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1. Introduction

In species capable of learning, including our own, individuals can modify their

behavior by some adaptive process. Important classes of behavior - mating, predation,

coalitions, trade, signaling, and division of labor - involve interactions between individuals.

The agents involved learn two things: with whom to interact and how to act. That is to say

that adaptive dynamics operates both on structure and strategy.

In an interaction individuals actualize some behavior, the behavior of the

individuals jointly determines the outcome of the interaction, and the consequences for the

individuals motivate learning. At this high level of abstraction, we can model interactions

as games. The relevant behaviors of individuals are called strategies of the game, and the

strategies of the players jointly determine their payoffs. Payoffs drive the learning

dynamics. (Skyrms and Pemantle, 2000).

If  we fix the interaction structure in this abstract scheme, we get models of the

evolution of strategies in games played on a fixed structure. An interaction structure need
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not be deterministic. In general, it can be thought of as a specification of the probabilities

of interaction with other individuals.  By far the most frequently studied interaction

structure is one in which the group of individuals is large and individuals interact at

random. That is to say that each individual has equal probability of interacting with every

other individual in the population. Among a list of virtues of this model, mathematical

tractability must come near the top. At another end of the spectrum we have models

where individuals interact with their neighbors on a torus, or a circle, or (less frequently)

some other graphical structure. [ Ellison (1993) , Nowak and May (1992), Hegselmann

(1996), Alexander (2000)] . Except in the simplest cases, these models sacrifice

mathematical tractability to gain realism, and computer simulations have played an

important role in their investigation. These two extreme models, however, can have quite

different implications for the evolution of behavior.    In large, random encounter settings

cooperators are quickly eliminated in interactions with a Prisoner's Dilemma structure.

Comparable local interaction models allow cooperators to persist  in the population.

If we fix the strategies of individuals and let the interaction structure evolve we get

a model of interaction network formation.   Evolution of structure is less well-studied than

evolution of strategies, and  is the main focus of this paper. Most current research on

theory of network formation takes the point of view that networks are modeled as graphs

or directed graphs, and network dynamics consists of making and breaking of links.

[Jackson and Watts (2002), Bala and Goyal, (2000) ]   In taking an interaction structure to

be a specification of probabilities of interaction rather than a graphical structure, we take a

more general view than most of the literature (but see Kirman (1997) for a point of view
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close to that taken here.) It is possible that learning dynamics may drive these probabilities

to zero or one and that a deterministic graphical interaction structure may crystallize out,

but this will be treated as a special case. We believe that this probabilistic approach can

give a more faithful account of both human and non-human interactions. It also makes

available a set of mathematical tools that do not fit the coarser picture of making or

breaking deterministic links in a graphical structure.

    Ultimate interest resides in the general case where structure and strategy co-

evolve. These may be modified by the same or different kinds of learning. They may

proceed at the same rate or different rates. The case where structure dynamics is slow and

strategy dynamics is fast may approximate more familiar models where strategies evolve

on a fixed interaction structure. The opposite case may be close to that of  individuals with

fixed strategies (or phenotypes) learning to network. In between, there is a very rich

territory waiting to be explored. We will close this paper with a discussion of the co-

evolution of structure and strategy a game which one of us has argued is the best simple

prototype of the problem of instituting a social contract.[Skyrms, 2004].   Whether

coevolution of structure and strategy supports or reverses the conventional wisdom about

equilibrium selection in this game, depends on the nature and relative rates of the two

learning processes.

2. Learning
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Learning can be divided into two broad categories: (1) belief learning in which the

organism forms belief or internal representations of the world and uses these to make

decisions, and  (2) reinforcement learning, where the organism increases the probability of

acts that have been rewarded and decreases the probability of those that have not been

rewarded. Ultimately the distinction may not be so clear cut, but it is useful for a

categorization of learning theories. In the simplest belief learning model, Cournot

dynamics, an individual assumes that others will do what they did last time and performs

the act that has the highest payoff on that assumption. More sophisticated individuals

might form their beliefs more carefully, by applying inductive reasoning to some or all of

the available evidence. Less confident individuals might hedge their bet on Cournot

dynamics with some probabilistic version of the rule. Strategically minded individuals

might predict the effect of their current choice on future choices of the other agents

involved, and factor this into their decision. Humans, having a very large brain, can do all

of these things but often they do not bother [Suppes and Atkinson (1960), Roth and Erev

(1995), Erev and Roth (1998), Busemeyer and Stout (2002), Yechiam, and Busemeyer

(preprint).]

