Due: April 26, 2024
Math 6030 / Problem Set 11 (two pages)

Miscellaneous

Recall: for a commutative ring R with 1z and a € Zd(R), we denote by NV (a) C J(a) the nil
radical, resp. Jacobson radical of a. Equivalently, if pr : R — R = R/a and N'(R ( R) C J(R)
are the nil, resp. Jacobson radical of R, then N'(a) = pr~'(N(R)) and J(a) = pr—(J(R)).

1) Prove that for a commutative ring R with 15, TFAE:

(i) For every p € Spec(R) one has p = J(p).
(i) For every a € Zd(R) one has N'(a) = J(a).
(iii) For every surjective ring morphism R — S one has N'(S) = J(95).

Terminology. R satisfying the equivalent conditions (i), (ii), (iii) above is a Jacobson ring.

2) Let I be a nonempty (finite or infinite) set. Prove/disprove/answer:

a) A polynomial ring k[t;];cs is a Jacobson ring, provided: (i) I is finite; (ii) [ is arbitrary.
b) Same questions for the k-algebras R = k[z;];cs in I-generators.
¢) Same questions for the polynomial ring Z[t;];c, respectively the Z-algebra Z[z;;cr.

Let k be a base field, X = (Xi,...,X,) be k-independent variables, and recall that every
ideal 0 C k[X] is finitely generated (why), hence of the form a = (f1,..., f,) for some f; € k[X].
Given 0 € Zd (k[X]), set R:= k[X]/a = k[z1,...,z,) with 2;:= X;(mod a). Let K|k a field
extension with K = K algebraically closed, and k|k — K|k the algebraic closure of k in K.
Given a set f = {f;}; of polynomials f; € k[X], denote V(f) := {a € K"| fi(a) = 0V i}
and call V' = V(f) C K™ an k-algebraic (sub)set of K. Finally, given a k-algebraic subset
V C K", we denote I(V):= {f € k[X]| f(a) =0V a € V} and call it ideal of V.

3) Let V,IWW C K™ be k-algebraic subsets. Prove/disprove/answer:

a) Given f, let ay C k[X] be the ideal generated by f. Then V(f) = V(ay).
b) I(V) C k[X] is an ideal, and further one has I(V) = N (ay) = J(ay)
O V=Wif (V)=IW)if VNE' =WnEk"

4) Let td(K k) be the transcendence degree of K|k. Prove/disprove/answer:

a) The map Homy, (k[X], K) = K", ¢ — a:=(p(X1),...,9(X,)) is a bijection.
b) For every ¢ € Homy, ([X], K) one has p, = ker(p) € Spec (k[X]).
c) For p € Spec(k[X]) T € Homy(k[X], K) with p = p, iff coht(p) < td(K|k).

Integral ring extensions/Hilbert Decomposition Theory

Recall the basics: Let G be a profinite group, V;, ¢ € I denote its open normal subgroups,

pri: G — G; = G/N;, g = g; the canonical projections, hence G = limG; canonically (How).

Let S be a discrete ring on which G acts continuously. Equlvalently, the orbits Gz, z e S

are finite wyv). For every N, set S;:= SNi:= {z € S| N;x = 2}, and R:= S Then S; D S;

iff N; C N; (wwv), and consider the restriction maps ¢j; : Zd(S;) — Zd(S;), a; = 0;:= 0; N S;.
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Recall that S|R is integral (wiy), and so are S|S;, S;[S; and S;|R i), and recall the maps
X, - Xj — X} of sets of primes X, C Spec(S), Xy C Spec(S,), above a given p € Spec(R).
5) In the above notation/context, prove/disprove/answer:

a) G, acts on S; by g;x:= gz, where g — g; under pr; : G — G;, and SZ»GZ' = R.

b) S = U;S;, hence if a € Zd(S) and a;:= aN S;, then a = U;0a;.

c) (Zd(S;), ZZJ)i,k}j is a projective system of sets, and Zd(S) = 1<irTn Zd(S;) (How).

d) 13; is compatible with the groups action, i.e., if g; = g;, then Z;fi(gj(aj)) = g;(a;).
6) Recalling that Spec(e) carries the Zariski topology, prove/disprove:

a) Spec(S) — Spec(S;) — Spec(R) are onto, continuous, compatible with group actions.

b) (Xg, ZZJ)i,k}j is a projective surjective system of finite sets, and X, = 1&1 X;.

Conclude: X, C Spec(S) is a profinite topological space —as a subspace of Spec(S).

7) In the above context, for q +— ¢, — P, prove/disprove:
a) Dyjp = Dy,p under G — G, and Dy = lim Dy,
b) G acts continuously on the profinite space X, and X, = G /Dy, as G-spaces.

8) In the above notation and context, ((;); and (p;); be maximal chains in Spec(S), respec-
tively in Spec(R). Prove/disprove:
a) Setting p,:= ¢; N R, the chain (p,); is maximal in Spec(R).
b) There is a maximal chain (q,); in Spec(S) with p, = q, N R.
%) Same questions for any subring S’ C S which contains R, i.e., RC S" C S.

Fractional Ideals
Let R be a commutative ring R with 1z and K = RE% be its total ring of fractions. An

R-submodule M C K, + is a fractional ideal (of R) if 3r € 3% such that rM C R. Recall
that given fractional ideals M, N of R, one defines (M : N) := {z € K|xzN C M} and
M-N = (xy|lreM,ye N)r C K,+ the corresponding R-submodules. Finally, a fractional
ideal M is called invertible, if there is a fractional R-submodule N C K ,+ such that M-N = R.

Notation. Let 7}, be the set of fractional ideals, Zr C Z}, be the invertible fractional ideals.

9) In the above notation, Prove/disprove/answer:

a) If M, N € I}, then M + N, M-N, (M:N) are fractional ideals.

b) I}, endowed with + and - is a semi-ring.

c¢) Ir C Ij is the group of invertible elements in the monoid I}, - of fractional ideals.
[Hint to a): Use that 2R € Tp, for all z€ K (WHY) and N’ C N, M/ C M = (M’:N)C (M:N),(M:N)C (M:N') (WHY), etc.]
10) Let M be a fractional ideal, prove/disprove:

a) If M € Ip, then M is a finite R-module, and 3 s € M N X%,
b) M is invertible iff M- (R: M) = R. Hence M € Zp iff (R: M) is the inverse of M.
c) TFAE: (i) M € Ir; (ii) M, € Ir, VP € Spec(R); (iii) My € I, VM € Max(R).
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