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Abstract

Consider independent bond percolation with retention probability p on a spheri-
cally symmetric tree Γ. Write θΓ(p) for the probability that the root is in an infinite
open cluster, and define the critical value pc = inf{p : θΓ(p) > 0}. If θΓ(pc) = 0,
then the root may still percolate in the corresponding dynamical percolation pro-
cess at the critical value pc, as demonstrated recently by Häggström, Peres and
Steif. Here we relate this phenomenon to the near-critical behaviour of θΓ(p) by
showing that the root percolates in the dynamical percolation process if and only
if
∫ 1

pc
(θΓ(p))−1dp < ∞. The “only if” direction extends to general trees, whereas

the “if” direction fails in this generality.

1 Introduction

The main setup of this paper is that of independent bond percolation on an infinite
locally finite connected graph G = (V,E) with a distinguished vertex ρ ∈ V . Each edge
e ∈ E is independently assigned value 1 (open, on) with probability p ∈ [0, 1] and 0
(closed, off) with probability 1− p; write PG,p for the induced probability measure on
{0, 1}E . Also write ρ↔∞ for the event that ρ is in an infinite open cluster, and define
the percolation function θG(p) = PG,p[ρ ↔ ∞]. Furthermore define the critical value
pc = pc(G) = inf{p : θG(p) > 0}. Let C denote the event that an infininte open cluster
exists somewhere in G. It is well known that PG,p[C] = 0 for p < pc and PG,p[C] = 1 for
p > pc. At p = pc, this probability can be either 0 or 1, depending on whether θG(pc)
is 0 or strictly positive. This model has been studied extensively for several decades,
mainly in the case where G is the cubic lattice in d ≥ 2 dimensions; see e.g. Grimmett
[2].

We shall also consider a recent extension of the above setup, known as dynamical
percolation. This is a time-dynamical variant which was introduced by Häggström,
Peres and Steif [4]; see also Häggström [3] for a short survey. In this model, all edges
e ∈ E turn on and off according to independent stationary continuous time two-state
Markov chains, turning on at rate p and off at rate 1 − p (that is, an edge in state 0
(resp. 1) waits for an amount of time whose distribution is exponential with mean 1
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(resp. 1
1−p) before flipping to state 1 (resp. 0)). We let ΨG,p be a probability measure

supporting such a {0, 1}E-valued Markov process. The stationary distribution for each
edge puts probabilities 1 − p and p on states 0 and 1, respectively. Hence, by the
stationarity assumption, what we see at any fixed time t is ordinary bond percolation
with parameter p. Writing Ct for the event that an infinite open cluster exists at time
t, we thus have (by Fubini’s Theorem) that

ΨG,p[¬Ct occurs for a.e. t] = 1 if Pp[C] = 0 (1)

and similarly
ΨG,p[Ct occurs for a.e. t] = 1 if Pp[C] = 1.

[Here “a.e.” is short for “(Lebesgue-)almost every”. In other words, the left hand
expression in (1) says that with ΨG,p-probability 1, the set of times t for which ¬Ct does
not occur, has Lebesgue measure 0.] An obvious question to ask is whether the quantifier
“a.e.” can be strengthened to “every” in the above statements. For p 6= pc, the answer
is yes (see [4]), but (perhaps surprisingly) the answer is no for p = pc and certain choices
of G. One of the main problems in dynamical percolation is the classification of graphs
according to whether exceptional times exist at criticality.

Here we are interested in graphs for which θG(pc) = 0 and in various notions of
how “close” such a graph is to percolating at criticality. We can think of at least two
reasonable ways of making “close” more precise.

1. The near-critical behaviour of θG(p). How rapidly does θG(p) take off from criti-
cality? For instance, one can ask whether the derivative limp↘pc

θG(p)
p−pc is finite or

infinite. (Questions of this kind have been studied extensively in terms of so-called
critical exponents, see e.g. Chapter 7 of Grimmett [2].)

