx dz .

Hence, we see that p({a, b}, ·) = µa × µ̃a,b where

dµa
dx

= 1x<a
g′(pc + x)

g′(pc + a)
+ (pc + a)δa and

dµ̃a,b
dx

= −1a<x<b · f ′(x) + f(b)δb .

Noting that µa((0, a]) = g(pc+a)
g′(pc+a) + (pc + a) = 1

f(a) and µ̃a,b((a, b]) = f(a), we define probability measure

νa = f(a)µa and ν̃a,b = 1
f(a) µ̃a,b, and we see that νa and ν̃a,b satisfy the statement in the proposition. �

The decay rate of β∗n−pc = h∗n follows from analyzing this Markov chain; the following Theorem accomplishes

Step 3 of the outline.
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Theorem 4.9. There exists C > 0 such that for any t ∈ (1/2, 1), P[h∗n > n−t] is O(e−Cn
1−t

).

Proof: We start by looking at dνa
dx . First we want to show that f(a)

g′(pc+a) is bounded below by something

positive. Noting that 1− g(p) is the unique non trivial fixed point of φp(x) := φ(px+ 1− p), it follows from

implicit differentiation that

g′(pc + x) =
g(pc + x)φ′(1− (pc + x)g(pc + x))

1− (pc + x)φ′(1− (pc + x)g(pc + x))

which then implies that

f(a)

g′(pc + a)
=

1− (pc + a)φ′(1− (pc + a)g(pc + a))

g(pc + a)
. (4.9)

As a→ 0, this expression equals

1− (pc + a)(µ− φ′′(1)(pc + a)g(pc + a) + o(g(pc + a)))

g(pc + a)
=
pcφ
′′(1)(pc + a)g(pc + a)− aµ+ o(a)

g(pc + a)

= p2
cφ
′′(1)− µ

g′(pc)
+ o(1)

= p2
cφ
′′(1)− p2

cφ
′′(1)

2
+ o(1)

=
p2
cφ
′′(1)

2
+ o(1) .

Hence, there must exist some r′ > 0 such that if a < r′ then (4.9) is greater than
p2cφ
′′(1)
3 . Next observe that

the numerator of (4.9) is equal to one minus the derivative of φp(x) evaluated at the fixed point 1 − g(p)

(where p = pc + a) from which it follows that this numerator, and therefore (4.9) itself, is positive whenever

a > 0. Since we can also see that (4.9) is continuous on the compact set [r′, 1−pc], it follows that (4.9) must

be bounded below by some value C ′ > 0 on [r′, 1−pc]. Now setting C ′′ = min{C ′, p
2
cφ
′′(1)
3 }, we find that (4.9)

is greater than or equal to C ′′ on [0, 1− pc]. Finally, if we couple this with the fact that g′(pc +x)→ 2
p3cφ
′′(1)

as x → 0, which in turn implies that ∃ r > 0 such that g′(pc + x) > 1
p3cφ
′′(1) on [0, r], we find that if we set

C̃ = C′′

p3cφ
′′(1) , then for any x, a where x < r and x < a we have dνa

dx ≥ C̃.

Now turning our focus towards
dν̃a,b
dx , observe that in the expression −f

′(x)
f(a) , the numerator goes to 2µ2 as

x→ 0, which can be seen by differentiating and noting that g′(pc) = 2
p3cφ
′′(1) ; additionally, the denominator

goes to µ as a→ 0. Hence, the ratio goes to 2µ as x→ 0, a→ 0. From this it follows that ∃ ` > 0 such that

if a < x < ` and x < b then
dν̃a,b
dx > µ. Next we note the following string of inequalities.

P[h∗n ≥ n−t] = P

[
hbn2 c ≥

n−t

2

]
P

[
h∗n ≥ n−t

∣∣∣hbn2 c ≥ n−t

2

]
+ P

[
hbn2 c <

n−t

2

]
P

[
h∗n ≥ n−t

∣∣∣hbn2 c < n−t

2

]
≤ P

[
hbn2 c ≥

n−t

2

]
+ P

[
h∗n ≥ n−t

∣∣∣hbn2 c < n−t

2

]
≤ P

[
hbn2 c ≥

n−t

2

]
+

n∏
j=dn2 e

P

[
h∗j ≥ n−t

∣∣∣hbn2 c < n−t

2
, h∗j−1 ≥ n−t

]
. (4.10)

