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Abstract

We show that with probability 1, the trace B[0, 1] of Brownian motion in space, has

positive capacity with respect to exactly the same kernels as the unit square. More pre-

cisely, the energy of occupation measure on B[0, 1] in the kernel f(|x− y|), is bounded

above and below by constant multiples of the energy of Lebesgue measure on the unit

square. (The constants are random, but do not depend on the kernel.) As an appli-

cation, we give almost-sure asymptotics for the probability that an α-stable process

approaches within ε of B[0, 1], conditional on B[0, 1].

The upper bound on energy is based on a strong law for the approximate self-

intersections of the Brownian path.

We also prove analogous capacity estimates for planar Brownian motion and for the

zero-set of one-dimensional Brownian motion.
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1 Introduction and main results

It is well-known that for d ≥ 2, the range of d-dimensional Brownian motion has Haus-

dorff dimension 2, but its 2-dimensional measure is almost surely 0. Hausdorff dimension

is defined via Hausdorff measures, but has an equally important interpretation (due to

Frostman [10]) as the critical parameter for positivity of Riesz capacities. Exact Hausdorff

measure is one much-studied means of specifying more precisely the size of a “small” set

(see Taylor [25] for a comprehensive survey in the context of random sets); exact capacity is

a different one, that is directly relevant to intersections of the small set with other random

sets. Cieselski and Taylor [6] found the exact Hausdorff measure for the trace of Brownian

motion in space, which quantifies to what extent the trace is “smaller” than the plane. Here

we show that with probability 1, the spatial Brownian trace has positive capacity exactly

in the same kernels as the plane. Theorem 1.1 is a quantitative version of this; Theorems

1.2 and 1.6 give analogous statements for planar Brownian motion and for the zero-set of

1-dimensional Brownian motion, respectively. The latter theorem sharpens an integral test

due to Kahane and Hawkes.

For a decreasing kernel function f : [0,∞)→ [0,∞], define the energy of a Borel measure

ν on Rd with respect to f by

Ef (ν) =
∫
Rd

∫
Rd
f(|x− y|)dν(x)dν(y)

and the capacity of a Borel set Λ ⊂ Rd with respect to f by

Capf (Λ) =

[
inf

ν(Λ)=1
Ef (ν)

]−1

.

Thus Capf (Λ) > 0 if and only if there exists a Borel measure ν supported on Λ such that

Ef (ν) < ∞. When f(r) = r−α, we write Capα for Capf , and then the “capacitary dimen-

sion” sup{α : Capα(Λ) > 0} of a Borel set Λ is equal to its Hausdorff dimension (see, e.g.,

Carleson [4] or Kahane [12], page 133).

In the sequel we assume that all kernel functions f considered are (weakly) decreasing and

satisfy limr↓0 f(r) = f(0) if this limit is finite.

Pemantle and Peres [18] introduced a notion of “capacity-equivalence”, which we specialize

to Rd:
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Definition 1 The sets A,B ⊂ Rd are capacity-equivalent if there exist positive con-

stants C1, C2 such that

C1Capf (B) ≤ Capf (A) ≤ C2Capf (B) for all f.

Let (Bt(ω) : 0 ≤ t ≤ 1) be d-dimensional Brownian motion started at 0, and consider its

range B[0, 1] = {x ∈ Rd : Bt = x for some 0 ≤ t ≤ 1}. It is classical, and follows easily

from Theorem 2.1 below (see the discussion around (9)), that for any kernel f , if m denotes

Lebesgue measure on [0, 1]2, then

Ef (m) ≤ C
[
Capf ([0, 1]2)

]−1
,

where C is an absolute constant. In particular, [0, 1]2 has positive capacity with respect to

the kernel function f if and only if ∫
0+
f(r)r dr <∞.

Theorem 1.1 implies, a fortiori, that with probability 1, the same criterion holds for B[0, 1]

in dimension d ≥ 3, uniformly over kernels.

Theorem 1.1 For d ≥ 3, the Brownian trace B[0, 1] is a.s. capacity-equivalent to [0, 1]2.

More precisely, with probability 1 there exist random constants C1, C2 > 0 such that

C1Capf ([0, 1]2) ≤ Capf (B[0, 1]) ≤ C2Capf ([0, 1]2) for all f. (1)

In dimension 2, the recurrence of (Bt) leads to a slight modification:

Theorem 1.2 For any decreasing f , denote f̃(r) = f(r) log 1
r . For planar Brownian mo-

tion, with probability 1 there exist random constants C1, C2 > 0 such that

C1Cap
f̃

([0, 1]2) ≤ Capf (B[0, 1]) ≤ C2Cap
f̃

([0, 1]2) for all f. (2)

Our main interest in capacity is that for many stochastic processes, particularly Markov

processes (see [5], [9] and the references therein) and certain fractal percolation processes

(see [18]), hitting probabilities of sets are equivalent to their capacities.
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The next theorem exploits this equivalence, as well as the fact that our almost-sure capacity

estimates hold uniformly over all kernels. Aizenman [1] showed that if [B] and [B′] are the

traces of two independent d-dimensional Brownian motions started apart, then

P
[
dist([B], [B′]) < ε

]
�

 εd−4 if d > 4

(log 1
ε )
−1 if d = 4

as ε ↓ 0. (Earlier, Lawler [14] had obtained precise asymptotics for the analogous problem for

two random walks on Z4. See Albeverio and Zhou [2] for a recent refinement of Aizenman’s

estimates.) Theorem 2.6 of [19] contains the following generalization of Aizenman’s result:

if [Xα] and [B] denote the traces of an independent α-stable process and Brownian motion,

started apart, then

P
[
dist([B], [Xα]) < ε

]
�

 εd−α−2 if α < d− 2

(log 1
ε )
−1 if α = d− 2

as ε ↓ 0.

