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1 Introduction

Let {fn : n = 1, 2, 3, . . .} be random functions chosen independently and uniformly from the set of
all NN functions from the set [N ] := {1, . . . , N} to itself. The composition gn := fn ◦ · · · ◦ f1 has
been studied in various contexts. It models the coalescence of ancestry as one goes backwards in
time in a simple population genetics model usually referred to as the Wright-Fisher model. (We
refer to [7] for a detailed discussion of population genetics, here we mention only that our work is
most directly related to the Wright-Fisher model for haploid populations that goes back to [4]; for
further information see e.g. [10, 15].) It also can be viewed as a toy model for studying the complete
coupling time for a Markov chain, when the coupling is chosen at random ([16]). Several quantities
are of interest here. For instance, the size of the range of gn is a non-increasing process eventually
absorbed at 1. One may ask for the time necessary to reach this state ([5, 12, 15]). Also of interest
is the number of distinct sizes that the range of gn takes on.

The size of the range of gn is a Markov chain in n. It is not hard explicitly to compute the
transition probabilities, nor surprising that they are approximated by continuous functions as n, N →
∞. One may then compute means and variances for the jump from one size of range to the next, sum
over jumps, pass to the limit where the sum becomes an integral, and quickly arrive at a plausible
Gaussian limit. The main point of this paper is to do just this: prove a general CLT for the number
of sites hit by a rescaled renewal process and use this to derive a Gaussian limit law for the number
of distinct sizes taken on by the range of gn.

This is in some sense straightforward. The general CLT for the size of the range of a renewal
process is straightforward to prove. We have explicit knowledge of the transition probabilities. On
the other hand, we find two aspects of this endeavor compelling. First, we were surprised that a
statement of a Gaussian limit law for the size of the range of a renewal process under this type of
rescaling could not be found in the literature. We would like to correct this omission, especially
since the formula for the rescaled variance is not immediately obvious. Secondly the application to
iterated functions requires some special care because of the non-compactness of the rescaled range.

The next section states and proves the CLT for renewal processes whose jump means and vari-
ances converge to a function of a continuous location parameter. The subsequent section contains
the application to the collapsing random function chain and the last section contains a few further
remarks.

2 Central limit theorem

We are concerned with the number of sites hit by a renewal process. More vividly, imagine a board
game where you roll the dice but can only move in one direction. If the distribution of the die-roll
can be an arbitrary function of the present position then one has a general time-inhomogeneous
renewal process; of course it is difficult to say much at this level. Let us suppose we have a family
of games whose board size N goes to infinity, and that the mean and variance µN (dxf(N)e) and
VN (dxf(N)e), of the die-roll when in position dxf(N)e converge to some limits µ(x) and V (x). We
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would then expect scaling limits for derived quantities, such as the number of sites hit in a rescaled
range [f(N)a, f(N)b]. Indeed, one readily sees that a proportion of 1/µ(x) of the sites near xf(N)
are hit, and believes that the difference between the number hit and its mean should have a normal
limit.

For the remainder of this section, let functions f on Z+ and µ, V on R+ be given. Suppose that
{PN (a, ·)} are a family of transition probabilities, so that in the N th process, the probability of a
jump from a to a + k is PN (a, k). Define

µN (a) :=
∑

x

xPN (a, x), VN (a) :=
∑

x

(x− µN (a))2PN (a, x)

to be the mean and variance of PN . We assume that there are continuous functions µ and V , and
an increasing f going to infinity, such that µN (d · f(N)e) → µ( · ) and VN (d · f(N)e) → V ( · ).
In order to avoid writing ceilings, from now on we will assume that the functions µN and VN are
defined on the whole real line (and are constant between consecutive integers).

Let a < b be positive numbers and define RN = RN (a, b) := |R ∩ [f(N)a, f(N)b]| to be the size
of the range of the process PN intersected with the interval [f(N)a, f(N)b]. Then

Theorem 1 (i) Under the above assumptions we have:

ERN = (1 + o(1)) · f(N)
∫ b

a

dx

µ(x)
,

(ii) For δ > 0 set νN,δ(a) :=
∑

x |x|2+δPN (a, x) and assume that there exist δ > 0 and a continuous
function νδ such that

νN,δ(dxf(N)e) ≤ νδ(x), N ≥ 1, a ≤ x ≤ b. (1)

Then
RN − f(N)

∫ b

a
(1/µ(x))dx

√
VN

=⇒ N(0, 1)

where

VN = VN (a, b) := f(N)
∫ b

a

V (x)
µ3(x)

dx ;

and N(0, 1) denotes a standard Gaussian random variable.

