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Abstract

We examine the marriage of recent probabilistic generative models
for social networks with classical frameworks from mathematical eco-
nomics. We are particularly interested in how the statistical structure of
such networks influences global economic quantities such as price vari-
ation. Our findings are a mixture of formal analysis, simulation, and
experiments on an international trade data set from the United Nations.

1 Introduction

There is a long history of research in economics on mathematical models for exchange mar-
kets, and the existence and properties of their equilibria. The work of Arrow and Debreu
[1954], who established equilibrium existence in a very general commodities exchange
model, was certainly one of the high points of this continuing line of inquiry. The origins
of the field go back at least to Fisher [1891].

While there has been relatively recent interest in network models for interaction in eco-
nomics (see Jackson [2003] for a good review), it was only quite recently that a network or
graph-theoretic model that generalizes the classical Arrow-Debreu and Fisher models was
introduced (Kakade et al. [2004]). In this model, the edges in a network over individual
consumers (for example) represent those pairs of consumers that can engage in direct trade.
As such, the model captures the many real-world settings that can give rise to limitations on
the trading partners of individuals (regulatory restrictions, social connections, embargoes,
and so on). In addition, variations in the price of a good can arise due to the topology of
the network: certain individuals may be relatively favored or cursed by their position in the
graph.

In a parallel development over the last decade or so, there has been an explosion of interest
in what is broadly calledsocial network theory— the study of apparently “universal”
properties of natural networks (such as small diameter, local clustering of edges, and heavy-
tailed distribution of degree), and statistical generative models that explain such properties.
When viewed as economic networks, the assumptions of individual rationality in these
works are usually either non-existent, or quite weak, compared to the Arrow-Debreu or
Fisher models.

In this paper we examine classical economic exchange models in the modern light of social
network theory. We are particularly interested in the interaction between the statistical
structure of the underlying network and the variation in prices at equilibrium. We quantify
the intuition that increased levels of connectivity in the network result in the equalization of



prices, and establish that certain generative models (such as the thepreferential attachment
model of network formation (Barabasi and Albert [1999]) are capable of explaining the
heavy-tailed distribution of wealth first observed by Pareto.

Many of our results are based on a powerful newlocal approximationmethod for global
equilibrium prices: we show that in the preferential attachment model, prices computed
from only local regions of a network yield strikingly good estimates of the global prices.
We exploit this method theoretically and computationally. Our study concludes with an
application of our model to United Nations international trade data.

2 Market Economies on Networks

We first describe the standardFisher model, which consists of a set ofconsumersand a set
of goods. We assume that there aregj units of goodj in the market, and that each goodj is
be sold at some pricepj . Each consumeri has a cashendowmentei, to be used to purchase
goods in a manner that maximizes the consumers’ utility. In this paper we make the well-
studied assumption that the utility function of each consumer islinear in the amount of
goods consumed (see Gale [1960]), and leave the more general case to future research. Let
uij � 0 denote the utility derived byi on obtaining a single unit of goodj. If i consumes
xij amount of goodj, then the utilityi derives is

P
j uijxij .

A set ofpricesfpjg andconsumption plansfxijg constitutes anequilibriumif the follow-
ing two conditions hold:

1. The marketclears, i.e. supply equals demand. More formally, for eachj,
P

i xij = gj .

2. For each consumeri, their consumption planfxijgj is optimal. By this we mean that
the consumption plan maximizes the linear utility function ofi, subject to the constraint
that the total cost of the goods purchased byi is not more than the endowmentei.

It turns out that such an equilibrium always exists if each goodj has a consumer which
derives nonzero utility for goodj — that is,uij > 0 for somei (see Gale [1960]). Further-
more, the equilibrium prices are unique.

We now consider thegraphical Fisher model, so named because of the introduction of a
graph-theoretic or network structure to exchange. In the basic Fisher model, we implicitly
assume that all goods are available in a centralized exchange, and all consumers have equal
access to these goods. In the graphical Fisher model, we desire to capture the fact that each
good may have multiple vendors orsellers, and that individual buyers may have access
only to some, but not all, of these sellers. There are innumerable settings where such asym-
metries arise. Examples include the fact that consumers generally purchase their groceries
from local markets, that social connections play a major role in business transactions, and
that securities regulations prevent certain pairs of parties from engaging in stock trades.