We derive an almost-sure version of these estimates, uniform over α, conditional on the

Brownian motion B. For 0 < α ≤ 2, let Pα
x be the law of a symmetric α-stable process

(Xα
t ) in Rd started at x, so that

Eα
x e

iλ·(Xt−x) = e−|λ|
αt

for λ ∈ Rd, and let f (α)(|x−y|) = c(α)|x−y|α−d be the corresponding potential density. We

always consider B and Xα to be independent. Write [B] = B[0, 1] and [Xα] = Xα[0,∞).

Theorem 1.3 Suppose d ≥ 3. Let

m(x,B) = inf
y∈[B]

|x− y|

M(x,B) = sup
y∈[B]

|x− y|.

Then for some constants cd, c′d > 0 the following is true: For a.e. Brownian path B and all

x ∈ Rd, there exists ε0 = ε0(B, x) such that, for all 0 < ε < ε0,

cd M(x,B)α−d ≤
Pα
x

[
dist

(
[B], [Xα]

)
< ε

∣∣∣B]
α(d− α− 2) εd−α−2

≤ c′dm(x,B)α−d

for all 0 < α < d− 2 such that α ≤ 2, and when d = 3, 4 also

cd M(x,B)−2 ≤
Pα
x

[
dist

(
[B], [Xα]

)
< ε

∣∣∣B]
(d− 2)

(
log 1

ε

)−1 ≤ c′dm(x,B)−2

for α = d− 2.
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Remark: Note the uniformity in α in the statement above. Even for a fixed α, the proof

of Theorem 1.3, given in section 4, requires estimating the capacity of a fixed sample path

[B] in infinitely many kernels simultaneously.

Theorems 1.1 and 1.2 say nothing about which measures supported on B[0, 1] have low

energy with respect to different kernels. It turns out that, up to a random constant not de-

pendent on the kernel, one measure fits all kernels. Let µ denote the occupation measure

of (Bt), defined by

µ(Λ) =
∫ 1

0
1Λ(Bt)dt

for Borel sets Λ ⊂ Rd. Clearly µ has total mass 1 and is supported on B[0, 1]. Roughly

speaking, for questions of capacity, µ plays the same role for B[0, 1] that Lebesgue measure

plays for [0, 1]2. More precisely, the lower bounds on Capf (B[0, 1]) in (1) and (2) follow

directly via Theorem 2.1 from the next theorem, which says that, with probability one,

the energy of µ on B[0, 1] is bounded by a random constant times the energy of Lebesgue

measure on the unit square, uniformly over kernels.

Theorem 1.4 With probability one, there exists a C = C(ω) such that

Ef (µ) ≤ C


∫ 1

0 rf(r)dr , d ≥ 3∫ 1
0 r log 1

rf(r)dr , d = 2
for all f . (3)

A key tool for the proof of the above theorems is a simple formula for energy proved in

Benjamini and Peres [3] (for logarithmic energy) and in Pemantle and Peres [18] (for general

kernels), which we state later as Theorem 2.1. As we will show, the upper bounds on capacity

given in Theorems 1.1 and 1.2 follow easily from known asymptotics for the volumes of

Wiener sausages. The lower bounds on capacities are, as we illustrate in section 3, easily

proved for fixed kernels, but the fact that, with probability one, these bounds hold uniformly

over kernels, is new. The proofs use Theorem 2.1 together with Theorem 1.5 below. The

proof of Theorem 1.3, given in section 4, is similar, and uses the additional deterministic fact

that the capacity of an ε-sausage is equivalent to the capacity of the original set with respect

to an ε-smoothed kernel (Proposition 4.1), together with the equivalence of capacities and

hitting probabilities for stable processes.

For σ > 0 and y ∈ Rd, define

gσ(y) = exp(−|y|2/2σ2),
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where | · | denotes Euclidean norm. Let

Sσ =
∫ 1

0
dt1

∫ 1

0
dt2 gσ(Bt1 −Bt2)

=
∫
Rd

∫
Rd
gσ(x− y)dµ(x)dµ(y) .

When suitably scaled, Sσ may be interpreted as measuring the “approximate self-intersections”

of the Brownian path. The case d = 2 of the following theorem follows from Varadhan’s

renormalization of Sσ (see section 6 for details).

Theorem 1.5 (A strong law for approximate self-intersections) For d ≥ 3,

Sσ
σ2
→ 4

d− 2
as σ ↓ 0 , a.s.

In dimension 2,
Sσ

σ2 log 1
σ

→ 4 as σ ↓ 0 , a.s.

To explain the connection to the energy estimates in Theorem 1.4, we start with the ob-

servation that the ratio µ(Q)/side(Q)2 cannot be uniformly bounded as Q ranges over all

cubes, since the 2-dimensional Hausdorff measure of the Brownian trace vanishes. The

µ-weighted average of this ratio, taken over the collection Dn of all dyadic cubes Q of side

2−n, is

4n
∑
Q∈Dn

µ(Q)2. (4)

Theorem 1.5 implies that, in dimension d ≥ 3, these weighted averages are bounded uni-

formly in n. (See the inequality (15) in Subsection 3.1.) Theorem 2.1 is then used to express

the energy of µ as a positive linear combination of the averages (4), and thus to compare it

to the energy of Lebesgue measure on the unit square.

1.1 The zero set

We have analogous results for the zero set of one-dimensional Brownian motion,

Z = {t ∈ [0, 1] : Bt = 0}. These results are technically easier than the corresponding ones

for the Brownian trace, and led us to the latter. It is classical that Z a.s. has Hausdorff
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dimension 1/2 (again, with zero measure in that dimension), so here a natural comparison

set is the “middle-1/2 Cantor set”

K =

{ ∞∑
n=1

bn4−n : bn = 0, 3

}
.