  Reinforcement learning does not require a lot of effort, or a large brain, or any

brain at all. In this paper we will concentrate on reinforcement learning, although we will

also touch on other forms of learning. Specifically, we apply a mathematical model in

which the probability of an act is proportional to the accumulated rewards from

performing that act. [Herrnstein (1970), Roth and Erev (1995)]. Following Luce (1959),

the learning model can be decomposed into two parts,  a reinforcement dynamics, in which
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weights or propensities for acts evolve, and a response rule, which translates these weights

into probabilities of acts. If we let weights evolve by adding the payoff gotten to the

weight of the act chosen, and let our probabilities be equal to the normalized weights

(Luce's linear response rule), we get the basic Herrnstein-Roth-Erev dynamics.

There are alternative models of reinforcement learning that could be investigated in

this setting. In a path-breaking study, Suppes and Atkinson (1960)  applied stimulus

sampling dynamics to learning in two-person games. Borgers and Sarin (1997) have

investigated dynamics  of Bush and Mosteller (1955) dynamics in a game-theoretic setting.

Instead of the Luce's linear response rule of normalizing the weights, some models use a

logistic response rule. Bonacich and Liggett (2004) apply Bush-Mosteller learning in a

setting closely resembling our own. They get limiting results that are closely connected to

this of the discounted model of Friends II in Skyrms and Pemantle (2000).  Liggett and

Rolles (in press)  generalize the results of Bonacich and Liggett to an infinite space of

agents. We, however, will concentrate attention on the basic Herrnstein-Roth-Erev

dynamics and on a "slight" variation on it.

Erev and Roth (1997) suggest modifying the basic model by discounting the past

to take account of "forgetting". At each time period, accumulated weights are multiplied

by some positive discount factor less than one, while new reinforcements are added at full

strength. Discounting is a robust phenomenon in experimental studies of reinforcement

learning, but there seems to be a great deal of individual variability with reported discount

factors ranging from .5 to .99.  [Erev and Roth (1997), Busemeyer and Stout (2002),
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Yechiam and Busemeyer (2004), Goeree and Holt (forthcoming)].  Discounting changes

the limiting properties of the learning process radically. We will see that within the

reported range of individual variability, small variations in the discount rate can lead to

large differences in predicted observable outcomes in interactive learning situations.

3. Two-Person Games with Basic Reinforcement Learning

We begin by investigating  basic (undiscounted) reinforcement learning in simple

two-person interactions. The following model was introduced in Skyrms and Pemantle

(2000). Each day each individual in a small group wakes up and decides to visit someone.

She decides by chance, with the chance of visiting anyone else in the group being given by

normalized weights for that individual. (We can imagine the process starting with some

initial weights; they can all be set to one to start the process with random encounters.) The

person selected always accepts, and there is always time enough in the day for all selected

interactions to take place. In a group of ten, if Jane decides to visit someone and the other

nine all happen to decide to visit Jane, she has a total of ten interactions in that day. Each

interaction produces a payoff. At the end of the day, each individual updates her weights

for every other individual by adding the payoffs gotten that day from interactions with that

individual. (Obvious variations on the basic model suggest themselves, but we confine

ourselves here to just this model applied to different kinds of interactions.) Initially, we

investigate baseline cases where individuals have only the choice of with whom to interact,

and interactions always produce payoffs in the same way. Then we build on the results for
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these cases to analyze interactions in the stag hunt game, in which different agents can

have different acts and the combination of acts determines the payoffs.

Consider two games of "Making Friends." In Friends I the visitor is always treated

well, and gains a payoff of 1, while the host goes to some trouble but also enjoys the

encounter, for a net payoff of zero. In Friends II the visitor and host are both equally

reinforced, with a payoff of 1 going to each. We start each learning process with each

individual having initial weights of one for each other individual, so that our group begins

by interacting at random. It is easy to run computer simulations of the Friends I and

Friends II processes, and it is a striking feature of such simulations that in both cases non-

random interaction structure rapidly emerges. Furthermore, rerunning the processes from

the same starting point seems to generate different structure each time. In this setting, we

should expect the emergence of structure without an organizer, or even an explanation in

terms of payoff differences. The state of uniform random encounters with which we

started the system does not persist, and so must count as a very artificial state. Its use as

the fixed interaction structure in many game theoretic models is therefore extremely

suspect.

We can understand the behavior of  the Friends I process if we notice that each

individual's learning process is equivalent to a Polya urn. We can think of him as having an

urn with balls of different colors, one color for each other individual. Initially there is one

ball of each  color. A ball is chosen (and returned), the designated individual is visited.