Proof: To prove (i), let {Xj} be the values of the Markov chain and let

τa = inf{j : Xj ≥ f(N)a} and τb = inf{j ≥ τa : Xj ≥ f(N)b}.

We will show that (under the assumption that µN (xf(N)) is sufficiently close to µ(x)) we have

ERN = ·f(N)
∫ b

a

dx

µ(x)
+ O

(
ln f(N)
f(N)

)
.
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Consider the martingale difference sequence array

dN,k = 1− Xk −Xk−1

µN (Xk−1)
, Fk = σ(X0, . . . , Xk). (2)

Our proof rests on an observation that each of the “1” in the definition of dN,k corresponds to a
visited state. Thus to analyze the total number of states visited within the interval [f(N)a, f(N)b]
we focus on the sequence dN,k started at τa and stopped at τb, dN,kI(τa < k ≤ τb). Since this new
sequence preserves martingale difference property we have

ERN = E
N∑

k=1

I(τa < k ≤ τb)
Xk −Xk−1

µN (Xk−1)
= E

τb∑
k=τa+1

Xk −Xk−1

µN (Xk−1)
.

We now note that the expression within the expectation on the right is roughly a Riemann sum
approximation of the integral∫ bf(N)

af(N)

dx

µN (x)
= f(N)

∫ b

a

dx

µN (xf(N))
= f(N)

(∫ b

a

dx

µ(x)
+ o(1)

)
where a (random) partition {f(N)a,Xτa

, . . . , Xτb−1, f(N)b} of the interval [f(N)a, f(N)b] is used.
Thus, (i) will be proven once we show that the expected error in that approximation is sufficiently
small. To this end write

τb∑
k=τa+1

Xk −Xk−1

µN (Xk−1)
=

∫ bf(N)

af(N)

dx

µN (x)
−
∫ Xτa

af(N)

dx

µN (x)
+

Xτb
− bf(N)

µN (Xτb−1)
(3)

+
τb∑

k=τa+1

{
Xk ∧ bf(N)−Xk−1

µN (Xk−1)
−
∫ Xk∧bf(N)

Xk−1

dx

µN (x)

}
. (4)

We will show that the expectation of the sum of the all the terms but the first is O(ln(f(N))/f(N)).
Set

Aj
0 = {X0 = j} and Aj

r = {X0 < j, . . . ,Xr−1 < j,Xr = j}, r ≥ 1.

Then
∑

r≥0 P(Aj
r) = P(j ∈ R) ≤ 1 and thus by Markov property, Cauchy-Schwarz, and Chebyshev’s

inequality we see that the expectation of the last term in (3) is bounded above by

E
Xτb

−Xτb−1

µN (Xτb−1)
=

∑
r≥0

∑
j<bf(N)

EIAj
r
I(Xr+1 > bf(N))

Xr+1 − j

µN (j)

=
∑
r≥0

∑
j<bf(N)

E
IAj

r

µN (j)
E((Xr+1 − j)I(Xr+1 > bf(N)|Aj

r)

=
∑
r≥0

∑
j<bf(N)

E
I(j ∈ R)
µN (j)

E((X1 − j)I(X1 > bf(N))|X0 = j)

≤
∑

j<bf(N)

E
I(j ∈ R)
µN (j)

E((X1 − j)2|X0 = j)
bf(N)− j

≤
∑

j<bf(N)

VN (j) + µ2
N (j)

µN (j)
· 1
bf(N)− j

= O

(
sup

0≤x≤b

{
V (x) + µ2(x)

µ(x)

})
·

∑
1≤j<bf(N)

1
j

= O(ln f(N))
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Next, the expectation of the second integral in (3) is

f(N) · E
∫ ∞

a

I(Xτa
/f(N) ≥ x)

µN (xf(N))
dx = f(N)

∫ ∞

a

P(Xτa
≥ xf(N))

µN (xf(N))
dx, (5)

and, for any ` > af(N),

P(Xτa
≥ `) =

∑
j<af(N)

∑
r≥0

P(Aj
r, Xr+1 ≥ `) =

∑
j<af(N)

∑
r≥0

P(Aj
r) · P(Xr+1 ≥ `|Xr = j)

≤
∑

j<af(N)

P(X1 − j ≥ `− j|X0 = j) ≤
∑

j<af(N)

E((X1 − j)2|X0 = j)
(`− j)2

≤ sup
1≤k<af(N)

{VN (k) + µ2
N (k)}

∞∑
j=1

1
(`− af(N) + j)2

= O

(
sup

0≤x≤a
{V (x) + µ2(x)}

)
· 1
` + 1− af(N)

.