K is a standard example of a set of Hausdorff dimension 1/2, that has positive and finite

measure in that dimension.

Theorem 1.6 The Brownian zero-set Z is a.s. capacity-equivalent to the middle-1/2 Can-

tor set K. More precisely, with probability one there exist random C1, C2 > 0, such that

C1Capf (K) ≤ Capf (Z) ≤ C2Capf (K) for all f. (5)

Let (`(t) : 0 ≤ t ≤ 1) be Brownian local time at zero, normalized so that, by results of Lévy,

`(t) has the same law as the running maximum maxτ≤tBτ . We abuse notation slightly and

also let ` denote the measure, supported on Z, for which it is the distribution function.

The lower bound on Capf (Z) in (5) is implied by the following energy estimate:

Theorem 1.7 With probability one there exists C = C(ω) such that:

Ef (`) ≤ C
∫ 1

0
f(r)r−1/2 dr, for all f. (6)

In the first (1968) edition of [12], Kahane established that, for a fixed f of “positive type”,

finiteness of the integral in (6) is sufficient for the Brownian zero set Z to a.s. have positive

capacity with respect to f (see [12] page 236, Theorem 2). This is the first “exact capacity”

result we are aware of. Hawkes ([11] Theorem 5) proved the converse (finiteness of the inte-

gral is necessary for positive capacity) under a slightly stronger assumption (log-convexity)

on the kernel f . In view of the expression (10) for the capacity of K, Theorem 1.6 is a

uniform version of this result of Kahane and Hawkes; it also shows that the side conditions

on the kernel are not needed. In the last section we describe a different random set that

illustrates why the uniformity in the kernel is not automatic.
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2 Upper bounds on capacities

The following representation of energy from [18] is basic for most of the results in this paper.

Its proof is based on a trick from [3]. Let Dn denote the collection of all dyadic cubes

Q = [j12−n, (j1 + 1)2−n)× . . .× [jd2−n, (jd + 1)2−n) for (j1, . . . , jd) ∈ Zd.

Theorem 2.1 ([18], Theorem 3.1) Let f : [0,∞) → [0,∞] be a weakly decreasing func-

tion. Then for any Borel measure ν supported on the unit cube [0, 1]d,

Ef (ν) �
∞∑
n=0

(f(2−n)− f(21−n))
∑
Q∈Dn

ν(Q)2, (7)

where � means that the ratio of the two quantities is bounded between two positive constants

depending only on d.

Remark: The proof of this in [18] assumes that f(0+) =∞ and that ν has no atoms, but

these assumptions can be avoided as long as f(0) = f(0+). If ν has atoms at the points

{xj}j≥1, then there is a contribution of
∑
j f(0)ν(xj)2 to the energy Ef (ν) coming from the

diagonal. On the right-hand side of (7), we get the same contribution.

We first note an easy general upper bound on capacity, which is essentially the same as

Theorem IV.2 in Carleson [4]. Let Nn(Λ) be the number of dyadic cubes Q ∈ Dn (as

defined in Theorem 2.1) that intersect a Borel set Λ ⊂ Rd. Then there is a constant

c > 0, depending only on the ambient dimension d, such that for any probability measure

ν supported on Λ, and any kernel f , we have

Ef (ν) ≥ c
∑
n

(
f(2−n)− f(21−n)

) ∑
Q∈Dn

ν(Q)2

≥ c
∑
n

(
f(2−n)− f(21−n)

)
Nn(Λ)−1.

Therefore

Capf (Λ) ≤ c−1

[∑
n

(
f(2−n)− f(21−n)

)
Nn(Λ)−1

]−1

. (8)

If for some c, the set Λ carries a positive measure ν such that ν(Q) ≤ cNn(Λ)−1 for all

Q ∈ Dn and all n, then this bound is sharp (up to a constant factor independent of f).
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Thus we get

Capf ([0, 1]2) �
[∑
n

(f(2−n)− f(21−n))4−n
]−1

�
[∫ 1

0
f(r)r dr

]−1

(9)

and similarly, for the middle-half Cantor set

Capf (K) �
[∑
n

(f(2−n)− f(21−n))2−n/2
]−1

�
[∫ 1

0
f(r)r−1/2 dr

]−1

, (10)

where � means that the ratio of the two sides is bounded above and below by posi-

tive absolute constants. The minimum energies are attained within a constant factor by

Lebesgue measure in the case of [0, 1]2, and, for K, by the measure that makes the digits

(bn) ∼ i.i.d Bernoulli(1/2), when K is represented as {
∑∞
n=1 bn4−n : bn = 0, 3}.

Proof of Theorems 1.1 and 1.2 - upper bound: Strong laws for volumes of Wiener

sausages (see [16] Chapter VI and the references therein) imply that, with probability one,

there exist random C1, C2 ∈ (0,∞) such that for all n,

C1 ≤ Nn(B[0,1])
4n ≤ C2 for d ≥ 3

C1 ≤ n·Nn(B[0,1])
4n ≤ C2 for d = 2.

(11)

Substituting the above into (8) and comparing with (9) gives, with probability one,

Capf (B[0, 1]) ≤ C(ω)

 Cap
f̃

([0, 1]2) , d = 2

Capf ([0, 1]2) , d ≥ 3
for all f,

where f̃ is defined in the statement of Theorem 1.2. 2

Proof of Theorem 1.6 - upper bound: We need an analog of (11) for Z. This

is provided by Kingman’s [13] construction of local time, which we sketch here for the

Brownian case. Recall Lévy’s classical result (see, e.g., [21] page 447)

δ1/2Ñδ →
(

2
π

)1/2

`(1) , as δ ↓ 0, a.s. (12)

where Ñδ is the number of maximal intervals Ij of [0, 1]\Z having length greater than δ.