Now using (4.10), along with Proposition 4.8 and the results from the previous paragraph, we find that if

n−t

2 < r and n−t < `, then P[h∗n ≥ n−t] ≤
(

1− C̃
2 n
−t
)bn2 c

+
(
1− µ

2n
−t)dn2 e. Defining C = min

{
C̃
4 ,

µ
4

}
, we

finally get that P[h∗n ≥ n−t] is O
(
e−Cn

1−t
)

, thus completing the proof. �
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5 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. For a non-root vertex v ∈ Tn+1 with |v| = n + 1 and

p > pc, define

q̃(v, p) := Qp[σ
−1
~v {v = γ1}]. (5.1)

In words, q̃(v, p) considers the tree rooted at ~v and finds the probability that v is in the backbone conditioned

on the root having pivot at most p. We then have q(v) = E
(n)
∗ [q̃(v, β∗n)], where β∗n is as defined in Definition

4.1 and E
(n)
∗ := E[·|T , γn].

5.1 Comparing q̃ and the ratio of survival functions

The goal of this section is to accomplish step 4 of the outline. This takes the form of

Lemma 5.1. Let {wk}dk=1 be an enumeration of the children of v. Then for any p > pc and j,∣∣∣∣∣q̃(wj , p)− g(T (wj), p)∑d
k=1 g(T (wk), p)

∣∣∣∣∣ ≤ g(T (v), p)

1− g(T (v), p)
· g(T (wj), p)∑d

k=1 g(T (wk), p)
. (5.2)

Proof: Define

Aj = q̃(wj , p)−
g(T (wj), p)∑d
k=1 g(T (wk), p)

and write

q̃(wj , p) =
P∗[Uwj ∨ β(wj) is smallest |β(v) ≤ p]∑d
i=1 P∗[Uwi ∨ β(wi) is smallest |β(v) ≤ p]

=
P∗[Uwj ∨ β(wj) smallest and Uwj ∨ β(wj) ≤ p]∑d
i=1 P∗[Uwi ∨ β(wi) smallest and Uwi ∨ β(wi) ≤ p]

. (5.3)

For each j, we observe that

p · g(T (wj), p)(1−Bj) ≤ P∗[Uwj ∨ β(wj) smallest and Uwj ∨ β(wj) ≤ p]

≤ p · g(T (wj), p)

where 1−Bj =
∏

1≤i 6=j≤d(1−pg(T (wi), p)). The upper bound is the probability that Uwj ∨β(wj) ≤ p, while

the lower bound is the probility that Uwj ∨ β(wj) ≤ p, and that this does not hold for any of the siblings of

wj .

This gives the bounds

g(T (wj), p)(1−Bj)∑d
k=1 g(T (wk), p)

≤ q̃(wj , p) ≤
g(T (wj), p)∑d

k=1 g(T (wk), p)(1−Bk)
. (5.4)

Sandwich bounds on the difference with survival ratios follow:

−Bjg(T (wj), p)∑d
k=1 g(T (wk), p)

≤ Aj ≤
∑d
k=1[g(T (wk), p)g(T (wj), p)Bk]

(
∑d
k=1 g(T (wk), p))(

∑d
k=1[g(T (wk), p)(1−Bk)])

. (5.5)
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Finally, the simple bound of

Bk ≤ 1−
d∏
i=1

(1− pg(T (wi), p)) = g(T (v), p)

allows us to rewrite equation (5.5) as

−g(T (v), p)g(T (wj), p)∑d
k=1 g(T (wk), p)

≤ Aj ≤
g(T (v), p)

1− g(T (v), p)

g(T (wj), p)∑d
k=1 g(T (wk), p)

. (5.6)

�

5.2 Completing the Argument

The main ingredients for showing that p and q are close are in place: Corollary 3.8 bounds the fluctuations

of g(T, ·), which will allow us to complete step 5 of the outline; Lemma 5.1 shows that q̃ is close to the ratio

of survival probabilities for a fixed p (step 4); and Propositions 4.4(i), 4.5 and Theorem 4.9 will allow us to

translate bounds for a fixed p into a bound for the random variable β∗n (steps 3 and 2 respectively). We now

put these pieces together for one final bound:

Proposition 5.2. Letting q := log(µ)
log(1/p1) , if

2p2q2 + (3p2 + 5p)q + (−p2 + 11p− 4) < 0, (5.7)

then there exists M > 0 and t ∈ (1/2, 1) such that, with probability 1, the set

∞⋃
n=1

{
v ∈ Tn+1 :

∣∣∣∣q(v)

p(v)
− 1

∣∣∣∣ > 3Mn−t, ~v = γn

}
is finite.