2. Dynamical percolation. Will ΨG,pc assign positive probability to the existence of
exceptional times at which an infinite open cluster exists?

Intuitively, one would expect that if G is sufficiently close to percolating at criticality
in one of these senses, then it should be close also in the other. The first result of this
kind was obtained in [4], and says that if

lim sup
p↘pc

θG(p)
p− pc

<∞, (2)

then
Ψpc(¬Ct occurs for every t) = 1.

Our goal here is to find sharper conditions of this kind in the case where G is a
tree, which with the currently available technology is virtually the only case that can
be handled with some precision. An ultimate goal might be to find some “if and only
if” criterion in terms of the near-critical behaviour of θG(p), determining whether there
are percolating times for the critical dynamical percolation process. However, we shall
see in Remark 2.4 below that a general criterion of this kind is impossible, at least if
one insists that faster growth of θG(p) should make it easier to get percolating times in
the dynamical percolation process.
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Let Γ be an infinite locally finite tree with vertex set V , edge set E, and a distin-
guished vertex ρ ∈ V called the root. For v ∈ V , write |v| for the distance between v
and ρ. If v and w are nearest neighbours with |w| = |v|+ 1, then w is called a child of
v, and v is called a parent of w. The vertex set {v ∈ V : |v| = n} is called the n:th
level of Γ, and is denoted Γn. Further, |Γn| denotes the number of vertices on the n:th
level. If two vertices at the same level always have the same number of children, then
Γ is called spherically symmetric.

Restricting to spherically symmetric trees, we do have a sharp criterion:

Theorem 1.1: Let Γ be a spherically symmetric tree with pc(Γ) = pc ∈ (0, 1) and
θΓ(pc) = 0. Then

ΨΓ,pc(ρ never percolates) = 1 (3)

if and only if ∫ 1

pc

1
θΓ(p)

dp =∞. (4)

Note that (4) is a strictly weaker condition than (2): An example of a spherically
symmetric tree Γ which satisfies (4) but not (2) can be obtained by letting |Γn| be of
the order 2n log n for each n. This can be shown using Lemma 2.1 below.

Only half of Theorem 1.1 can be extended to general trees:

Theorem 1.2: Let Γ be an infinite locally finite tree with pc(Γ) = pc ∈ (0, 1) and
θΓ(pc) = 0. Then (4) implies (3). The converse is not true, i.e. there exists a choice of
Γ such that (3) holds and ∫ 1

pc

1
θΓ(p)

dp <∞. (5)

Our main motivation for this study was to try to shed some light on the important
case where G is the square lattice Z2 (more precisely, V = Z2 and E consists of pairs
of vertices at Euclidean distance 1 from each other). It is a classical result of Kesten
[5] that pc = 1

2 and θG(pc) = 0 for G = Z2. Moreover, Kesten and Zhang [6] showed
that the condition (4) fails in this case. This means that if one could extend Theorem
1.1 to some class of graphs which includes Z2, then one would be able to conclude that
for critical dynamical percolation on Z2 there would be exceptional times with infinite
open clusters (this would contrast with the case of Zd with d sufficiently large; see [4]).
One should not feel too discouraged by Theorem 1.2 in taking up this line of research,
because the counterexample used to show that the “only if” direction of Theorem 1.1
does not hold in the generality of Theorem 1.2 is highly irregular and nonsymmetric.
Theorem 1.1 thus provides some weak evidence that Z2 might have exceptional times
at criticality. We want to stress, however, that we still do not think it is clear what the
right conjecture should be. A different approach to the problem of critical dynamical
percolation on Z2 is discussed by Benjamini, Kalai and Schramm [1].