Now if

Zδ = {u ∈ [0, 1] : Bt = 0 for some t with |u− t| < δ/2} ,

and m denotes Lebesgue measure on R+, then, using the fact that m(Z) = 0 a.s., we obtain

m(Zδ) =
∑
j

[m(Ij) ∧ δ] +O(δ) ,
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where the sum extends over all maximal intervals in [0, 1] \ Z. By Fubini’s theorem, this

sum can be written as
∫ δ

0 Ñε dε+O(δ). Together with (12), this implies that

δ−1/2m(Zδ)→ 2
(

2
π

)1/2

`(1) as δ ↓ 0, almost surely.

Thus for suitable absolute constants c1, c2 > 0, there almost surely exists a random integer

n∗, such that

c1`(1) ≤ 2−n/2Nn(Z) ≤ c2 `(1) for alln ≥ n∗ . (13)

The upper bound on Capf (Z) now follows from the general upper bound (8) and the

estimate (10). 2

3 Lower bounds on capacities

Remark: For a fixed kernel, it is easy to see that finiteness of the integral on the right

hand side of (3) or (6) implies that the left hand side is finite. We show this for (3) in the

case d = 3; the other proofs are similar. Recall that for any non-negative Borel function

h : R3 → R,

E
∫ ∞

0
h(Bt)dt =

1
2π

∫
R3
h(x)

dx

|x|
, (14)

where |·| is the Euclidean norm and dx denotes Lebesgue measure. By the Markov property,

we have

EEf (µ) ≤ 2E
∫ 1

0
f(|Bt|)dt

Since f is monotone decreasing, f(|x|) ≤ f(|x|)1{|x|≤1} + f(1). Invoking (14), we get

EEf (µ) ≤ 2
(

1
2π

∫ 1

0
f(r) · 4πr2 dr

r
+ f(1)

)
≤ (4 + 4)

∫ 1

0
f(r) r dr,

where the last step used the monotonicity of f again. 2

3.1 The Brownian trace

Proof of Theorem 1.4: Recall that Dn is the collection of dyadic squares of side 2−n.

For σ = 2−n we have, by the definition of Sσ, that

Sσ ≥
∑
Q∈Dn

∫
Q

∫
Q
gσ(x− y)dµ(x)dµ(y) .
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All the integrands on the right hand side are bounded below by a positive constant c = c(d)

which does not depend on n. Hence by Theorem 1.5, there is a random constant C ′ = C ′(ω)

such that, with probability one, for all n

∑
Q∈Dn

µ(Q)2 ≤ c−1S2−n ≤ C ′

 4−n , d ≥ 3

n4−n , d = 2
. (15)

Thus, by Theorem 2.1, with probability 1

Ef (µ) ≤ C ′c1

∞∑
n=n0

(
f(2−n)− f(21−n)

) 4−n , d ≥ 3

n4−n , d = 2
,

where n0 = n0(ω) is defined by 2−n0 ≥ diameter (B[0, 1]) > 2−n0−1, and c1 depends only

on d. Since f is monotone decreasing, by adjusting C ′ we may replace n0 by 1 in the above

sum, and we obtain (3) after a summation by parts. 2

3.2 The zero set

We first prove a proposition, which, loosely speaking, will play the role that Theorem 1.5

did in the previous proof. Recall that `(·) denotes local time at 0.

Proposition 3.1 Consider the quadratic variation of ` at scale δ:

Lδ =
dδ−1e∑
j=0

[`((j + 1)δ)− `(jδ)]2 .

With probability 1, there exists a random C = C(ω) such that

Lδ ≤ Cδ1/2 for all δ > 0. (16)

Proof: We consider separately the summands for odd and even j in Lδ. Denote one-

dimensional Brownian motion by Bt. For fixed δ > 0, let j1, j2, . . . , be a left-to-right

enumeration of all the odd j ≥ 1 such that Bt = 0 for some t in the interval [(j − 1)δ , jδ].

Let M(δ) := max{i : jiδ ≤ 1 + δ} be the number of these intervals which intersect [0, 1].

Define stopping times Ti = inf{t ∈ [(ji−1)δ , jiδ] : Bt = 0}, and let Xi := `(Ti+ δ)− `(Ti).
The strong Markov property at the times Ti implies that, for fixed δ, the variables {Xi}i≥1
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are i.i.d. with the law of `(δ), which is the same as the law of |Bδ|. In particular X2
i have

mean δ and exponentially decaying tails. Thus the partial sums Yk(δ) :=
∑k
i=1Xi satisfy

P
(
Yk(δ) > 2kδ

)
≤ e−ck for some constant c > 0. (17)

By the argument leading to (13), with probability 1 there exists a δ∗ = δ∗(ω) such that

M(δ) ≤ c2`(1)δ−1/2 for all δ < δ∗, (18)

with c2 an absolute constant.

Denote Y (n) := YM(2−n)(2−n). Since k = k(n) = c2`(1)2n/2 is eventually larger than n, we

see that

P
[
Y (n) > 2c2`(1)2−n/2 i.o.

]
≤

P
[
M(2−n) > c2`(1)2n/2 i.o.

]
+ P

[
for infinitely many n, ∃k > n : Yk(2−n) > 2k2−n

]
.

The first probability in the sum vanishes by (18), and the second by (17) and Borel-Cantelli.

Thus a.s. there is a random constant A = A(ω) such that Y (n) ≤ A2−n/2 for all n. Now

Y (n) is an upper bound for the sum over all odd indices j in the quadratic variation L2−n ,

and the even indices are handled similarly. Consequently 2n/2L2−n is a.s. bounded by a

random constant.