Without loss of generality, we assume that each sellerj sells only one of the available
goods. (Each good may have multiple competing sellers.) LetG be a bipartite graph,
where buyers and sellers are represented as vertices, and all edges are between a buyer-
seller pair. The semantics of the graph are as follows: if there is an edge from buyeri to
sellerj, then buyeri is permitted to purchase from sellerj. Note that if buyeri is connected
to two sellers of the same good, he will always choose to purchase from the cheaper source,
since his utility is identical for both sellers (they sell the same good).

The graphical Fisher model is a special case of a more general and recently introduced
framework (Kakade et al. [2004]). One of the most interesting features of this model is the
fact that at equilibrium, significant price variations can appear solely due to structural prop-
erties of the underlying network. We now describe some generative models of economies.



3 Generative Models for Social Networks
For simplicity, in the sequel we will consider economies in which the numbers of buyers
and sellers are equal. We will also restrict attention to the case in which all sellers sell the
samegood1.

The simplest generative model for the bipartite graphG might be therandom graph, in
which each edge between a buyeri and a sellerj is included independently with probability
p. This is simply the bipartite version of the classical Erdos-Renyi model (Bollobas [2001]).

Many researchers have sought more realistic models of social network formation, in order
to explain observed phenomena such as heavy-tailed degree distributions. We now describe
a slight variant of thepreferential attachmentmodel (see Mitzenmacher [2003]) for the case
of a bipartite graph. We start with a graph in which one buyer is connected to one seller. At
eachtime step, we add one buyer and one seller as follows. With probability�, the buyer
is connected to a seller in the existing graph uniformly at random; and with probability
1 � �, the buyer is connected to a seller chosenin proportion to the degreeof the seller
(preferential attachment). Simultaneously, a seller is attached in a symmetric manner: with
probability � the seller is connected to a buyer chosen uniformly at random, and with
probability1�� the seller is connected under preferential attachment. The parameter� in
this model thus allows us to move between a pure preferential attachment model (� = 0),
and a model closer to classical random graph theory (� = 1), in which new parties are
connected to random extant parties2.

Note that the above model always produces trees, since the degree of a new party is always
1 upon its introduction to the graph. We thus will also consider a variant of this model in
which at each time step, a new seller is still attached to exactly one extant buyer, while
each new buyer is connected to� > 1 extant sellers. The procedure for edge selection is as
outlined above, with the modification that the� new edges of the buyer are added without
replacement — meaning that we resample so that each buyer gets attached to exactly�
distinct sellers. In the Appendix, we provide results on the statistics of these networks.

The main purpose of the introduction of� is to have a model capable of generating highly
cyclical (non-tree) networks, while having just a single parameter that can “tune” the asym-
metry between the (number of) opportunities for buyers and sellers. There are also eco-
nomic motivations: it is natural to imagine that new sellers of the good arise only upon
obtaining their first customer, but that new buyers arrive already aware of several alterna-
tive sellers.

In the sequel, we shall refer to the generative model just described as thebipartite (�; �)-
model. We will usen to denote the number of buyers and the number of sellers, so the
network has2n vertices. Figure 1 and its caption provide an example of a network gener-
ated by this model, along with a discussion of its equilibrium properties.

4 Economics of the Network: Theory
We now summarize our theoretical findings. Sketches of the proofs are provided in the
Appendix. We first present a rather intuitive “frontier” theorem, which implies a scheme
in which we can find upper and lower bounds on the equilibrium prices using onlylocal
computations. To state the theorem we require some definitions. First, note that any subset
V 0 of buyers and sellers defines a naturalinduced economy, where the induced graphG0

consists of all edges between buyers and sellers inV 0 that are also inG. We say thatG0

1From a mathematical and computational standpoint, this restriction is rather weak: when con-
sidered in the graphical setting, it already contains the setting of multiple goods with binary utility
values, since additional goods can be encoded in the network structure.