Because visitors are always reinforced, another ball of the same color is added to the urn.
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Because only visitors are reinforced, balls are not added to the urn in any other way.

(Philosophers of science will be familiar with the Polya urn because of its equivalence with

Bayes-Laplace inductive inference.) The Polya urn converges to a limit with probability

one, but it is a random limit with uniform distribution over possible final probabilities.

Anything can happen, and nothing is favored! In Friends I the random limit is uniform for

each player, and makes the players independent. [Skyrms and Pemantle 2000, Theorem 1].

All interaction structures are possible in the limit, and the probability that the group

converges to random encounters is zero.

In Friends II, both visitor and host are reinforced and so the urns interact. If

someone visits you, you are reinforced to visit him - or to put it graphically, someone can

walk up to your door and put a ball of his color in your urn. This complicates the analysis.

Nevertheless, the final  picture is quite similar. The limiting probabilities must be

symmetric, that is to say X visits Y with the same probability that Y visits X, but subject

to this constraint and its consequences anything can happen. [Skyrms and Pemantle (2000)

Theorem 2].

So far, the theory has explained the surprising results of the simulations, but a

rather special case of Friends II provides a cautionary contrast. Suppose that there are

only three individuals. (What we are about to describe is much less likely to happen if the

number of individuals is a little larger.) Then the only way we can have symmetric visiting

probabilities is if each individual visits the other two each with probability one-half. Then

the previous theorem implies that in this case the process must converge to these
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probabilities. In simulations this sometimes happens rapidly. However, there are other

trials in which the system appears to be converging to a state in which individual A visits B

and C equally, but B and C always visit A and never each other. You can think of

individual A as "Ms. Popular." The system was observed to stay near such a state for a

long time (5,000,000 iterations of the process.)

This apparent contradiction is resolved in Pemantle and Skyrms (2005), using the

theory of stochastic approximation. For the basic Herrnstein-Roth-Erev model, there is an

underlying deterministic dynamics that can be obtained from the expected increments of

the stochastic process. This deterministic dynamics has four equilibria - one in which each

individual visits the others with equal probability and the other three having A, B, and C

respectively as "Ms. Popular." The symmetric equilibrium is strongly stable - an attractor -

while the "Ms. Popular" equilibria are unstable saddle points. The system must converge

to the symmetric equilibrium. It cannot converge to one of the unstable saddles, but if in

the initial stages of learning it wanders near a saddle it may take a long time to escape

because the vector pushing it away is very small. This is what happens in the anomalous

simulations. There is a methodological moral here that we will revisit in the next section.

Simulations may not be a reliable guide to limiting behavior and limiting behavior is not

necessarily all that is of interest.

      The Making Friends games provide building blocks for analyzing learning dynamics

where the interactions are games with non-trivial strategies. Consider the two-person Stag

Hunt. Individuals are either Stag Hunters or Hare Hunters. If a Stag Hunter interacts with
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a Hare Hunter no Stag is caught and the Stag Hunter gets zero payoff. If a Stag Hunter

interacts with another Stag Hunter the Stag is likely caught and the hunters each get a

payoff of one. Hare Hunting requires no cooperation, and its practitioners get a payoff of

.75 in any case. The game is of special interest for social theory because cooperation is

both mutually beneficial and an equilibrium, but it is risky [Skyrms (2004)]. In game

theoretic terminology, Stag hunting is payoff dominant and Hare hunting is risk dominant.

In a large population composed of half Stag Hunters and half Hare Hunters with random

interactions between individuals, the Hare Hunters would get an average payoff of .75

while the Stag Hunters would only get an average payoff of .50. The conventional wisdom

is that in the long run evolution will strongly favor Hare hunting, but we say that one

should consider the possibility that the players learn to network.

     We use exactly the same model as before, except that the payoffs are now determined

by the individuals' types or strategies: Hunt Stag or Hunt Hare. We start with an even

number of Stag Hunters and Hare Hunters. Theory predicts that, in the limit, Stag Hunters

always visit Stag Hunters and Hare Hunters always visit Hare Hunters [Skyrms and

Pemantle (2000) Th. 6]. Simulation confirms that such a state is approached rapidly.

Although on rational choice grounds Hare Hunters "should not care" whom they visit,

they cease to be reinforced by visits from Stag Hunters after Stag Hunters learn not to

visit them. Hare Hunters continue to be visited by other Hare Hunters, so all the

differential learning for Hare Hunters takes place when they are hosts rather than visitors.