To go from the powers of 1/2 to general δ, observe that any interval I can be covered by

three shorter dyadic intervals, say J1, J2, J3. Clearly `(I)2 ≤ 3(`(J1)2 + `(J2)2 + `(J3)2).

Therefore, if 21−n > δ ≥ 2−n then Lδ ≤ 6L2−n . This concludes the proof. 2

Proof of Theorem 1.7: Follow the proof of Theorem 1.4 given in section 3.1, replacing

µ by ` and using Proposition 3.1. 2

4 Probabilities of ε-approach

In this section we prove Theorem 1.3. The next deterministic proposition states that the

capacity of an ε-sausage is equivalent to the capacity of the original set with respect to an

ε-smoothed kernel. More precisely, given a kernel function f and ε > 0, let

f(ε) = ε−dd

∫ ε

0
f(s) sd−1 ds,
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and define

fε(r) =

 f(r) if r ≥ ε
f(ε) if r < ε

.

Note that fε is decreasing, since f is. Also, f(ε) < ∞ provided that Capf (Rd) > 0, which

we may always assume.

For a Borel set Λ ⊂ Rd, we denote the ε-sausage about Λ by

Λε = {x : |x− y| < ε for some y ∈ Λ}.

Recall that “�” (“is comparable to”) means that the two quantities are within finite pos-

itive constant multiples of each other, the constants depending only on the dimension d.

Similarly, the expression “a ≺
_ b” will mean “a ≤ cd b”. We also use the notation Q ∈ Dn

for dyadic cubes introduced at the beginning of section 2.

Proposition 4.1 For any Borel set Λ ⊂ Rd, kernel function f , and ε > 0, we have

Capf (Λε) � Capfε(Λ). (19)

Proof: It clearly suffices to prove the proposition for compact Λ. We first show that the

left-hand side of (19) is, up to a constant factor, greater than the right. Given a probability

measure ν on Λ, it is natural to smooth it by convolving with normalized Lebesgue measure

on a ball of radius ε. It will be even easier to control a discrete version of this convolution.

Choose mε and nε so that

2−mε < ε ≤ 2−mε+1 and
√
d2−nε < ε ≤

√
d2−nε+1 .

Observe that the definition of f(ε) and the monotinicity of f imply that

f(ε) �
∑
n≥mε

f(2−n)2d(mε−n) . (20)

Define a smoothed probability measure νε by

dνε
∣∣∣
Q

= 2nεd ν(Q)dx
∣∣∣
Q
, for Q ∈ Dnε ,

where dx denotes Lebesgue measure.
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Suppose ν is supported on Λ; then νε is supported on Λε. Note that for every n we have∑
Q∈Dn

νε(Q)2 ≤ 2d(nε−n)
∑

Q∈Dnε

ν(Q)2 ;

indeed for n ≥ nε the two sides are clearly equal, while for n < nε the inequality follows

from Cauchy-Schwarz, since every Q ∈ Dn is the union of 2d(nε−n) cubes in Dnε . Thus using

(7) to expand Ef (νε) gives

Ef (νε) ≺
_

∑
n<mε

(
f(2−n)− f(21−n)

) ∑
Q∈Dn

ν(Q)2 (21)

+
∑
n≥mε

(
f(2−n)− f(21−n)

)
2d(nε−n)

∑
Q∈Dnε

ν(Q)2 .

Since 2dnε � 2dmε , by (20) the last line is comparable to(
f(ε)− f(21−mε)

) ∑
Q∈Dnε

ν(Q)2 .

Invoking (7) again, we infer that

Ef (νε) ≺
_ Efε(ν) . (22)

(The reverse inequality �
_ also holds, but we will not need it.) The asserted inequality

Capf (Λε)−1 ≺
_ Capfε(Λ)−1 now follows by taking the infimum in (22) as ν ranges over

probability measures on Λ.

To obtain the reverse inequality, we use a Borel-measurable mapping π : Λε → Λ, which

moves every point by at most ε. For instance, π(x) can be defined as the lexicographically

minimal y ∈ Λ such that |y − x| ≤ ε.

Suppose that ν is a probability measure on Λε, and consider the projected measure νπ−1

on Λ. As before, we have

Efε(νπ−1) �
∑
n<mε

(
f(2−n)− f(21−n)

) ∑
Q∈Dn

νπ−1(Q)2

+
(
f(ε)− f(21−mε)

) ∑
Q∈Dmε

νπ−1(Q)2 . (23)

Now for each cube Q ∈ Dn, the preimage π−1(Q) is contained in the union of the cubes

Q′ ∈ Dn such that dist(Q′, Q) < ε. If n ≤ mε, then there are at most 5d such cubes Q′, and

hence by Cauchy-Schwarz,

νπ−1(Q)2 ≤ 5d
∑

Q′∈Dn
ν(Q′ ∩ π−1Q)2 .
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Therefore for n ≤ mε,∑
Q∈Dn

νπ−1(Q)2 ≤ 5d
∑

Q′∈Dn

( ∑
Q∈Dn

ν(Q′ ∩ π−1Q)2
)
≤ 5d

∑
Q′∈Dn

ν(Q′)2 . (24)

Combining (23) and (24), we get

Efε(νπ−1) ≺
_

∑
n<mε

(
f(2−n)− f(21−n)

) ∑
Q∈Dn

ν(Q)2

+
(
f(ε)− f(21−mε)

) ∑
Q∈Dmε

ν(Q)2 . (25)

On the other hand, we can use Cauchy-Schwarz to bound the energy Ef (ν) from below:

Ef (ν) �
_

∑
n<mε

(
f(2−n)− f(21−n)

) ∑
Q∈Dn

ν(Q)2

+
∑
n≥mε

(
f(2−n)− f(21−n)

)
2mε−n

∑
Q∈Dmε

ν(Q)2 . (26)

By using (20) to compare (25) and (26), we see that

Efε(νπ−1) ≺
_ Ef (ν),

and taking the infimum over probability measures ν on Λε completes the proof. 2

Next, we recall the well-known quantitative version of the classical equivalence between the

capacity of a set and its probability of being hit by a stable process. As in the introduction,

let Pα
x denote the law of a symmetric α-stable process (Xα

t ) started at x ∈ Rd with potential

density f (α)(|x− y|) = c(α) |x− y|α−d and trace [Xα].