2We note that� = 1 still does not exactly produce the Erdos-Renyi model due to the incremental
nature of the network generation: early buyers and sellers are still more likely to have higher degree.
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Figure 1: Sample network generated by the bipartite(� = 0; � = 2)-model. Buyers and sellers
are labeled by ‘B’ or ‘S’ respectively, followed by an index indicating the time step at which they
were introduced to the network. The solid edges in the figure show theexchange subgraph— those
pairs of buyers and sellers who actually exchange currency and goods at equilibrium. The dotted
edges are edges of the network that are unused at equilibrium because they represent inferior prices
for the buyers, while the dashed edges are edges of the network that have competitive prices, but are
unused at equilibrium due to the specific consumption plan required for market clearance. Each seller
is labeled with the price they charge at equilibrium. The example exhibits non-trivial price variation
(from 2.00 down to 0.33 per unit good). Note that while there appears to be a correlation between
seller degree and price, it is far from a deterministic relation, a topic we shall examine later.

has abuyer (respectively, seller) frontierif on every (simple) path inG from a node inV 0

to a node outside ofV 0, the last node inV 0 on this path is a buyer (respectively, seller).

Theorem 1 (Frontier Bound) IfV 0 has a subgraphG0 with a seller (respectively, buyer)
frontier, then the equilibrium price of any goodj in the induced economy onV 0 is a lower
bound (respectively, upper bound) on the equilibrium price ofj in G.

Theorem 1 implies a simple price upper bound: the price commanded by any sellerj is
bounded by its degreed. Although the same upper bound can be seen from first principles,
it is instructive to apply Theorem 1. LetG0 be the immediate neighborhood ofj (which isj
and itsd buyers); then the equilibrium price inG0 is justd, since alld buyers are forced to
buy from sellerj. This provides an upper bound sinceG0 has a buyer frontier. Since it can
be shown that the degree distribution obeys a power law in the bipartite(�; �)-model, we
have an upper bound on the cumulative price distribution. We use� = (1� �)�=(1 + �).

Theorem 2 In the bipartite(�; �)-model, the proportion of sellers with price greater than
w is O(w�1=�). For example, if� = 0 (pure preferential attachment) and� = 1, the
proportion falls off as1=w2.

We do not yet have such a closed-form lower bound on the cumulative price distribution.
However, as we shall see in Section 5, the price distributions seen in large simulation results
do indeed show power-law behavior. Interestingly, this occurs despite the fact that degree
is apoorpredictor ofindividualseller price.
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Figure 2:See text for descriptions.

Another quantity of interest is what we might call price variation — the ratio of the price
of the richest seller to the poorest seller. The following theorem addresses this.

Theorem 3 In the bipartite(�; �)-model, if�(�2 +1) < 1, then the ratio of the maximum

price to the minimum price scales with number of buyersn as
(n
2��(�2+1)

1+� ). For the
simplest case in which� = 0 and� = 1, this lower bound is just
(n).

We conclude our theoretical results with a remark on the price variation in the Erdos-Renyi
(random graph) model. First, let us present a condition for there to be no price variation.

Theorem 4 A necessary and sufficient condition for there to beno price variation,ie for
all prices to be equal to1, is that for all sets of verticesS, jN(S)j � jSj, whereN(S) is
the set of vertices connected by an edge to some vertex inS.

This can be viewed as an extremely weak version of standardexpansionproperties well-
studied in graph theory and theoretical computer science — rather than demanding that
neighbor sets be strictly larger, we simply ask that they not be smaller. One can further show
that for largen, the probability that a random graph (for any edge probabilityp > 0) obeys
this weak expansion property approaches 1. In other words, in the Erdos-Renyi model,
there is no variation in price — a stark contrast to the preferential attachment results.

5 Economics of the Network: Simulations
We now present a number of studies on simulated networks (generated according to the
bipartite(�; �)-model). Equilibrium computations were done using the algorithm of Deva-
nur et al. [2002] (or via the application of this algorithm to local subgraphs). We note that
it was only the recent development of this algorithm and related ones that made possible
the simulations described here (involving hundreds of buyers and sellers in highly cyclical
graphs). However, even the speed of this algorithm limits our experiments to networks with
n = 250 if we wish to run repeated trials to reduce variance. Many of our results suggest
that the local approximation schemes discussed below may be far more effective.

Price and Degree Distributions: The first (leftmost) panel of Figure 2 shows empirical
cumulativeprice and degree distributions on a loglog scale, averaged over 25 networks
drawn according to the bipartite(� = 0:4; � = 1)-model withn = 250. The cumulative
degree distribution is shown as a dotted line, where the y-axis represents the fraction of
the sellers with degree greater than or equal tod, and the degreed is plotted on the x-axis.
Similarly, the solid curve plots the fraction of sellers with price greater than some valuew,
where the pricew is shown on the x-axis. The thin sold line has our theoretically predicted
slope of �1

� = �3:33, which shows that degree distribution is quite consistent with our
expectations, at least in the tails. Though a natural conjecture from the plots is that the
price of a seller is essentially determined by its degree, below we will see that the degree



is a rather poor predictor of an individual seller price, while more complex (but still local)
properties are extremely accurate predictors.