Let γN = o(f(N)) satisfy γN →∞. Splitting the integral in (5) according whether x > a+γN/f(N)
or not, and using the above bound, we see that the quantity in (5), up to a multiplicative factor of
O
(
supx<a(V (x) + µ2(x))

)
, is bounded above by

f(N)
∫ a+γN /f(N)

a

P(Xτa ≥ xf(N))
µN (xf(N))

dx + f(N)P(Xτa
≥ af(N) + γN ) ·

∫ ∞

a

dx

µN (xf(N))

= O

(
sup

a≤x≤a+γN /f(N)

1
µ(x)

)
·
∫ af(N)+γN

af(N)

dy

y + 1− af(N)

+O(f(N)) · P(Xτa
≥ af(N) + γN ) = O(ln γN ) + O

(
f(N)
γN

)
= O(ln f(N)),

provided we choose γN = O(f(N)/ ln f(N)).

Next, the expectation of the absolute value of (4) is bounded by

E

{∑
I(τa < k ≤ τb)EFk−1

∣∣∣∣∣Xk ∧ bf(N)−Xk−1

µN (Xk−1)
−
∫ Xk∧bf(N)

Xk−1

dx

µN (x)

∣∣∣∣∣
}

. (6)

Each term within the conditional expectation is bounded above by

(Xk ∧ bf(N)−Xk−1) sup
Xk−1≤j≤Xk∧bf(N)

∣∣∣∣ 1
µN (j)

− 1
µN (Xk−1)

∣∣∣∣
≤ (Xk ∧ bf(N)−Xk−1)2

f(N)
sup

Xk−1/f(N)≤x≤(Xk/f(N))∧b

|µ′N (xf(N))|
µ2(xf(N))

= O

(
sup

a≤x≤b

∣∣∣∣ µ′(x)
µ2(x)

∣∣∣∣) (Xk ∧ bf(N)−Xk−1)2

f(N)
≤ C

f(N)
EFk−1 (Xk −Xk−1)2 ,
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where C is a constant depending only on µ, a, and b. Since

EFk−1 (Xk −Xk−1)2 = VN (Xk−1) + µ2
N (Xk−1) ≤ sup

af(N)≤k≤bf(N)

{
VN (k) + µ2

N (k)
µN (k)

}
µN (Xk−1)

= O

(
sup

a≤x≤b

V (x) + µ2(x)
µ(x)

)
EFk−1(Xk −Xk−1),

we see that (6) is bounded by

K

f(N)
E
∑

I(τa < k ≤ τb)EFk−1(Xk −Xk−1) =
K

f(N)
E
∑

I(τa < k ≤ τb)(Xk −Xk−1)

≤ K

f(N)
((b− a)f(N) + E(Xτb

− bf(N))) = O(1),

where K depends on µ, V, a, and b. This proves part (i).

Proof of (ii): A proof of (ii) follows the same idea; we will show that our martingale satisfies the
assumptions of the Lindeberg’s central limit theorem for martingales (see e.g. [3, Theorem 35.12]).
Specifically, denoting s2

N = E
∑N

k=1 I(τa < k ≤ τb)d2
N,k we will show that

1
s2

N

N∑
k=1

I(τa < k ≤ τb)EFk−1d
2
N,k

P−→ 1, (7)

and

∀ ε > 0
1

s2
N

N∑
k=1

I(τa < k ≤ τb)EFk−1d
2
N,kI(|dN,k| > εsN ) P−→ 0. (8)

In order to check these conditions we first show that

s2
N = f(N)

∫ b

a

V (x)
µ3(x)

dx + o(f(N)).

Define a sequence (Wk) by

Wk = (Xk −Xk−1)
VN (Xk−1)
µ3

N (Xk−1)
.

Then

EFk−1d
2
N,k = EFk−1Wk =

VN (Xk−1)
µ2

N (Xk−1)
,

and thus, by the elementary properties of the conditional expectation,

s2
N = E

∑
I(τa < k ≤ τb)d2

N,k = E
τb∑

k=τa+1

VN (Xk−1)
µ3

N (Xk−1)
(Xk −Xk−1).