Proposition 4.2 (see, e.g., [24] Lemma 2, or [19] Proposition 3.2) Let Λ be any Borel

subset of Rd, and suppose there are positive numbers k and K such that k ≤ f (α)(|x−y|) ≤
K for all y ∈ Λ. Then

kCapf (α)(Λ) ≤ Pα
x

[
[Xα] ∩ Λ 6= ∅

]
≤ K Capf (α)(Λ).

Proof of Theorem 1.3: Recall the notation f(ε) and fε introduced at the beginning of

this section. The proof begins similarly to that of Theorem 1.4. By Theorem 1.5, for some

fixed constants c and c′ > 0, with probability 1 there exists n∗ = n∗(ω) such that

c4−n ≤ S2−n ≤ c′4−n for n > n∗. (27)
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By (7) and (15), we have

E
f

(α)
ε

(µ) ≺
_

∑
n≤n∗

+
∑
n>n∗

(f (α)
ε (2−n)− f (α)

ε (2−n+1)
)
S2−n . (28)

Assume that ε < 2−n∗ . Then the first sum is clearly ≤ f (α)(2−n∗). On the other hand, a

simple integration shows that

f (α)(ε) =
c(α)
α

εα−d for ε > 0. (29)

Assume now that α < d − 2. Substituting (27) into the second sum in (28), summing by

parts (as in the proof of Theorem 1.4), and letting ε ↓ 0 shows that

E
f

(α)
ε

(µ) ≺
_

c(α)
α(d− α− 2)

ε2+α−d

for all ε less than some ε0(ω). So, by Proposition 4.1,

Capf (α) ([B]ε) � Cap
f

(α)
ε

([B]) �
_

α(d− α− 2)
c(α)

εd−2−α

for ε < ε0. Since dist([Xα], [B]) < ε if and only if Xα hits [B]ε, the above estimate and

Proposition 4.2 establish the desired lower bound on Pα
x

[
dist([Xα], [B]) < ε

∣∣∣B]. A similar

calculation handles the case α = d− 2. The proof of the upper bound is entirely analogous,

using the general upper bound on capacity (8) and the strong law for volumes of Wiener

sausages alluded to above (11) instead of Theorem 1.5. 2

5 Proof of the strong law for Sσ (Theorem 1.5)

We prove Theorem 1.5 only for the case d ≥ 3. Our elementary method also works with only

minor modifications for d = 2, but since this case follows from Varadhan’s renormalization,

which has received at least four proofs ([26, 22, 15, 28]), we omit it here. Throughout

this section, we assume d ≥ 3.

The argument follows classical lines: Estimate the first two moments, use Chebyshev’s

inequality to obtain convergence along a subsequence, and interpolate. However, showing

that the variance of Sσ is of lower order than the squared mean requires some care, so we

include the details.
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5.1 Moment estimates

Define the joint probability densities

p(t1, . . . , tk;x1, . . . , xk) by

P(Bt1 ∈ A1, . . . , Btk ∈ Ak) =
∫
A1×...×Ak

dx1 . . .dxk p(t1, . . . , tk;x1, . . . , xk),

Ai ⊂ Rd Borel.

Proposition 5.1

ESσ =
4

d− 2
σ2 + Θd(σ) (30)

where

Θd(σ) =


O(σ3) , d = 3

O(σ4 log 1
σ ) , d = 4

O(σ4) , d ≥ 5

as σ ↓ 0.

Proof: By definition,

ESσ = 2
∫

0≤t1≤t2≤1
dt1 dt2

∫
(Rd)2

dx1 dx2 p(t1, t2;x1, x2) gσ(x1 − x2)

= 2
∫ 1

0
ds

1− s
(2πs)d/2

∫
Rd
dy exp

[
−1

2
|y|2(

1
s

+
1
σ2

)
]
,

after changing variables s ≡ t2 − t1 and y ≡ x2 − x1 and integrating out first x1 and then

t1. Therefore

ESσ = 2
∫ 1

0
ds (1− s)

(
σ2

σ2 + s

)d/2

= 2σd
∫ 1

0

ds

(σ2 + s)d/2
− 2σd

∫ 1

0

sds

(σ2 + s)d/2
.

One readily checks that the first term equals the right-hand side of (30), while the second

is easily bounded using ∫ 1

0

sds

(σ2 + s)d/2
≤

∫ 1

0

ds

(σ2 + s)
d
2
−1

2
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Proposition 5.2 (The second moment)

ES2
σ =

(
4

d− 2
σ2
)2

+ Θ′d(σ) (31)

where

Θ′d(σ) =


O(σ5) , d = 3

O(σ6 log 1
σ ) , d = 4

O(σ6) , d ≥ 5

as σ ↓ 0.