Perhaps the most interesting finding is that the tail of thepricedistribution looks linear,i.e.
it also exhibits power law behavior. Our theory provided an upper bound, which is precisely
the cumulative degree distribution. We do not yet have a formal lower bound. This plot
(and other experiments we have done) further confirm the robustness of the power law
behavior in the tail, for� < 1 and� = 1.

As discussed in the Introduction, Pareto’s original observation was that the wealth (which
corresponds to seller price in our model) distribution in societies obey a power law, which
has been born out in many studies on western economies. Since Pareto’s original observa-
tion, there have been too many explanations of this phenomena to recount here. However,
to our knowledge, all of these explanations are moredynamicin nature (eg a dynamical
system of wealth exchange) and don’t capture microscopic properties of individual ratio-
nality. Here we have power law wealth distribution arising from the combination of certain
natural statistical properties of the network, and classical theories of economic equilibrium.

Bounds via Local Computations: Recall that Theorem 1 suggests a scheme by which we
can do onlylocal computations to approximate theglobalequilibrium price for any seller.
More precisely, for some sellerj, consider the subgraph which contains all nodes that are
within distancek of j. In our bipartite setting, fork odd, this subgraph has a buyer frontier,
and fork even, this subgraph has a seller frontier, since we start from a seller. Hence,
the equilibrium computation on the oddk (respectively, evenk) subgraph will provide an
upper (respectively, lower) bound.

This provides an heuristic in which one can examine the equilibrium properties of small
regions of the graph, without having to do expensive global equilibrium computations.
The effectiveness of this heuristic will of course depend on how fast the upper and lower
bounds tighten. In general, it is possible to create specific graphs in which these bounds
are arbitrarily poor untilk is large enough to encompass the entire graph. As we shall see,
the performance of this heuristic is dramatically better in the bipartite(�; �)-model.

The second panel in Figure 2 shows how rapidly the local equilibrium computations con-
verge to the true global equilibrium prices as a function ofk, and also how this conver-
gence is influenced byn. In these experiments, graphs were generated by the bipartite
(� = 0; � = 1) model. The value ofn is given on the x-axis; the average errors (over
5 trials for each value ofk andn) in the local equilibrium computations are given on the
y-axis; and there is a separate plot for each of 4 values fork. It appears that for each value
of k, the quality of approximation obtained has either mild or no dependence onn.

Furthermore, the regular spacing of the four plots on the logarithmic scaling of the y-axis
establishes the fact that the error of the local approximations is decayingexponentially
with increasedk — indeed, by examining only neighborhoods of 3 steps from a seller in an
economy of hundreds, we are already able to compute approximations to global equilibrium
prices with errors in the second decimal place. Since the diameter forn = 250 was often
about17, this local graph is considerably smaller than the global. However, for the crudest
approximationk = 1, which corresponds exactly to using seller degree as a proxy for
price, we can see that this performs rather poorly. Computationally, we found that the time
required to do all 250 local computations fork = 3 was about 60% less than the global
computation, and would result in presumably greater savings at much larger values ofn.

Parameter Dependencies:We now provide a brief examination of how price variation
depends on the parameters of the bipartite(�; �)-model. We first experimentally evaluate
the lower bounds provided in Theorem 3. The third panel of Figure 2 shows the maximum
to minimum price as function ofn (averaged over 25 trials) on a loglog scale. Each line is
for a fixed value of�, and the values of� range form1 to 4 (� = 0).



Recall from Theorem 3, our lower bound on the ratio is
(n
2

1+� ) (using� = 0). We
conjecture that this lower bound is tight. If this is so, then the slopes of lines (in the
loglog plot) should be 2

1+� , which would be(1; 0:67; 0:5; 0:4). The estimated slopes are
somewhat close:(1:02; 0:71; 0:57; 0:53). The overall message is that for small values of�,
price variation increases rapidly (both theoretically and experimentally) with the economy
sizen in preferential attachment.