2 Proofs

We first need some terminology on flows and electrical networks on trees; see e.g. Lyons
and Peres [8] for a general introduction to this subject. An edge connecting two vertices
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v, w ∈ V is denoted 〈v, w〉. A unit flow F on the tree Γ is an assignment of non-negative
numbers {F(e)}e∈E to the edges of Γ, satisfying

(i)
∑
v F(〈ρ, v〉) = 1, where the sum runs over all children of the root ρ, and

(ii) for each vertex v (not equal to ρ) with parent w and children v1, . . . , vk, we have∑
vi F(〈v, vi〉) = F(〈w, v〉).

This should be thought of as having “flow in equal to flow out” in all vertices except ρ
whose net flow out is 1. An electrical network C on Γ is simply an assignment of arbitrary
positive numbers {C(e)}e∈E , called conductances, to the edges of Γ. The energy W of
a unit flow F in the network C is defined as

W (F , C) =
∑
e∈E

(F(e))2

C(e)
,

and the effective conductance of the network C is defined as [inf{W (F , C)}]−1 where
the infimum runs over all unit flows F on Γ. This infimum is in fact a minimum,
which moreover is attained at a unique unit flow whenever it is nonzero. Let C(Γ, p)
denote the effective conductance of the electrical network NΓ,p obtained by assigning
each edge between Γn−1 and Γn conductance pn. Similarly, let C∗(Γ, p) be the effective
conductance the network N∗Γ,p in which edges between levels n − 1 and n are assigned
conductance npn.

The keys to the proof of Theorem 1.1 are the following two results from the literature.

Lemma 2.1 (Lyons [7]): For each tree Γ and each p ∈ (0, 1) we have

C(Γ, p)
1 + C(Γ, p)

≤ θΓ(p) ≤ 2
C(Γ, p)

1 + C(Γ, p)
. (6)

(See Marchal [9] for a recent sharpening of the upper bound in (6).)

Lemma 2.2 (Häggström, Peres and Steif [4]): For any tree Γ with critical value
pc we have that (3) holds if and only if

C∗(Γ, pc) = 0.

Proof of Theorem 1.1: Since Γ is spherically symmetric, we have

C(Γ, ρ) =

( ∞∑
k=1

p−k

|Γk|

)−1

(7)

and

C∗(Γ, ρ) =

( ∞∑
k=1

p−k

k|Γk|

)−1

. (8)

By Lemma 2.1, condition (4) can be rewritten as∫ 1

pc

1 + C(Γ, p)
C(Γ, p)

dp =∞
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which obviously is equivalent to ∫ 1

pc

1
C(Γ, p)

dp =∞. (9)

By (7), this is the same as ∫ 1

pc

∞∑
k=1

p−k

|Γk|
dp =∞

which, in turn, is the same as

∞∑
k=1

∫ 1
pc
p−k dp

|Γk|
=∞ (10)

by Fubini’s Theorem. The left hand side equals

ln( 1
pc

)

|Γ1|
+
∞∑
k=2

p
−(k−1)
c − 1

(k − 1)|Γk|

so that (10) holds if and only if

∞∑
k=1

p−kc
k|Γk|

=∞.

Now (8) and Lemma 2.2 complete the proof. 2

For the proof of Theorem 1.2, it is convenient to isolate the following lemma.

Lemma 2.3: For any p, q ∈ (0, 1), there exists a spherically symmetric tree Γ with
pc(Γ) = p and θΓ(p) ≥ q.

Proof: Fix p and q. Let Γ′ be a spherically symmetric tree with |Γ′k| being bounded
above and below by constants times k2p−k. Such a tree can be defined inductively by
letting each vertex on level k − 1 have exactly

min{i ∈ {1, 2, . . .} : i|Γ′k−1| ≥ k2p−k}

children. It is an easy application of Lemma 2.1 to show that pc(Γ′) = p and θΓ′(p) > 0.
If θΓ′(p) ≥ q we are done by taking Γ = Γ′. Otherwise we set

j = min{i ∈ {1, 2, . . .} : (1− θΓ′(p))j ≤ 1− q}.

and let Γ consist of j copies of Γ′ sharing the same root ρ. 2

Proof of Theorem 1.2: We first show that (4) implies (3) by proving the equivalent
statement that