Once again, we recognize the expression within the last expectation as a Riemann sum and the same
argument as before shows that

s2
N =

∫ bf(N)

af(N)

VN (x)
µ3

N (x)
dx + o(f(N)) = f(N)

∫ b

a

V (x)
µ3(x)

dx + o(f(N)).
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We will now prove (7) and (8). Expressing (7) in terms of Wk’s means∑
EFk−1Wk∑

EWk

P−→ 1. (9)

Now write EFk−1Wk = EFk−1Wk −Wk + Wk and notice that

EFk−1Wk −Wk =
VN (Xk−1)
µ2

N (Xk−1)

(
1− Xk −Xk−1

µN (Xk−1)

)
=

VN (Xk−1)
µ2

N (Xk−1)
dN,k

is a martingale transform of dN,k’s by a bounded, predictable sequence VN (Xk−1)/µ2
N (Xk−1). By

Chebyshev’s inequality and orthogonality of martingale differences we get

P
(∣∣∣∣∑(EFk−1Wk −Wk)

E
∑

Wk

∣∣∣∣ ≥ ε

)
≤ 1

ε2
E
(∑

(EFk−1Wk −Wk)
)2

(E
∑

Wk)2
≤ C

ε2
E
∑

d2
N,k

(E
∑

d2
N,k)2

= O

(
1

f(N)

)
.

Thus, to complete a proof of (9) it suffices to show that ∀ ε > 0

P
(∣∣∣∣∑Wk − E

∑
Wk

E
∑

Wk

∣∣∣∣ > ε

)
−→ 0. (10)

To this end, we write

E|
∑

Wk − E
∑

Wk| ≤ E

∣∣∣∣∣∑ VN (Xk−1)
µ3

N (Xk−1)
(Xk −Xk−1)−

∫ bf(N)

af(N)

VN (x)
µ3

N (x)
dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ bf(N)

af(N)

VN (x)
µ3

N (x)
dx− E

∑ VN (Xk−1)
µ3

N (Xk−1)
(Xk −Xk−1)

∣∣∣∣∣ ,
which is o(f(N)) by the same arguments as used in part (i). Since E

∑
Wk is of order f(N) we

obtain (10) and thus also (9) and (7). We now turn to (8). Let δ satisfy (1). For τa < k ≤ τb,

EFk−1 |dN,k|2+δ = EFk−1

∣∣∣∣1− Xk −Xk−1

µN (Xk−1)

∣∣∣∣2+δ

≤ 22+δ

(
1 + EFk−1

(Xk −Xk−1)2+δ

µ2+δ
N (Xk−1)

)

≤ 22+δ

(
1 + sup

a≤x≤b

νδ(x)
µ2+δ(x)

)
= O(1).

Hence, by the usual argument, each of the terms in the sum (8) is bounded by K/sδ
N , and since

there are no more than (b− a)f(N) terms in that sum we obtain

1
s2

N

∑
I(τa < k ≤ τb)EFk−1d

2
N,kI(|dN,k| ≥ εsN ) ≤ K(b− a)f(N)

f1+δ(N)
−→ 0,

which implies (ii). �
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3 Random functions on a finite set

The statement of Theorem 1 can be extended in various directions. Part of the argument relies on a
compactness of [a, b] so, perhaps the most immediate question is to examine what happens if a and
b are allowed to depend on N , in particular let b → ∞. In principle this presents no difficulty, but
one would have to take into account a relationship between the growth of f(N) and µN (xf(N)).
There are many ways of doing this, and rather than attempt to give a general condition, we work
out how to do this for the specific example at hand, namely compositions of random functions.

Let f1, f2, f3, . . . be a sequence of functions chosen independently and uniformly randomly from
the NN functions on {1, . . . , N}. Let g1 = f1, and for k > 1 let gk = fk ◦ gk−1 be the composition of
the first k random functions. Define T to be the smallest m for which gm is a constant function. (i.e.
gm(i) = gm(j) for all i 6= j.) The natural set–up is to consider a Markov chain {Yk : k = 0, 1 . . .}
where Yk is the cardinality of the range of gk (thus the initial state is N and the state 1 is absorbing;
the transition probabilities for other states can be easily computed [10, Appendix II], [5, 18] (the last
paper also contains references to earlier work). The expected value and the asymptotic distribution
of T have been studied in various contexts ([12, 15, 14, 5, 8, 9]). Here we will be interested in the
number of states visited before the absorption. We prove

Theorem 2 We have:

(i)
ERN ∼

√
2πN.