The rightmost panel of Figure 2 is a scatter plot of� vs. the maximum to minimum price
in a graph (wheren = 250) . Here, each point represents the maximum to minimum price
ratio in a specific network generated by our model. The circles are for economies generated
with � = 1 and the x’s are for economies generated with� = 3. Here we see that in general,
increasing� dramatically decreases price variation (note that the price ratio is plotted on a
log scale). This justifies the intuition that as� is increased, more “economic equality” is
introduced in the form of less preferential bias in the formation of new edges. Furthermore,
the data for� = 1 shows much larger variation, suggesting that a larger value of� also has
the effect of equalizing buyer opportunities and therefore prices.

6 An Experimental Illustration on International Trade Data
We conclude with a brief experiment exemplifying some of the ideas discussed
so far. The statistics division of the United Nations makes available exten-
sive data sets detailing the amounts of trade between major sovereign nations (see
http://unstats.un.org/unsd/comtrade). We used a data set indicating, for each pair of na-
tions, the total amount of trade in U.S. dollars between that pair in the year 2002.

For our purposes, we would like to extract a discrete network structure from this numerical
data. There are many reasonable ways this could be done; here we describe just one. For
each of the 70 largest nations (in terms of total trade), we include connections from that
nation to each of its topk trading partners, for some integerk > 1. We are thus including
the more “important” edges for each nation. Note that each nation will have degree at least
k, but as we shall see, some nations will have much higher degree, since they frequently
occur as a topk partner of other nations.

To further cast this extracted network into the bipartite setting we have been considering,
we ran many trials in which each nation is randomly assigned a role as either a buyer
or seller (which are symmetric roles), and then computed the equilibrium prices of the
resulting network economy. We have thus deliberately created an experiment in whichthe
only economic asymmetries are those determined by the undirected network structure.

The leftmost panel of Figure 3 show results for 1000 trials under the choicek = 3. The
upper plot shows the average equilibrium price for each nation, where the nations have been
sorted by this average price. We can immediately see that there is dramatic price variation
due to the network structure; while many nations suffer equilibrium prices well under $1,
the most topologically favored nations command prices of $4.42 (U.S.), $4.01 (Germany),
$3.67 (Italy), $3.16 (France), $2.27 (Japan), and $2.09 (Netherlands). The lower plot of the
leftmost panel shows a scatterplot of a nation’s degree (x-axis) and its average equilibrium
price (y-axis). We see that while there is generally a monotonic relationship, at smaller
degree values there can be significant price variation (on the order of $0.50).

The center panel of Figure 3 shows identical plots for the choicek = 10. As suggested
by the theory and simulations, increasing the overall connectivity of each party radically
reduces price variation, with the highest price being just $1.10 and the lowest just under $1.
Interestingly, the identities of the nations commanding the highest prices (in order, U.S.,
France, Switzerland, Germany, Italy, Spain, Netherlands) overlaps significantly with the
k = 3 case, suggesting a certain robustness in the relative economic status predicted by
the model. The lower plot shows that the relationship between degree and price divides the
population into “have” (degree above 10) and “have not” (degree below 10) components.
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Figure 3:See text for descriptions.

The preponderance of European nations among the top equilibrium prices suggests our
final experiment, in which we simply modified thek = 3 network bymerging the 15
current members of the European Union (E.U.) into a single economic “mega-nation”.
This merged vertex of course has much higher degree than any of its original constituents,
and we can view this as a (extremely) idealized experiment in the economic power that
might be wielded by a truly unified Europe.

The rightmost panel of Figure 3 provides the results, where we show the relative prices and
the degree-price scatterplot for the 35 largest nations. The top prices are now commanded
by the E.U. ($7.18), U.S. ($4.50), Japan ($2.96), Turkey ($1.32), and Singapore ($1.22).
The scatterplot shows a clear example in which the highest degree (held by the U.S.) does
not command the highest price.
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7 Appendix

We now sketch the proofs of all theorems. We begin with results establishing purely sta-
tistical (non-economic) properties of the bipartite(�; �)-model, and then apply these to
establish economic properties of the model. We note that while the statistical results are
reminiscent of the recent literature (Mitzenmacher [2003]), we need to establish their de-
pendence on� and�, as well as deal with the bipartite structure of the graph.