Proof: Define P
(n)
∗ := P[· | T , γn]; we start by noting that for a tree T and vertex v,

∣∣∣ q(v)
p(v) − 1

∣∣∣ =∣∣∣E(n)
∗

[
q̃(v,β∗n)
p(v) − 1

]∣∣∣. Now define

An :=
{
h∗n ≤ n−

t
α

} ⋂
v: ~v=γn

 1

p(v)

∣∣∣∣∣∣∣q̃(v, β∗n)− g(T (v), β∗n)∑
w: ~w=γn

g(T (w), β∗n)

∣∣∣∣∣∣∣ ≤ 3Cn−t


⋂

v: ~v=γn


∣∣∣∣∣∣

g(T (v),β∗n)∑
g(T (w),β∗n)

p(v)
− 1

∣∣∣∣∣∣ ≤ 3n−t


where C is as in Corollary 3.8 and 1

2 < t < α < 1 with α = 1− 3`− (1 + d)δ. Observing that∣∣∣∣q(v)

p(v)
− 1

∣∣∣∣ ≤ E
(n)
∗

[∣∣∣∣ q̃(v, β∗n)

p(v)
− 1

∣∣∣∣ · 1An]+P
(n)
∗ [Acn] max

{
1

p(v)
, 1

}
≤ (3C+3)n−t+P

(n)
∗ [Acn] max

{
1

p(v)
, 1

}
,

we see that to complete the proof we simply need to establish the following claim.

Claim: With probability 1, P
(n)
∗ [Acn] max

{
1

p(v) , 1
}
> n−t for only finitely many children of the backbone.
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Proof of Claim: Recall first that p(v) = W (v)∑
W (w) . Then compute∣∣∣∣∣∣

g(T(v),pc+ε)∑
g(T(w),pc+ε)

p(v)
− 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
W (v)+E(v,ε)∑
W (w)+E(w,ε)

W (v)∑
W (w)

− 1

∣∣∣∣∣∣ =

∣∣∣∣E(v, ε)
∑
W (w)−W (v)

∑
E(w, ε)

W (v)
∑

[W (w) + E(w, ε)]

∣∣∣∣ . (5.8)

Now using Corollary 3.8, we see that if we start with a fresh Galton-Watson tree then∣∣∣∣∣∣∣
g(T(v),pc+n

− t
α )∑

g(T(w),pc+n
− t
α )

p(v)
− 1

∣∣∣∣∣∣∣ ≤ C
W (v)n−t

∑
W (w) +

∑
W (w)n−tW (v)

W (v)
∑
W (w)(1− Cn−t)

= 2C
n−t

1− Cn−t
(5.9)

for every child v of the root, with probability at least 1 − Cn− t
α δ
′
. If we now condition on h∗n ≤ n−

t
α and

combine (5.9) with Propositions 4.4(i) and 4.5 we find that∣∣∣∣∣∣
g(T(v),β∗n)∑
g(T(w),β∗n)

p(v)
− 1

∣∣∣∣∣∣ ≤ 2C
n−t

1− Cn−t
(5.10)

for every v such that ~v = γn with probability at least 1− Cn−
t
α (1− 1

p )δ′ .

For the next step, recall that Lemma 5.1 shows

1

p(v)

∣∣∣∣∣∣∣q̃(v, β∗n)− g(T(v), β∗n)∑
w: ~w=γn

g(T(w), β∗n)

∣∣∣∣∣∣∣ ≤
g(T(γn), β∗n)

1− g(T(γn), β∗n)

g(T(v),β∗n)∑
g(T(w),β∗n)

p(v)
. (5.11)

Using (5.10), we see that when we condition on h∗n ≤ n−
t
α , the latter fraction in (5.11) is bounded by, say

2, for every child of γn, with probability at least 1 − Cn−
t
α (1− 1

p )δ′ . For the former fraction, we note that

because g(T(v), pc + ε) ≤ C ′εW (v) for all ε bounded uniformly away from 1 − pc (see Proposition 3.4), it

follows that for a fresh Galton-Watson tree and for s bounded uniformly away from 0, we have

P[g(T(v), pc + n−s) > n−t] = O(n−p(s−t)).