(ii)
RN −

√
2πN

σN1/4
=⇒ N(0, 1), where σ2 =

2−
√

2
3

√
π.

Proof: We will consider a jump process (Xk) associated with (Yk) (see [2]); that is we define a
sequence of stopping times by

J0 = 0, Jn+1 = inf{k > Jn : Yk 6= YJn}

and then a sequence of holding times Tk = Jk − Jk−1, k = 1, 2, . . .. We then set Xk = YJk
for

k = 0, 1, . . .. In order to determine scaling f(N) and the functions µ(x) and V (x) for the chain X it
will be convenient to use the following description of transition rules for Y : the state 1 is absorbing
and for any other state k, the law of Ym+1 given that Ym = k is the law of the number of occupied
urns when k balls are dropped uniformly and independently into N urns. We let Ek,p and vark

denote E((k−Y1)p|Y0 = k) and var(k−Y1|Y0 = k)), respectively. Writing, for simplicity Ek = Ek,1,
we have

Lemma 3 (i) k2

2N

(
1− k

2N (1 + 3N
k2 )
)
≤ Ek ≤ k2

2N ,

(ii) k2

N −O(k3/N2)−O(k5/N3) ≤ vark ≤ k2

N + O(k3/N2),
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(iii) for p ≥ 1, ∃ Cp such that Ek,p ≤ Cp

(
k2

2N

)p

,

Proof of Lemma 3: Let Ij , j = 2, . . . , k be the event that the jth ball falls in an occupied urn. For
the simplicity of notation we will not distinguish between events and their indicators. Since at most
j − 1 urns are occupied when the jth ball is dropped, we clearly have P(Ij) ≤ (j − 1)/N . On the
other hand, if Ij,` is the event that the jth ball falls into an urn containing the `th ball, then

P(Ij) = P(
j−1⋃
`=1

Ij,`) ≥
j−1∑
`=1

P(Ij,`)−
∑

1≤m<`<j

P(Ij,` ∩ Ij,m)

=
j−1∑
`=1

1
N
−

∑
1≤m<`<j

P(Ij,` ∩ Ij,m|I`,m) · P(I`,m) ≥ j − 1
N

− 1
N

∑
1≤m<`<j

P(I`,m)

≥ j − 1
N

− 1
N2

(
j − 1

2

)
.

Since k − Y1 is the number of times a balls falls into an already occupied urn we have

Ek = E
k∑

j=2

Ij =
k∑

j=2

P(Ij).

Hence (i) follows by a simple summation. For (ii) we write

E(
k∑

j=2

Ij)2 =
k∑

j=2

P(Ij) + 2
∑

2≤i<j≤k

P(Ii ∩ Ij) =
k∑

j=2

P(Ij) + 2
∑

2≤i<j≤k

P(Ij |Ii) · P(Ii).

But conditioning on Ii amounts to removing the ith ball from the consideration. Thus,

j − 2
N

− 1
N2

(
j − 2

2

)
≤ P(Ij |Ii) ≤

j − 2
N

.

This gives∑
2≤i<j≤k

j − 2
N

(
1− j − 3

2N

)
· i− 1

N

(
1− i− 2

2N

)
≤

∑
2≤i<j≤k

P(Ii ∩ Ij) ≤
∑

2≤i<j≤k

j − 2
N

· i− 1
N

,

and, upon summation, implies (ii). Finally, to prove (iii) note that for 2 ≤ i1 < i2 < . . . < ir ≤ k
we have

P(Ii1 ∩ . . . ∩ Iir
) = P(Iir

|Iir−1 ∩ . . . ∩ Ii1) · . . . · P(Ii2 |Ii1) · P(Ii1)

≤ ir − 1− (r − 1)
N

· . . . · i2 − 2
N

· i1 − 1
N

≤
r∏

`=1

i` − 1
N

,

so that

P(
k∑

j=2

Ij ≥ r) = P(∃ 1 ≤ i1 < i2, . . . ir ≤ k : Ii1 ∩ . . . ∩ Iir
) ≤

∑
2≤i1<...<ir≤k

r∏
`=1

i` − 1
N
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≤ 1
r!