7.1 Statistics of the Network

We first establish that the degree distribution of the sellers obeys a power law. (In the
sequel, we only examine properties of the sellers; similar statements hold for buyers.) Let
Y (j; n) denote the degree of thejth seller (in order of arrival) at timen � j (that is, aftern
buyers andn sellers have been added to the network). The following lemma characterizes
the behavior of the random variableY (j; n) asymptotically. Let

� = (1� �)�=(1 + �)

Lemma 5 In the bipartite(�; �)-model,Y (j; n) tends to(1 + ��
� )(n=j)� for sufficiently

largen.

Proof: (Sketch) Establishing this lemma rigorously is beyond the scope of this paper, so
we only provide a non-rigorous argument with respect to the meansyj;n = E[Y (j; n)]. A
long version of this paper will have the complete proof.

The total number of edges after timen is (1 + �)n. From timen to n + 1, each of the�
additional edges is attached to sellerj with probability(1��)yj;n=((1 + �)n) +�=n. By
linearity of expectation, we can sum over the� edges without worrying about the negative
dependence arising from sampling without replacement, which implies

yj;n+1 = yj;n

�
1 +

(1� �)�

(1 + �)n

�
+ �

�

n

In the forthcoming version, we solve this formula exactly, but here we treat the system as
the differential equation (as in Mitzenmacher [2003])

dyj;n
dn

=
�yj;n + ��

n

wheredyj;n
dn is used foryj;n+1 � yj;n. Solving this with the boundary conditionyj;j = 1

leads to the result.

We may now translate this result into a power law for the distribution of seller degrees.

Theorem 6 In the bipartite(�; �)-model, forx = o(n1=�), the proportion of sellers at
timen whose degree exceedsx is�(x�1=�).

Proof: (Sketch) Fixn, and consider the proportion of sellers whose degree exceeds some
valuex. That is, consider thej that solvesyj;n = x. Hence,j = �(nx�1=�). Dividing
by n provides the proportion of sellers, which is the desired result. In the long version, we
show that the approximation of only considering means is sufficient.

For the simplest case of� = 0 and� = 1, the tail of this cumulative degree distribu-
tion is just�(x�2). More generally, as� approaches 1 (towards unbiased selection, and
away from preferential attachment), the exponent blows up, and the tails of the distribution
become lighter. At� = 1, we actually have exponential rather than power law decay.



7.2 Economics of the Network

We start by presenting a rather intuitive “monotonicity” lemma, which states that if the
supply of goods in a classical Fisher economy is decreased, or the cash endowments are
increased, then the equilibrium prices do not decrease. We then use this lemma, along with
the results of the previous section, to prove our theorems.

Lemma 7 (Monotonicity) LetE andE0 be two Fisher economies with the same number of
buyers and sellers and identical linear utility functions. If for all goodsj and buyersi, we
haveg0j � gj ande0j � ej (where the primes denote quantities for economyE0), then the
equilibrium prices satisfyp0j � pj for all j.

Proof: To prove this, we use properties of a recent algorithm for computing equilibria
in the linear Fisher model (see Devanur et al. [2002]), which we now describe. Define the
“bang per buck” for buyeri consuming goodj at price~pj asuij=~pj . Clearly, it is only
optimal for buyeri to purchases those goods which have maximal bang per buck.

The algorithm is an iterative scheme in which pricesf ~pjg are increased at every iteration,
until an equilibrium is reached. Importantly, the algorithm can be initialized to any prices
which obey the following property, which is referred to as the “Invariant” in Devanur et al.
[2002]3. We say that the Invariant holds at pricesf ~pjg if the buyers have enough money
to purchase all the goods in the market, while only purchasing goods which maximize
their bang per buck (though the buyers may have left over money after this purchase).
Essentially, the Invariant holds at some prices if the buyers can clear the market while
purchasing optimally at these prices.

Let us now use this algorithm to compute the equilibrium prices in economyE0. It suffices
to show that we can initialize this algorithm to the equilibrium prices ofE, fpjg, since the
algorithm only increases the prices. To show that such an initialization is sound, we only
need to show that the pricesfpjg satisfy the Invariant inE0.

To show this, first note that since these prices are an equilibrium inE, then the buyers can
use their money endowments offejg to clear an amount of goodsfgjg, while only purchas-
ing goods which maximize their bang per buck. Hence, by assumption, the buyers inE0

can use larger money endowments offe0jg to clear a smaller amount of goodsfg0jg, while
only purchasing goods which maximize their bang per buck (since the utility functions in
E andE0 are identical).