Now setting s = t
α and combining the above string of inequalities with Propositions 4.4(i) and 4.5 we find

that

P[g(T(γn), β∗n) > n−t |h∗n ≤ n−
t
α ] = O(n−(p−1)( 1

α−1)t) .

Combining this with what we determined about the second fraction in (5.11), it now follows that if we

condition on h∗n ≤ n−
t
α , then

1

p(v)

∣∣∣∣∣∣∣q̃(v, β∗n)− g(T(v), β∗n)∑
w: ~w=γn

g(T(w), β∗n)

∣∣∣∣∣∣∣ ≤ 3n−t (5.12)

for every child of γn, with probability at least 1−C ′′n−
t
α (1− 1

p )δ′ (where we’re using the fact that 1
α (1− 1

p )δ′ ≤
(p− 1)( 1

α − 1)). Finally, putting (5.12) together with (5.10) and Theorem 4.9, and defining t′ := t
α (1− 1

p )δ′,

we get that E
[
P

(n)
∗ [Acn]

]
is O(n−t

′
).
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From this last result involving E
[
P

(n)
∗ [Acn]

]
, we know that for any constant C1 such that 0 < C1 < 1 we

have

P
[
P

(n)
∗ [Acn] > n−C1t

′
]

= O(n−(1−C1)t′). (5.13)

For the next step, we utilize Propositions 4.4(i) and 4.5 to note that for any t′′ > 0 and any constant C2

with 0 < C2 < 1, the probability 1
p(v) > nt

′′
for any child of γn, is bounded by

P[W (v) < µn−C2t
′′

for at least 1 child of γn] + P[W (γn) ≥ n(1−C2)t′′ ], (5.14)

which is O
(

max
{
n−(p−1)(1−C2)t′′ , n−(1− 1

p ) 1
qC2t

′′
})

, as discussed at the end of Section 3.3.

To finish establishing the claim, we now need to show that t, δ, d, `, t′′, and C1 can be chosen so that

(i) 1
2 < t < α < 1

(ii) 1
p(v) > nt

′′
only finitely often with probability 1

(iii) P
(n)
∗ [Acn] > n−C1t

′
only finitely often with probability 1

(iv) C1t
′ − t′′ > t, i.e. n−C1t

′ · nt′′ ≤ n−t .

To accomplish this, we first note that it follows from (5.14) and the Borel-Cantelli lemma that the second

condition will hold if t′′ > 1+pq
p−1 . Hence, the fourth condition then reduces to C1t

′ − 1+pq
p−1 > t. Combining

this with the third condition, which by (5.13) and Borel-Cantelli will be satisfied if (1 − C1)t′ > 1, we find

that proving our claim is reduced to finding t, δ, `, and d with 1
2 < t < α < 1 such that

t′ > 1 +
1 + pq

p− 1
+ t =

p

p− 1
(1 + q) + t.

Using our formulas for t′ and δ′, this can be written as(
1

α

(
1− 1

p

)
min

{
p`− δ, dδ

q

}
− 1

)
t >

p

p− 1
(1 + q) (5.15)

It now suffices to show that (5.15) can be made to hold for t = α = 1
2 . Substituting 1

2 for t and α in (5.15)

and noting that α = 1
2 =⇒ δ = 1

1+d

(
1
2 − 3`

)
, (5.15) becomes((

1− 1

p

)
min

{
p`− 1

1 + d

(
1

2
− 3`

)
,

d

1 + d
· 1

q

(
1

2
− 3`

)}
− 1

2

)
>

p

p− 1
(1 + q).

Observing that the expression on the left is increasing with respect to d, we take d→∞, which gives((
1− 1

p

)
min

{
p`,

1

q

(
1

2
− 3`

)}
− 1

2

)
>

p

p− 1
(1 + q).

Expressing this as a pair of inequalities and then simplifying we get

p

(p− 1)2
(1 + q) +

1

2(p− 1)
< ` <

1

3

(
1

2
− p2q(1 + q)

(p− 1)2
− pq

2(p− 1)

)
.