In the calculations below, we always have s, si, t ≥ 0. We will repeatedly use the following

bound:

∫ ∫
s+t≤1

dsdt
s

(σ2 + s)d/2
1

(σ2 + t)d/2
≤

∫ 1

0

ds

(σ2 + s)d/2−1

∫ 1

0

dt

(σ2 + t)d/2

=


O(σ−1) , d = 3

O(σ−2 log 1
σ ) , d = 4

O(σ6−2d) , d ≥ 5

(32)

Call these orders of magnitude Ψd(σ). Note that

σ2dΨd(σ) = Θ′d(σ). (33)

Proof of Proposition 5.2:

ES2
σ = 8

∫∫∫∫
0≤t1≤...≤t4≤1

dt1 . . .dt4

∫∫∫∫
(Rd)4

dx1 . . .dx4 p(t1, . . . , t4;x1, . . . , x4)

×{gσ(x1 − x2)gσ(x3 − x4) + gσ(x1 − x3)gσ(x2 − x4) + gσ(x1 − x4)gσ(x2 − x3)}

= 8(I1 + I2 + I3),

say. The calculations below show that 8I1 is equal to the right side of (31), and that the

other integrals are of the smaller order. The latter fact makes intuitive sense: as σ ↓ 0, the

major contribution to each Ii comes from the region of the time simplex where the path

increments being weighted by gσ have small time increments. But for I2, I3, this requires

that at least three time-increments be small simultaneously, putting us in a corner of the

simplex and so losing powers of σ asymptotically.
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Estimation of I1: Changing variables si ≡ ti+1 − ti and yi ≡ xi+1 − xi, and integrating

out two unweighted space-time increments,

I1 =
∫∫

s1+s3≤1
ds1 ds3

(1− s1 − s3)2

2

× 1
(2πs1)d/2

∫
Rd
dy1 exp

[
−1

2
|y1|2

(
1
s1

+
1
σ2

)]

× 1
(2πs3)d/2

∫
Rd
dy3 exp

[
−1

2
|y3|2

(
1
s3

+
1
σ2

)]

= σ2d
∫∫

s1+s3≤1
ds1 ds3

(1− s1 − s3)2

2
1

(σ2 + s1)d/2
1

(σ2 + s3)d/2
. (34)

Expanding (34) and using (32) and (33),

I1 =
1
2
σ2d

∫∫
s1+s3≤1

ds1 ds3
1

(σ2 + s1)d/2
1

(σ2 + s3)d/2
+ Θ′d(σ). (35)

To handle the first term,∫ 1

0
ds1

1
(σ2 + s1)d/2

∫ 1−s1

0
ds3

1
(σ2 + s3)d/2

=
∫ 1

0
ds1

1
(σ2 + s1)d/2

2
d− 2

(
σ2−d − (σ2 + 1− s1)1− d

2

)
. (36)

The first term of this is (
2

d− 2

)2

σ4−2d +O(σ2−d)

while the absolute value of the second (negative) term in (36) is bounded by integrating on

[0, 1/2] and [1/2, 1] separately:∫ 1

0
ds1

1
(σ2 + s1)d/2

1

(σ2 + 1− s1)
d
2
−1
≤ Ψd(σ)

with room to spare. Multiplying everything by 8 · 1
2σ

2d gives the right-hand side of (31).

Estimation of I2: With the same change of variables si ≡ ti+1 − ti and yi ≡ xi+1 − xi,
we integrate out y0 and s0 to obtain

I2 =
∫∫∫

s1+s2+s3≤1
ds1 ds2 ds3 (1− s1 − s2 − s3)

× 1
(2πs1)d/2

1
(2πs2)d/2

∫∫
(Rd)2

dy1 dy2 exp−1
2

(
|y1|2

s1
+
|y2|2

s2
+
|y1 + y2|2

σ2

)

× 1
(2πs3)d/2

∫
Rd
dy3 exp−1

2

(
|y3|2

s3
+
|y2 + y3|2

σ2

)
.
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Changing variables t ≡ s1 + s2, z ≡ y1 + y2 and integrating out y1 and s1, we get

I2 =
∫∫

t+s3≤1
dtds3 (1− t− s3)t

× 1
(2πt)d/2

∫
Rd
dz exp

[
−1

2
|z|2

(
1
t

+
1
σ2

)]

× 1
(2πs3)d/2

∫
Rd
dy3 exp−1

2

(
|y3|2

s3
+
|y2 + y3|2

σ2

)
. (37)

We bound the last factor above (line (37)) by noticing that it is

= (2πσ2)d/2
∫
Rd
p(s3; y3) p(σ2;−y2 − y3)dy3

= (2πσ2)d/2 p(s3 + σ2;−y2)

≤ σd

(σ2 + s3)d/2
.

Thus

I2 ≤ σ2d
∫∫

t+s3≤1
dtds3 (1− t− s3)t

1
(σ2 + t)d/2

1
(σ2 + s3)d/2

≤ σ2d
∫∫

t+s3≤1
dtds3

1

(σ2 + t)
d
2
−1

1
(σ2 + s3)d/2

= Θ′d(σ)

by (32) and (33).

Estimation of I3: Similarly,

I3 =
∫∫∫

s1+s2+s3≤1
ds1 ds2 ds3 (1− s1 − s2 − s3)

× 1
(2πs2)d/2

∫
Rd
dy2 exp

[
−1

2
|y2|2

(
1
s2

+
1
σ2

)]

× 1
(2πs1)d/2

1
(2πs3)d/2

∫
(Rd)2

dy1 dy3 exp−1
2

(
|y1|2

s1
+
|y3|2

s3
+
|y1 + y2 + y3|2

σ2

)
.