Once learning has sorted out Stag Hunters and Hare Hunters so that each group only
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interacts with its own members, each is playing Friends II with itself and previous results

characterize within-group interaction structure.

Now Stag Hunters prosper. Was it implausible to think that Stag Hunters might

find a way to get together? If they were sophisticated, well-informed, optimizing agents

they would have gotten together right away! Our point is that it doesn't take much for

Stag Hunters to get together. A little bit of reinforcement learning is enough.

4. Clique Formation with Discounting the Past

Adding a little discounting of the past is a natural and seemingly modest

modification of the reinforcement process. However, it drastically alters the limiting

behavior of learning. If the Polya urn, which we used in the analysis of Friends I, is

modified by discounting the past the limiting result is that after some time (can't say when)

there will be one color (can't say which) that will always be picked. Discounting the past,

no matter how little the discounting, leads to deterministic outcomes. This is also true

when we learn to network. Discounting the past leads to the formation of cliques, whose

members never interact with members of alternative cliques. Why then, did we even bother

to study  learning without discounting? We will see that

if discounting is small enough, learning with discounting may, for long periods of time,

behave like learning without discounting.
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The effects of adding discounting to the learning process are already apparent in

two-person interactions [Skyrms and Pemantle (2000)], but they are more interesting in

multi-person interactions. Here we discuss two three-person interactions, Three's

Company (a uniform reinforcement counterpart to Friends II), and a Three-Person version

of the Stag Hunt. Every day, each individual picks two other individuals to visit to have a

three-person interaction. The probability of picking a pair of individuals is taken to be

proportional to the product of their weights. The payoff that an individual receives from a

three-person interaction is added to her weights for each of the other two participants. We

again start the learning process with random interaction. Everyone begins having weight

one for everyone else.

In Three's Company, as in Friends II, everyone is always reinforced in every

interaction. Everyone gets a payoff of one. No matter what the discount rate, the limiting

result of discounted learning is clique formation. For a population size of six or more, the

population will break up into cliques of size 3, 4, or 5. Each member of a given clique

chooses each other member of that clique with positive limiting relative frequency. For

each member of a clique, there is a finite time after which she does not choose outsiders.

All such cliques - that is each partition of the population into sets of size 3, 4, and 5, has

positive probability of occurring. [Pemantle and Skyrms (in press) Th. 4.1.]

Simulations at a discount rate of .5 conform to theory. A population of 6 always

broke into two cliques of size 3, with no interactions between cliques. As we discount less

- keeping more of the past weights - we see a rapid shift in results. Multiplying past
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weights by .6, led to formation of 2 cliques in 994/1000 trials; by .7 in 13/1000; by .8 in

none.  (We ran the process for 1,000,000 time steps and rounded interaction probabilities

to two decimal places.) Writing the discount factor by which past payoffs are multiplied as

(1-x), we can say that simulation says that clique formation occurs reliably for large x, but

not at all for small x  with a large transition taking place between x=.4 and x=.3. The

theory says that clique formation occurs for any positive x.

This apparent conflict between theory and simulation is resolved in Pemantle and

Skyrms (2004), where it is shown that time to clique formation increases exponentially in

1/x as the discount factor (1-x) approaches 1.  The behavior of the process for observable

finite sequences of iterations is highly sensitive to the discount parameter, within ranges

that fall within the individual variability that has been reported in the experimental

literature. When x is close to 1, discounted reinforcement learning behaves for long

periods of time like undiscounted learning in which clique formation almost never occurs.

Three's Company, like Friends II, is important because it arises naturally in the

analysis of less trivial interactions. Consider a Three-Player Stag Hunt [Pemantle and

Skyrms (in press)]. Pairs of individuals are chosen, and weights evolve, just as in Three's

Company, but the payoffs depend on the types of players. If three Stag Hunters interact,

they all get a payoff of 4, but a Stag Hunter who has at least one Hare Hunter in his trio

gets nothing.  (In a random encounter setting, Stag Hunting is here even more risky that in

the two person case.) Hare hunters always get a payoff of 3.
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In the limit Stag Hunters learn to always visit other Stag Hunters but, unlike some

other limiting results we have discussed, this one is attained very rapidly. With 6 Stag

Hunters and 6 Hare Hunters and a discount rate of .5, the probability that a stag hunter

will visit a hare hunter usually drops below half a percent in 25 interactions. In 50

iterations this always happened in 1000 trials, and this remains true for values of x

between .5 and .1. For x=.01, 100 iterations suffices and 200 iterations are enough if

x=.001.