∑
2≤i1,i2,...,ir≤k

all

r∏
`=1

i` − 1
N

≤ 1
r!

 k∑
j=2

j − 1
N

r

≤
(

e

r
· k2

2N

)r

Hence, using EY p ≤
∑

r≥1 prp−1P(Y ≥ r) we get

Ek,p ≤
(

e2k2

2N

)p

+
∑

r≥ e2k2
2N

prp−1P(
k∑

j=2

Ij ≥ r) ≤
(

e2k2

2N

)p

+
∑

r≥ e2k2
2N

prp−1

(
e

r
· k2

2N

)r

≤
(

e2k2

2N

)p

+
∑

r≥ e2k2
2N

prp−1e−r ≤ Cp

(
k2

2N

)p

,

which proves (iii). �

We now return to the proof of Theorem 2. Part (i) of Lemma 3 gives us an expected size of a jump
from a state k but with a possibility of remaining in k. To find the expected size of a jump without
that possibility we need to condition on the fact that we do leave the state k. That is, if E∗

k , var∗k
and E∗

k,p denote the same quantities for the process (Xj) as those without stars for (Yj), then

E∗
k,p =

Ek,p

Pk(Y1 6= k)
, for p > 0 (11)

where Pk is the conditional probability, given Y0 = k. In particular,

var∗k = E∗
k,2 − (E∗

k)2 =
Ek,2

Pk(Y1 6= k)
−
(

Ek

P(Y1 6= k)

)2

. (12)

Since

Pk(Y1 = k) =
k−1∏
j=1

N − j

N
≤ exp

k−1∑
j=1

log(1− j

N
)

 ≤ exp

− k−1∑
j=1

j

N

 ≤ exp
(
− k2

2N

)
,

we obtain from (11)

E∗
k ≤

Ek

1− exp(−k2/2N)
.

On the other hand,

E∗
k =

Ek

1− exp(−k2/2N)
· 1− exp(−k2/2N)

Pk(Y1 6= k)

=
Ek

1− exp(−k2/2N)

(
1− exp(−k2/2N)− Pk(Y1 = k)

Pk(Y1 6= k)

)
.

For k ≤
√

N log N ,∣∣exp(−k2/2N)− Pk(Y1 = k)
∣∣ ≤

k−1∏
j=1

exp(− j

N
)−

k−1∏
j=1

(
1− j

N

)
≤

k−1∑
j=1

(
exp(− j

N
)− (1− j

N
)
)

≤
k−1∑
j=1

j2

N2
= O(

k3

N2
) = o(Pk(Y1 6= k)),

9



and for k ≥
√

N log N each of the two terms on the left hand side is O(1/
√

N). Thus we have

Ek

1− exp(−k2/2N)
(1− o(1)) ≤ E∗

k ≤
Ek

1− exp(−k2/2N)
,

which means that we may take

f(N) =
√

N and µ(x) =
x2/2

1− exp(−x2/2)
.

Similarly, using the above, (12) and Lemma 3(ii) we see that V (x) may be taken to be

V (x) =
(x2/2)2 + x2/2
1− exp(−x2/2)

−
(

x2/2
1− exp(−x2/2)

)2

=
x2

2
· 1− exp(−x2/2)− (x2/2) exp(−x2/2)

(1− exp(−x2/2))2
.

Finally, part (iii) gives a control of a growth of higher moments, namely we can take

νp(x) = cp
x2p/2

1− exp(−x2/2)
.

Since the process starts at N and moves down until it reaches 1, the range, after rescaling, is between
0 and

√
N and thus, formally at least, does not satisfy the assumptions of Theorem 1 (of course,

the fact that the process decreases rather than increases is inessential). Yet, if we were able to show
that for these particular functions µ(x) and V (x) the expected error between the Riemann sum and
the integral

∫ N

0
dx

µ(x/
√

N)
is o(

√
N) then we would have known that the number of states visited has

expected value ∫ N

0

1− exp(−x2/(2N))
x2/(2N)

dx ∼
√

N

∫ ∞

0

1− exp(−x2/2)
x2/2

dx =
√

2πN,

the variance asymptotic to

√
N

∫ ∞

0

V (x)
µ3(x)

dx =
√

N

∫ ∞

0

(1− exp(−x2/2)− (x2/2) exp(−x2/2))(1− exp(−x2/2))
(x2/2)2

dx

=
2−

√
2

3

√
πN,

and that it satisfies the CLT. But this is not difficult; with γN →∞, γN = o(
√

N) let τ = inf{k ≥
0 : Xk ≤ γN

√
N} (recall that Xk decreases from N to 1) and consider the sum∣∣∣∣∣∣

∑
j

{∫ Xj

Xj+1

dx

µ(x/
√

N)
− Xj −Xj+1

µ(Xj/
√

N)