Changing variables t ≡ s1 + s3, z ≡ y1 + y3 and integrating out y1 and s1, we have

I3 =
∫∫

t+s2≤1
dtds2 (1− t− s2)t

× 1
(2πs2)d/2

∫
Rd
dy2 exp

[
−1

2
|y2|2

(
1
s2

+
1
σ2

)]

× 1
(2πt)d/2

∫
Rd
dz exp−1

2

(
|z|2

t
+
|z + y2|2

σ2

)
.
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As at (37), the last factor above is bounded by σd

(σ2+t)d/2
, and we obtain

I3 ≤ σ2d
∫∫

t+s2≤1
dtds2(1− t− s2)t

1
(σ2 + s2)d/2

1
(σ2 + t)d/2

≤ σ2d
∫∫

t+s2≤1
dtds2

1
(σ2 + s2)d/2

1

(σ2 + t)
d
2
−1

= Θ′d(σ)

by (32) and (33).

5.2 Almost-sure convergence

We need the following deterministic lemma. For any Borel measure ν on Rd and σ > 0,

define

Sσ(ν) =
∫
Rd

∫
Rd
gσ(|x− y|) dν(x) dν(y).

Thus Sσ = Sσ(µ).

Lemma 5.3 For any Borel measure ν on Rd, the quantity σ−dSσ(ν) is monotone decreas-

ing in σ. In particular, σ−dSσ is a.s. monotone decreasing in σ.

Proof: Let ̂ denote the Fourier transform, so that for ξ ∈ Rd

ĝσ(ξ) = (2π)−d/2
∫

Rd
gσ(x)e−iξ·x dx

= σde−σ
2|ξ|2/2.

Then, by Plancherel’s formula,

σ−dSσ(ν) = σ−d
∫

Rd
ĝσ(ξ)|ν̂(ξ)|2 dξ

=
∫

Rd
e−σ

2|ξ|2/2|ν̂(ξ)|2 dξ.

and the lemma clearly follows. 2

Proof of Theorem 1.5 :
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By Propositions 5.1 and 5.2,

Var(Sσ) =


O(σ5) , d = 3

O(σ6 log 1
σ ) , d = 4

O(σ6) , d ≥ 5

.

By Chebyshev’s inequality, for any ε > 0,

P
(
|Sσ −ESσ| > εσ2

)
≤ ε−2σ−4Var(Sσ) = O(σ).

The right hand side is summable as σ runs over the sequence σn = n−2, so by Borel Cantelli

and Proposition 5.1,

σn
−2Sσn →

4
d− 2

as n→∞, a.s. (38)

Now for arbitrary positive σ < 1, choose n such that σn+1 < σ ≤ σn. Then by Lemma 5.3,

σ−dn Sσn ≤ σ−d Sσ ≤ σ−dn+1 Sσn+1

so that

(σ/σn)d−2 σ−2
n Sσn ≤ σ−2 Sσ ≤ (σ/σn+1)d−2 σ−2

n+1 Sσn+1 .

Thus σ−2 Sσ is sandwiched between two expressions which tend to 4
d−2 as σ ↓ 0, and we’re

done. 2

6 Concluding remarks

1. The following example shows that the uniformity in capacity-equivalence statements

for random sets is not automatic. Consider the random Cantor set Λ in [0, 1] con-

structed as follows. For each k ≥ 1, pick a random integer nk uniformly in the

interval [3k + k, 3k+1 − k], with all picks independent; define Λ to be the set of all

sums
∑∞
n=1 an4−n with

an =


0 for n ∈ (nk − k, nk]

0, 1, 2, 3 for n ∈ (nk, nk + k]

0, 3 otherwise.

Then it is not hard to check that for fixed f , with probability one, Capf (Λ) > 0 if

and only if
∫ 1

0 f(r)r−1/2 dr < ∞. (See [20] for details.) However, Λ is not capacity-

equivalent to the middle-half Cantor set; indeed there exists a random kernel f∗
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(depending on the sample Λ) that satisfies this integrability condition but gives

Capf∗(Λ) = 0.

2. In 1969 Varadhan [26] proved that, in dimension two, σ−2(Sσ − ESσ) converges a.s.

to a well-defined random variable. This clearly implies the planar case of our Theo-

rem 1.5. Varadhan’s renormalization has received many proofs and extensions. (See

[26, 22, 15, 28, 7, 8] as well as Chapter VIII of [16] and the bibliographical notes

there.) Rosen [23], Remarks II-III, gives detailed calculations which are close in spirit

to ours (though more Fourier-analytic), and which could probably be extended to

d ≥ 3 to yield our Theorem 1.5. While self-intersection local time exists in dimension

3 as well as dimension 2, there seems to be no analogue of Varadhan’s almost-sure

renormalization there. However, Yor [27] shows that the renormalized Sσ converge in

law for d = 3. Yor establishes that σ−3(log 1
σ )−1/2(Sσ − ESσ) converges in law (to a

Gaussian) as σ ↓ 0; this seems tighter than the estimate Var[Sσ] = O(σ5) given in

(31).

3. Does Brownian motion in three-space almost surely have the property that all of the

orthogonal projections to planes of its trace are capacity-equivalent to each other?

4. Let B and B′ be two independent standard Brownian motions in R3. The “frac-

tal percolation” methods of [18] and [19], which are based on the results of Lyons

[17], imply the following: for any fixed kernel f , the capacity of the intersection

Capf (B[0, 1] ∩ B′[0, 1]) is almost surely positive if Capf ([0, 1]) > 0; otherwise with

probability 1 the intersection has capacity 0 in this kernel. However, these methods

do not indicate if this holds uniformly in the kernel.

Is the intersection B[0, 1] ∩ B′[0, 1] of two independent Brownian traces in

R3, almost-surely capacity-equivalent to [0, 1]?

Acknowledgement: We are indebted to Russell Lyons, who first alerted us to the impor-

tance of the order of quantifiers in capacity estimates for random sets.
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