The proof of the Frontier Theorem 1 follows in a straightforward manner from the above
Monotonicity Lemma.

Proof: (of Theorem 1) Let us prove the lower bound for the seller frontier case. Consider
setting the cashei of all buyersi not inG0 to 0. By the previous lemma, the equilibrium
prices in this modified economyE0 is a lower bound on the equilibrium prices for the
economy with graphG. Note that all sellers inG0 have no demand from any buyers outside
of G0, and, by definition ofG0, all buyers inG0 purchase goods only from sellers inG0. So
the equilibrium prices in the induced economy onG0 are identical to their respective prices
in E0. A symmetrical argument proves the upper bound case.

The Frontier Theorem 1 implies a simple wealth upper bound: the wealth of any sellerj
is bounded by its degreed. (By the wealthof a seller, we mean the price at which that
seller sells their good. Although the same upper bound can be seen from first principles, it
is instructive to apply Theorem 1 to prove Theorem 2.

3Devanur et al. [2002] choose a particular initialization, but it is clear that the algorithm is sound
for any choice of initial prices which obey the Invariant.



Proof: (of Theorem 2) LetG0 be the immediate neighborhood ofj (which is j and its
d buyers); then the equilibrium price inG0 is justd, since alld buyers are forced to buy
from sellerj. This provides an upper bound sinceG0 has a buyer frontier. Since the degree
distribution in the bipartite(�; �)-model obeys the power law stated in Theorem 6, we have
the claimed upper bound on the cumulative wealth distribution.

Again combining the Frontier Theorem 1 along with the results on the statistical properties
of the network, we can prove Theorem 3. This proof is more involved.

Proof: (Sketch) (of Theorem 3) Using Lemma 7, it straightforward to show the following
two bounds on the maximum and minimum price. Consider the first� sellers (in order of
time) and letm be the number of buyers that areonly connected to these� sellers. Hence,
the total wealth of these sellers must bem, so one of the first� sellers must have a price
that ism=�, which is a lower bound on the maximum price. Similarly, an upper bound
on the minimum price is provided by the price the first buyer obtains for his purchases,
pb. Equivalently, we use a lower bound1=pb, which is the amount of goods this buyer
purchases. This lower bound is provided by those sellers which areonly connected to the
first buyer.

Let us now bound the total wealth of the first� sellers. The degrees of these sellers at
time n=2 are all�(n�), so when a buyer arrives at a time betweenn=2 andn, the prob-
ability of one of this buyer’s connections links to exactly the first� sellers is�(n��1).
Hence, the probability that all of this buyer’s connections link to exactly the first� sellers
is �(n��(��1)). Summing over then=2 buyers shows that the total number of such buyers
is, with high probability,�(n1+��(��1)). Deleting from this list those buyers who are later
linked by some seller removes a constant fraction of these (shown in the long version).
Hence, the first� sellers have at least
(x��(1��)) total wealth, which implies that the
richest seller must have at least this wealth (treating� is a constant).

Using similar arguments as in the proof of Lemma 5, one can show the first buyer has

degree�(n
1��
1+� ). A similar argument to above shows that the1=pb, which is the number

of sellersonly connected to this buyer, is
(n
1��
1+� ). Combining the previous bounds leads

to the result.

This proof can be generalized to obtain bounds on ratio of the wealth contained among the
topx percent of sellers versus the poorestx percent of buyers (which is more of a relevant
quantity in large economies).

Using the Frontier Theorem 1 again, we prove Theorem 4.

Proof: (of Theorem 4) Let us proceed with a proof by contradiction by assuming that all
prices are not equal to1. This implies that there must exist some sellers with equilibrium
price less than1 (if all equilibrium prices were greater than1 than the market would not
clear). LetS be the set of all sellers with price less than1. All buyers inN(S) will
buy only from sellers inS since the prices outside ofS are strictly greater (they are1 or
larger). Hence, the clearance condition implies that all thejN(S)j buyers will spendall
their money withinS. This is leads to a contradiction, since by assumptionjN(S)j � jSj,
which implies it is not possible for supply to equal demand among the sellers inS and the
buyers inN(S), if all prices were less than 1 inS.