}∣∣∣∣∣∣ .
We will treat the cases j < τ − 1, j ≥ τ , and j = τ − 1 separately. If j < τ − 1, then

τ−2∑
j=0

∫ Xj

Xj+1

dx

µ(x/
√

N)
≤
∫ ∞

Xτ−1

dx

µ(x/
√

N)
≤
√

N

∫ ∞

γN

dx

µ(x)
≤ C

√
N

γN
,
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and since 1/µ(x) is decreasing in that range, the Riemann sum underestimates the integral, so that

E

∣∣∣∣∣∣
∑

j<τ−1

{∫ Xj

Xj+1

dx

µ(x/
√

N)
− Xj −Xj+1

µ(Xj/
√

N)

}∣∣∣∣∣∣ = O(
√

N/γN ) = o(
√

N).

For j ≥ τ the jth term is bounded by

(Xj −Xj+1) sup
Xj+1≤x≤Xj

∣∣∣∣∣ 1
µ(x/

√
N)

− 1
µ(Xj/

√
N)

∣∣∣∣∣ ≤ (Xj −Xj+1)2√
N

sup
Xj+1/

√
N≤x≤Xj/

√
N

∣∣∣∣ µ′(x)
µ2(x)

∣∣∣∣ .
Let bN →∞, bN = o(

√
N); on the set {Xj−Xj+1 ≤ bNµ(Xj/

√
N)}, the right-hand side is bounded

by
Xj −Xj+1√

N
bN sup

{∣∣∣∣µ′(x)
µ(x)

∣∣∣∣ :
Xj − bNµ(Xj/

√
N)√

N
≤ x ≤ Xj√

N

}
If Xj/

√
N is bounded away from zero the supremum is bounded by twice |µ′(Xj/

√
N)/µ(Xj/

√
N)|,

otherwise is bounded by 2. Hence,∑
j

I(τ ≤ j)I(Xj −Xj+1 ≤ bNµ(Xj/
√

N))
(Xj −Xj+1)2√

N
sup

Xj+1/
√

N≤x≤Xj/
√

N

∣∣∣∣ µ′(x)
µ2(x)

∣∣∣∣
≤ 2

∑
j

I(τ ≤ j)
Xj −Xj+1√

N

(
1 ∧

∣∣∣∣∣µ′(Xj/
√

N)
µ(Xj/

√
N)

∣∣∣∣∣
)
≤ 2

γN

√
N√

N
+ 2

∫ γN

1

|µ′(x)|
µ(x)

dx = o(
√

N).

On the complementary set {Xj −Xj+1 > bNµ(Xj/
√

N)}, since |µ′(x)/µ(x)| is bounded we get, for
p ≥ 1

EFj

(
I(Xj −Xj+1 > bNµ(Xj/

√
N))

(Xj −Xj+1)2√
N

sup
x

∣∣∣∣µ′(x)
µ(x)

∣∣∣∣)
≤ K√

Nbp
Nµp(Xj/

√
N)

· EFj (Xj −Xj+1)p+2

≤
K(1− exp(−X2

j /2N))p

√
Nbp

N (X2
j /(2N))p

·
(X2

j /(2N))p+2

1− exp(−X2
j /(2N))

≤
KX4

j√
Nbp

N (2N)2
.

Since there are no more than γN

√
N terms and for j ≥ τ , Xj ≤ γN

√
N we obtain that the entire

sum is bounded by
(γN

√
N)5√

Nbp
N (2N)2

= O(γ5
N/bp

N ),

which can be made o(
√

N) by an appropriate choice of γN and bN . The argument for the function
V (x)/µ3(x) is essentially the same. It remains to show that both

E

∣∣∣∣∣
∫ Xτ−1

Xτ

dx

µ(x)
− Xτ−1 −Xτ

µ(Xτ/
√

N)

∣∣∣∣∣ and E

∣∣∣∣∣
∫ Xτ−1

Xτ

V (x/
√

N)
µ3(x/

√
N)

dx− (Xτ−1 −Xτ )
V (Xτ−1/

√
N)

µ3(Xτ−1/
√

N)

∣∣∣∣∣ ,
11



are o(
√

N). We have∣∣∣∣∣
∫ Xτ−1

Xτ

dx

µ(x/
√

N)
− Xτ−1 −Xτ

µ(Xτ/
√

N)