For such an ` to exist it suffices to have

p

(p− 1)2
(1 + q) +

1

2(p− 1)
<

1

3

(
1

2
− p2q(1 + q)

(p− 1)2
− pq

2(p− 1)

)
.

Now simplifying the above inequality, we get (5.7), thus completing the proof of the proposition. �
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Proof of Theorem 1.1: As guaranteed by Proposition 5.7, let M > 0 and t ∈ (1/2, 1) so that with

probability 1, the set
∞⋃
n=1

{
v ∈ Tn+1 :

∣∣∣∣q(v)

p(v)
− 1

∣∣∣∣ > 3Mn−t, ~v = γn

}
is finite. Define the event

An :=

{∣∣∣∣q(v)

p(v)
− 1

∣∣∣∣ ≤ 3Mn−t for all v ∈ Tn+1 with ~v = γn

}
.

Define Yn := Xn1An ; by the choice of M, t, Yn = Xn all but finitely often almost surely. Therefore, by

Corollary 2.8, it is sufficient to show that
∑

EYn <∞. By definition of An, Proposition 2.6 gives an upper

bound of Yn ≤ 9M2n−2t. Taking expectation and recalling t ∈ (1/2, 1) completes the proof. �

6 The Forward Maximal Weight Process

This section will be devoted to describing the limiting behaviour of the process {βn − pc}. We begin by

showing that {βn} is a time-homogeneous Markov chain and computing the transition probabilities.

Lemma 6.1.

(i) The sequence {βn := β(γn)} is a time-homogeneous Markov chain adapted to {B+
n } with initial distri-

bution L.

(ii) Reparametrizing by letting hn := βn−pc, a formula for the transition kernel of the chain {hn} is given

in terms of the OGF φ by p(a, ·) = µa where

dµa
dx

= Caδa +
φ′ (1− (pc + a)g(pc + a)) g′(pc + x)

g′(pc + a)
1(0,a)(x)

and

Ca = 1− φ′ (1− (pc + a)g(pc + a)) g(pc + a)

g′(pc + a)
.

Proof: Conclusion (i) follows from the recursion βn+1 = βn ◦ θ by applying the Markov property of

Proposition 4.7 with n = 1 and A of the form {β1 ∈ S}. Conclusion (ii) follows from the recursive description

of βn as the minimum of max{U(v), β(v)} over children of γn−1 and γn is the argmin. More specifically, fix

0 < x < a; then

P[β1 ∈ [pc+x, pc+x+dx] |β0 ∈ [pc+a, pc+a+da]] =
P[β1 ∈ [pc + x, pc + x+ dx] ∩ β0 ∈ [pc + a, pc + a+ da]]

P[β0 ∈ [pc + a, pc + a+ da]]
.

We note P[β0 ∈ [pc+a, pc+a+da]] = g′(pc+a)da+o(da). To calculate the numerator, note that in order for

this event to occur, up to a term of O(dx2), only one child of the root may have pivot in [pc+x, pc+x+dx].

This child v must have Uv ∈ [pc + a, pc + a+ da] and all other children must have pivot above pc + a+ da.

This gives

P[β1 ∈ [pc + x, pc + x+ dx] ∩ β0 ∈ [pc + a, pc + a+ da]]
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=

∞∑
k=1

P[Z = k]kg′(pc + x)dxda(1− (pc + a)g(pc + a))k−1 + o(dxda)

= φ′(1− (pc + a)g(pc + a))g′(pc + x) dxda+ o(dxda).

Combining the two and taking da→ 0+ completes the proof. �

Theorem 6.2. Let U0, U1, . . . be a sequence of IID random variables each uniformly distributed on (0, 1),

and let Mn = min {U0, U1, . . . , Un}. For each C1, C2 such that 0 < C1 < pc < C2, the process {hn} can be

coupled with the process {Mn} so that, with probability 1, hn eventually (meaning for all sufficiently large n)

satisfies C1 ·Mn ≤ hn ≤ C2 ·Mn.

Proof: We start by looking at the function

fa(u) =

{
0 if u ≥ a
φ′(1−(pc+a)g(pc+a))g′(pc+u)

g′(pc+a) otherwise
.