Once Stag Hunters learn to visit Stag Hunters, they are essentially playing a game

of Three's Company among themselves. They may be visited by Hare Hunters, but these

visits produce no reinforcement for the Stag Hunters and so do not alter their weights.

Stag Hunters then form cliques of size 3, 4, or 5 among themselves. This will take a long

time if the past is only slightly discounted.

There is a tendency for Hare Hunters to learn to visit Hare Hunters after the Stag

Hunters learn not to visit them, but because of the discounting it is possible for a Hare

Hunter to be frozen in a state of visiting one or two Stag Hunters. This is a real possibility

when the past is heavily discounted. At x=.5, at least one Hare Hunter interacted with a

Stag Hunter (after 10,000 iterations) in 384 out of 1000 trials. This dropped to 6/1000 for

x = .2 and to 0 for x =.1. Hare Hunters who are no trapped into interactions with Stag

Hunters eventually end up playing Three's Company among themselves and also form

cliques of size 3, 4, and 5.
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5. Coevolution of Structure and Strategy

So far we have concentrated on the dynamics of  interaction, because we believe

that it has not received as much attention as it deserves. The full story involves co-

evolution of both interaction structure and strategy. Depending on the application, these

may involve the same or different adaptive dynamics and they may evolve at the same or

different rates. We will illustrate this with two different treatments of the two-person Stag

Hunt.

To the two-person Stag Hunt of section 3, we add a strategy revision process

based on imitation. This reinforcement-imitation model was discussed in Skyrms and

Pemantle (2000). With some specified probability, an individual wakes up, looks around

the whole group, and if some strategy is prospering more than his own, switches to it.

Individual's probabilities are independent.  If imitation is fast relative to structure

dynamics, it operates while individuals interact more or less at random and Hare Hunters

will take over more often than not. If imitation is slow, stag hunters find each other and

prosper, and then imitation slowly converts Hare Hunters to Stag Hunters (who quickly

learn to interact with other Stag Hunters).
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Simulations show that in intermediate cases, timing can make all the difference. We

start with structure weights equal to 1 and  vary the relative rates of the dynamics by

varying the imitation probability. With "fast" imitation (pr = .1) 78% of the trials ended up

with everyone converted to Hare Hunting and 22% ended up with everyone converted to

Stag Hunting.  Slower imitation (pr = .01) almost reversed the numbers, with 71% of the

trials ending up All Stag and 29% ending up All Hare. Fluid network structure coupled

with slow strategy revision reverses the orthodox prediction that Hare Hunting (the risk

dominant equilibrium) will take over.

(This conclusion remains unaffected if we add discounting to the learning dynamics

for interaction structure. Discounting the past simply means that Stag Hunters find each

other more rapidly. No matter how Hare Hunters end up, Stag Hunters are more

prosperous. Imitation converts Hare Hunters to Stag Hunters.)

The foregoing model illustrates the combined action of two different dynamics,

reinforcement learning for interaction structure and imitation for strategy revision. What

happens if both processes are driven by reinforcement learning? In particular, we would

like to know whether the relative rates of structure and strategy dynamics still make the

same difference between Stag Hunting and Hare Hunting. In this Double Reinforcement

model, each individual has two weight vectors, one for interaction propensities and one

for propensities to either Hunt Stag or Hunt Hare. Probabilities for whom to visit and

what to do are both gotten by normalizing the appropriate weights. Weights are updated

by adding the payoff from an interaction to both the weight for the individual involved and
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to the weight for the action taken. Relative rates of the two learning processes can be

manipulated by changing the magnitude of the initial weights.

In the previous models we started the population off with some Stag Hunters and

some Hare Hunters. That point of view is no longer correct. The only way one could be

deterministically a Stag Hunter would be if he started out with zero weight for Hare

Hunting, and then he could never learn to hunt Stag. We have to start out individuals with

varying propensities to hunt Hare and Stag. There are various interesting choices that

might be made here; we will report some simulation results for one. We start the a group

of 10, with 2 confirmed Stag Hunters (weight 100 for Stag, 1 for Hare), 2 confirmed Hare

Hunters (weight 100 for Hare, 1 for Stag), and 6 undecided guys (weights 1 for Stag and

1 for Hare. Initial weights for interaction structure were all equal, but their magnitude was

varied from .001 to 10, in order to vary the relative rates of learning structure and

strategy. The percent of 10,000 trials that ended up All Stag or All Hare (after 1,000,000

iterations) for these various settings are shown in figure 1. As before, fluid interaction

structure and slow strategy adaptation favor Stag Hunting, while the reverse combination

favors Hare Hunting.