∣∣∣∣∣ ≤ (Xτ−1 −Xτ ) sup
Xτ≤x≤Xτ−1

∣∣∣∣ 1
µ(x/

√
N)

− 1
µ(Xτ−1/

√
N)

∣∣∣∣
≤ (Xτ−1 −Xτ ) sup

Xτ≤x≤Xτ−1

∣∣∣∣∣µ(Xτ−1/
√

N)− µ(x/
√

N)
µ(x/

√
N) · µ(Xτ−1/

√
N)

∣∣∣∣∣
≤ C

(Xτ−1 −Xτ )2√
Nµ(Xτ/

√
N)

· µ′(Xτ−1/
√

N)
µ(Xτ−1/

√
N)

≤ C
(Xτ−1 −Xτ )2

Xτ−1
,

where we have used the fact that µ′(x)/µ(x) behaves like 2/x for large x. Taking expectations yields

E
(Xτ−1 −Xτ )2

Xτ−1
=
∑

j

E
(Xτ−1 −Xτ )2

Xτ−1
I(τ = j).

Since
{τ = j} =

⋃
m>γN

√
N

{τ = j} ∩Bj,m,

where Bj,m = {X0 > m, . . . , Xj−2 > m,Xj−1 = m} ∈ Fj−1, denoting by Em and Pm the conditional
expectation, given that X0 = m, our expectation is further equal to∑

j

∑
m>γN

√
N

E
(m−Xj)2

m
IBj,m

I(Xj ≤ γN

√
N)

=
∑

j

∑
m>γN

√
N

1
m

EIBj,m
EFj−1(m−Xj)2I(Xj ≤ γN

√
N)

=
∑

j

∑
m>γN

√
N

E
IBj,m

m
Em(m−X1)2I(X1 ≤ γN

√
N)

≤
∑

m>γN

√
N

E
I(m ∈ R)

m
(Em(m−X1)4)1/2P1/2

m (X1 ≤ γN

√
N)

≤
∑

m>γN

√
N

1
m

(
m2

2N

)2

P1/2
m (m−X1 ≥ m− γN

√
N).

We split the sum into two pieces, according to whether m ≤ 3γN

√
N or not. In the first case,

bounding the sum by the number of terms times the largest one, we see that this part is no more
than

2γN

√
N

(2N)2
(3γN

√
N)3 = O(γ4

N ) = o(
√

N),

with the appropriate choice of γN . In order to bound the second sum, note that m ≥ 3γN

√
N

implies that m− γN

√
N ≥ 2m. Hence, by the computations used in the proof of Lemma (iii) we get

P1/2
m (m−X1 ≥ m− γN

√
N) ≤ P1/2

m (m−X1 ≥ 2m) ≤
(

e

2m
· m2

2N

)2m/2

=
( em

4N

)m

≤
(e

4

)m

,
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for m ≤ N . Therefore, the entire sum is bounded above by

1
4N2

∑
m>3γN

√
N

m3
(e

4

)m

= o(
√

N).

The argument for the function V (x)/µ3(x)is virtually the same and is omitted. �

4 Further Remarks

The martingale array defined by (2) can be modified to study other characteristics of the process
(Yj). For example, there has been quite a bit of work concerning the total time T until the iteration
becomes a constant function. This is just the sum, over all visited states, of holding times Tj ,

T =
∑
j∈T

Tj .

Thus, the martingale array for for this problem is defined by

dN,k = TXk−1 −
Xk−1 −Xk

µN (Xk−1)
EFk−1TXk−1 , Fk = σ{X0, . . . , Xk, TX0 , . . . , TXk−1}.

Given that the state j is visited, Tj is geometric distribution with parameter 1 − Pj,j , where Pi,j

are transition probabilities for the chain (Xk). Hence EFj Tj = 1/Pj(X1 6= j) which is exactly a
correction term between Ej and E∗

j (see (11)). Thus, reasoning as before we get

ET = E
∑

k

(Xk−1 −Xk)
EFk−1TXk−1

µN (Xk−1)
∼ E

∑
k

Xk−1 −Xk

X2
k−1/(2N)

∼ 2N

∫ ∞

1

dx

x2
= 2N,

a long known result. The CLT does not hold since dN,k’s fail to satisfy the neglibility condition (8).
In fact (see e.g. [12, 6, 17, 8, 9]), T/ET converges in distribution to a random variable whose density
is

f(x) =
∑
k≥2

(−1)k

(
k

2

)
(2k − 1)e−(k

2)x, x > 0.
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