Writing u as u = s · a (for s ∈ [0, 1)) and using Corollary 3.2, we find that

lim
a→0

φ′ (1− (pc + a)g(pc + a)) g′(pc + sa)

g′(pc + a)
= lim
a→0

φ′ (1− (pc + a)g(pc + a)) · lim
a→0

g′(pc + sa)

g′(pc + a)
= µ (6.1)

with the convergence clearly being uniform with respect to s. Turning now to the process {Mn}, if we define

f̃a(u) =

{
0 if u ≥ a
1 otherwise

and the measures νa, where νa(A) = (1− a)1(a∈A) +
∫ 1

0
f̃a(u)1(u∈A) du, then we see that {Mn} is a Markov

chain with transition kernel p̃(x, ·) = νx(·).

Note that (6.1) implies there must exist δ > 0 such that for a < δ we have 1
C2

< fa(u) < 1
C1

on (0, a). Define

Nδ := min {n : hn < δ} and note that since hn → 0 a.s., it follows that Nδ < ∞ a.s. Define the family of

functions Qr for r ∈ [0, δ) where Qr : [0, r)→ R is defined as

Qr(x) =

∞∑
j=0

qj+1
(
C2 · fr

(
qjx
)
− 1
)

(6.2)

where q := C1

C2
. Observe that because 1

C2
< fa(u) < 1

C1
on (0, a) for a < δ, it follows that

Qr(x) >

∞∑
j=0

qj+1
(
C2 · C−1

2 − 1
)

= 0 (6.3)

and that

Qr(x) <

∞∑
j=0

qj+1
(
C2 · C−1

1 − 1
)

=
q

q − 1
· q − 1

q
= 1 . (6.4)

In addition, note that it follows from (6.2) that we have

1

C1
Qr(x) +

1

C2
(1−Qr(qx)) = C−1

2 +

∞∑
j=0

qj+1
(
q−1 · fr

(
qjx
)
− C−1

1

)
−
∞∑
j=0

qj+1
(
fr
(
qj+1x

)
− C−1

2

)

31



= C−1
2 − C1

C2 − C1
·
(
C−1

1 − C−1
2

)
+

∞∑
j=0

qjfr
(
qjx
)
−
∞∑
j=1

qjfr
(
qjx
)

= fr(x) . (6.5)

We’ll now use the family of functions Qr, along with the process {hn} and the sequence {Uk} defined in

the statement of the theorem, to define a new sequence {Vk}. Letting V0 = hNδ , we define Vj for j ≥ 1 as

follows. First let Ln = min {V0, V1, . . . , Vn}. Now if C1 · UNδ+j ≥ Lj−1, set Vj = C1 · UNδ+j . If instead

C1 ·UNδ+j < Lj−1, then with probability QLj−1
(C1 ·UNδ+j) set Vj equal to C1 ·UNδ+j , and with probability

1−QLj−1
(C1 · UNδ+j) set Vj equal to C2 · UNδ+j . Next we define the process

{
h̃n

}
as

h̃n =

{
hn if n < Nδ
L(n−Nδ) otherwise

.

Observe that in order to show that {h̃n} has the same joint distribution as {hn}, it will suffice to establish

that for any n > 0 and 0 < x < y < r

P[h̃n+1 ∈ [x, y) | h̃n = r] = P[hn+1 ∈ [x, y) |hn = r] =

∫ y

x

fr(t) dt. (6.6)

In the case where r ≥ δ we see that (6.6) follows immediately from the definition of {h̃n}. Alternatively, if

r < δ then it will follow from the definition of {h̃n} that

P[h̃n+1 ∈ [x, y) | h̃n = r] =

∫ y

x

C−1
1 Qr(x) + C−1

2 (1−Qr(qx)) dx =

∫ y

x

fr(x) dx. (6.7)

Defining the times τ1 = min {n : Vn < V0}, τ2 = min {n : UNδ+n < MNδ}, and τ = max{τ1, τ2}, we see that

τ1 < ∞ a.s. due to the fact that h̃n → 0 a.s. since
{
h̃n

}
has the same joint distribution as {hn}, and

τ2 <∞ a.s. due to the Uj ’s being IID uniform on (0, 1). Since h̃n = min {V1, V2, . . . , Vn−Nδ} for n ≥ Nδ + τ ,

Mn = min {UNδ+1, UNδ+2, . . . , Un} for n ≥ Nδ + τ , and C1UNδ+j ≤ Vj ≤ C2UNδ+j for all j ≥ 1, it can be

concluded that C1Mn ≤ h̃n ≤ C2Mn for all n ≥ Nδ + τ , thus establishing that (h̃n,Mn) gives us our desired

coupling. �

This coupling is enough to prove convergence on the level of paths. Let P be an intensity 1 Poisson point

process on the upper-half-plane; define the Poisson lower envelope process by

L(t) := min{y > 0 : (x, y) ∈ P for some x ∈ [0, t]}.