(figure 1 here)

In both reinforcement-imitation and double reinforcement models of the

coevolution of structure and strategy a fluid network structure shifts the balance form the

risk dominant Hare Hunting equilibrium to the cooperative Stag Hunt.
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6.  Why Dynamics?

Classical, pre-dynamic,  game theory  would approach the problem differently. The

whole group of 10 individuals is playing a 10-person game. A move consists in choosing

both a person to play with and a strategy. We can just identify the Nash equilibria of this

large game. None are strict. The pure equilibria fall into two classes. One class has

everyone hunting Stag and every possible interaction structure. The other has everyone

hunting Hare and every possible interaction possible interaction structure. (There are also

mixed equilibria with every possible interaction structure.)  From this point of view,

interaction structure does not seem very important. If you ignore dynamics you miss a lot.



19

References:

Alexander,  J. M. (2000) Evolutionary Explanations of Distributive Justice. Philosophy of

Science 67: 490-516.

Bala, V. and Goyal, S. (2000) A Non-Cooperative Model of Network Formation.

Econometrica 68, 1181-1229.

Bonacich, P. and Liggett, T. (2003) Asymptotics of a Matrix-Valued Markov Chain

Arising in Sociology. Stochastic Processes and Their Applications 104, 155-171.

Busemeyer, J. and Stout, J. (2002) A Contribution of Cognitive Decision Models to

Clinical Assessment: Decomposing Performance on the Bechara Gambling Task.

Psychological Assessment 14, 253-262.

Bush, R. and Mosteller, F. (1955) Stochastic Models of Learning. John Wiley & Sons,

New York.

Ellison, G. (1993) Learning, Local Interaction, and Coordination. Econometrica 61,1047-

1071.



20

Erev, I. and Roth, A. (1998) Predicting How People Play Games: Reinforcement Learning

in Experimental Games with Unique Mixed Strategy Equilibria. American Economic

Review 88, 848-881.

Goeree, J. K. and Holt, C. A. (forthcoming)  Learning in Economics Experiments. In

Encyclopedia of Cognitive Science. Macmillan: New York.

Hegselmann, R. (1996) Social Dilemmas in Lineland and Flatland. In Frontiers in Social

Dilemmas Research Ed. W. Liebrand and D. Messick. Berlin: Springer, 337-362.

Herrnstein, R. J. (1970) On the Law of Effect. Journal of the Experimental Analysis of

Behavior. 13, 243-266.

Jackson, M. and Watts, A. (2002) On the Formation of Interaction Networks in Social

Coordination Games. Games and Economic Behavior 41: 265-291.

Kirman, A, (1997)  The Economy as an Evolving Network. Journal of Evolutionary

Economics 7: 339-353.

Liggett, T. M. and Rolles, S. (in press) An Infinite Stochastic Model of Social Network

Formation. Stochastic Processes and Their Applications.

Luce, R. D. (1959) Individual Choice Behavior. John Wiley and Sons, New York.



21

Pemantle, R. and Skyrms, B. (2004) Time to Absorption in Discounted Reinforcement

Models. Stochastic Processes and Their Applications. 109: 1-12.

Pemantle R. and Skyrms, B. (in press) Network Formation by Reinforcement Learning:

The Long and the Medium Run. Mathematical Behavioral Sciences.

Pemantle, R. and Skyrms, B. (in preparation) Reinforcement Schemes May Take a Long

Time to Exhibit Limiting Behavior.

Roth, A. and Erev, I. (1995) Learning in Extensive Form Games: Experimental Models

and Simple Dynamic Models in the Intermediate Term. Games and Economic Behavior 8,

14-212.

Skyrms, B. (2004) The Stag Hunt and the Evolution of Social Structure. Cambridge, New

York.

Skyrms, B. and R. Pemantle (2000) A Dynamic Model of Social Network Formation.

Proceedings of the National Academy of Sciences of the USA. 97: 9340-9346.

Suppes, P. and Atkinson, R. (1960) Markov Learning Models for Multiperson

Interactions. Stanford University Press, Palo Alto.



22

Yechiam, E. and Busemeyer, J. R. (1994) Comparison of Basic Assumptions Embedded in

Learning Models for Experienced Based Decision-Making. preprint.



23

figure 1: Stag Hunt with Reinforcement Dynamics for both Strategy and Structure

Double Reinforcement Dynamics
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