Ψpc(∃t at which ρ percolates) > 0 (11)

implies (5). Suppose that (11) holds. We then have C∗(Γ, pc) > 0 by Lemma 2.2. Let
F∗ denote the minimal energy unit flow from ρ to infinity in the electrical network
N∗Γ,pc . Write W ∗ for the energy of F∗ in N∗Γ,pc , so that

W ∗ =
1

C∗(Γ, pc)
<∞. (12)
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Decompose W ∗ as

W ∗ =
∞∑
k=1

W ∗(k) (13)

where W ∗(k) is the contribution to W ∗ coming from edges connecting levels k − 1 and
k in Γ. Also write Wp for the energy of F∗ in the network NΓ,p, and decompose Wp into

Wp =
∞∑
k=1

Wp(k)

analogously to (13). We have
1

C(Γ, p)
≤Wp,

and furthermore

Wp(k) = k

(
pc
p

)k
W ∗(k).

Hence ∫ 1

pc

1
C(Γ, p)

dp ≤
∫ 1

pc

∞∑
k=1

Wp(k) dp

=
∞∑
k=1

∫ 1

pc
Wp(k) dp

=
∞∑
k=1

kW ∗(k)
∫ 1

pc

(
pc
p

)k
dp

= pc

∞∑
k=1

k(1− pk−1
c )

k − 1
W ∗(k)

< ∞

where the last step is due to (13) and (12). The desired conclusion (5) follows using
Lemma 2.1.

It remains to give an example of a tree Γ for which (3) and (5) both hold. For each
p ∈ (1/2, 1), let Γ(p) denote some tree with critical value pc(Γ(p)) = p and θΓ(p)(p) ≥ 1/2;
such trees exist by Lemma 2.3. The construction of Γ is as follows. Start with a single
infinite branch (ρ, v1, v2, . . .) and attatch to each vertex vi a copy of Γ(pi), where the
sequence {pi}i≥1 is decreasing with pi > 1/2 for each i and limi→∞ pi = 1/2. We get
pc(Γ) = 1/2. Furthermore, θΓ(pi) ≥ 2−(i+1), so that we can make θΓ(p) take off from
criticality arbitrarily fast by letting the pi’s tend to 1/2 sufficiently fast. In particular,
we can make (5) hold by e.g. taking pi = 1/2 + 3−i. On the other hand, note that
percolation on Γ(pi) is subcritical at p = 1/2 for each i, whence

ΨΓ(pi),1/2[∀t¬Ct] = 1.

Since the existence of an infinite open cluster in Γ implies the existence of an infinite
cluster either in the branch (ρ, v1, v2, . . .) or in one of the subtrees Γ(pi), we get

ΨΓ,1/2[∀t¬Ct] = 1,
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so the proof is complete. 2

Remark 2.4: The construction at the end of the proof of Theorem 1.2 shows that we
can find two trees Γ and Γ′ with the properties that

(i) pc(Γ) = pc(Γ′) = 1/2,

(ii) θΓ(1/2) = θΓ′(1/2) = 0,

(iii) the critical dynamical percolation process has times with infinite clusters for Γ
but not for Γ′, and

(iv) there exists a p∗ > 1/2 such that θΓ(p) < θΓ′(p) for all p ∈ (1/2, p∗).

Indeed, take Γ to be spherically symmetric with |Γn| of the order n2n, and then build
up Γ′ as in the above construction sending pi to 1/2 fast enough so that (iv) holds. In
words, (i)–(iv) tell us that Γ′ is closer to percolating at criticality than Γ in the sense
of how fast θ(p) takes off from criticality, whereas Γ is closer to percolating in the sense
of dynamical percolation.

References

[1] Benjamini, I., Kalai, G. and Schramm, O. (1998) Noise sensitivity of boolean functions
and applications to percolation, preprint.

[2] Grimmett, G. (1989) Percolation, Springer, New York.
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