Then we have

Corollary 6.3. For any ε > 0 as k →∞,

(khdkte/pc)t≥ε
∗

=⇒ (L(t))t≥ε (6.8)

where
∗

=⇒ denotes convergence in distribution of càdlàg paths in the Skorohod space D[ε,∞).

Proof: Note that by taking C1, C2 → pc in Theorem 6.2, it is sufficient to show convergence of (kMdkte)t≥ε
to (L(t))t≥ε.
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Showing convergence in distribution in the Skorohod topology is equivalent to establishing tightness and

convergence in distribution of all finite dimensional projections to the corresponding projections of (L(t))t≥ε
[Bil99, Theorem 13.1]. To accomplish this, we will show that for any γ > 0, we will be able to couple kMdkte
and L(t) so that we have

L(t(1 + γ)) ≤ kMdkte ≤ L(t(1− γ)), t ≥ ε (6.9)

for sufficiently large k. From here, convergence of the finite-dimensional projections will follow.

Step 1: Finite dimensional projections: We proceed in a similar fashion to [AGdHS08]: we Poissonize, sand-

wich the Poissonized version of khdkte between two scaled copies of L(t), and then use the strong law of large

numbers to depoissonize.

Consider an intensity 1 Poisson process on [0,∞) and define N(t) to be the number of points in [0, t]. Define

M̃(t) = MN(t), t ≥ 0

to be the Poissonized version of the min-uniform process defined by Mn = min{U1, . . . , Un} for n ≥ 1 and

M0 = 1; note that this differs slightly from the Mn in Theorem 6.2 and is entirely distinct from the Mn

appearing in the glossary. Then note that both M̃(t) and L(t) are continuous-time Markov processes that

jump from height z to height zU [0, 1] at exponential rate z. Moreover, the processes L1(t) := 1 ∧ L(t)

and M̃(t) have the same starting value and jump from z to zU [0, 1] at exponential rate z. Using the same

exponential clock and uniforms for both processes gives

L1(t) = M̃(t)

for all t ≥ 0. Since L(t) is eventually less than 1, we have that there exists an almost-surely finite time τ so

that

L(t) = M̃(t), t ≥ τ.

Thus, for all k and t ≥ τ , we have

kM̃(kt) = kL(kt) =: L′k(t)
d
= L(t) (6.10)

since for all k the process (kL(kt))t≥0 has the same law as (L(t))t≥0.

By the strong law of large numbers, for any fixed ε > 0 and γ > 0, there exists an almost-surely finite

random variable K so that

N(kt) ∈
[

kt

1 + γ
,
kt

1− γ

]
, k ≥ K

uniformly in t ≥ ε. Since M̃(t) is decreasing, this implies for all k ≥ K/(1 − γ) and uniformly in t ≥ ε we

have

kMdkte ∈ [kM̃((1 + γ)kt), kM̃((1− γ)kt)].

Combining this with equation (6.10) gives

L′k(t(1 + γ)) ≤ kMdkte ≤ L′k(t(1− γ)), k ≥ K/(1− γ), t ≥ ε . (6.11)

Taking γ → 0 and utilizing (6.11) proves that for any sequence ε ≤ t1 < t2 < . . . < tn ≤ R we have

(kMdkt1e, . . . , kMdktne) =⇒ (L′k(t1), . . . , L′k(tn)) as k →∞.
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Step 2: Tightness: By definition of the Skorohod space D[ε,∞), it is sufficient to show convergence in

distribution in the space D[ε,R] for each R > ε. Let Pk denote the law of the path (kMdkte)t≥ε. Then

tightness of {Pk}k≥1 in D[ε,R] is equivalent to showing that for each η > 0 the following two conditions

hold:

there exists a > 0 so that lim sup
k→∞

Pk[x ∈ D[ε,R] : sup
t
|x(t)| > a] < η (6.12)

for each r > 0 there exists δ ∈ (0, 1) so that lim sup
k→∞

Pk [x ∈ D[ε,R] : wx(δ) > r] < η (6.13)

where wx(δ) is the càdlàg modulus defined by

wx(δ) := inf
Π∈Pδ

max
1≤i≤j

sup
s,t∈[ti,ti+1)

|x(t)− x(s)| (6.14)

and where the infimum is over partitions ε = t0 < t1 < . . . < tj = R with mesh greater than δ [Bil99,

Theorem 13.2].

Since (kMdkte)t∈[ε,R] is monotone decreasing in t, the existence of an a > 0 to satisfy (6.12) follows from

(6.11). Note also that the path (kMdkte)t∈[ε,R]—like (L(t))t∈[ε,R]—is piecewise constant. For a piecewise

constant path x ∈ D[ε,R], we have that wx(δ) = 0 if all jumps are spaced at least δ apart and no jumps

occur in the intervals [ε, ε+ δ] or [R− δ,R]. We will show that as δ → 0, the lim infk of the probability that

all jumps of (kMdkte)t∈[ε,R] are spaced more than δ apart and no jumps occur in [ε, ε+ δ] or [R− δ,R] tends

to 1.

For simplicity of notation, we omit ceiling and floor functions. Note that for any constant C > 0,

P[Mkε ≤ C/(kε)] =

(
1− C

kε

)kε
= O(e−C),

implying P[Mkε ≤ C/(kε)] = 1 − O(e−C). Partition the interval [ε,R] into n intervals of size on the

order of 2δ, labeled A1, A2, . . . , An; similarly, set B1 = [ε, ε + δ], B2 = [ε + δ, ε + 3δ], and subsequently set

Bi = 2δ + Bi−1. If (kMkt) has two jumps within a distance of δ from each other, then some interval Ai or

Bi has two jumps within it. Since each interval Ai and Bi contains O(kδ) integers, the probability that an

interval contains two jumps is equal to the probability that there are 2 independent uniforms out of O(kδ)

many that are both less than C/(kε). This implies

P[a fixed interval of length O(δ) contains two jumps] = O
(
k2δ2

)
·O
(
(C/(kε))2

)
= O

(
C2δ2/ε2

)
.

Applying a union bound over all 2n = O(1/δ) intervals shows that the probability there are two jumps in

some Ai or Bi is O(C2δ/ε2). Likewise, the probability that the first interval [ε, ε+ δ] or [R− δ,R] contains

a jump is O(Cδ/ε) as well. Taking δ → 0 followed by C →∞ completes the proof.

�

Corollary 6.4. The sequence n · hn converges in distribution to pc · exp(1), where exp(1) is an exponential

random variable with mean 1.

Proof: It suffices to show that for every x ∈ (0,∞), we have limn→∞P[n · hn > x] = e−µx. Let Nδ and τ

be the stopping times defined in the proof of Theorem 6.2 and recall that Nδ+τ <∞ a.s. and for n > Nδ+τ

we have C1Mn < hn < C2Mn. It follows that

P[n · hn > x] = P
[
hn >

x

n

]
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≥ P
[
C1 ·Mn >

x

n

]
−P[Nδ + τ > n]

=

(
1− x/C1

n

)n+1

−P[Nδ + τ > n] . (6.15)

Taking the lim inf of the expressions on the right and left sides in (6.15), while recalling that Nδ + τ < ∞
a.s., we find that lim infn→∞P[n · hn > x] ≥ e−

x
C1 . Since C1 < pc is arbitrary, it then follows that

lim infn→∞P[n · hn > x] ≥ e−µx. Conversely, Theorem 6.2 also implies that

P[n · hn > x] = P
[
hn >

x

n

]
≤ P

[
C2 ·Mn >

x

n

]
+ P[Nδ + τ > n]

=

(
1− x/C2

n

)n
+ P[Nδ + τ > n]. (6.16)

Taking the lim sup of the expressions on the right and left sides in (6.16) then gives lim supn→∞P[n · hn >
x] ≤ e−

x
C2 which, since C2 > pc is arbitrary, implies lim sup

n→∞
P[n · hn > x] ≤ e−µx. Combining this with the

lower bound on the lim inf gives limn→∞P[n · hn > x] = e−µx. �
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