Due: May 3, 2024

Math 6030 / Problem Set 12 (two pages)

Prolongations of valuations. Let $R = R_v$ be a valuation ring of a field K with canonical valuation v, valuation ideal \mathfrak{m}_v , valuation group $vK = K^{\times}/R_v^{\times}$ and residue field $\kappa_v = R_v/\mathfrak{m}_v$. Let L|K be a field extension and R_w be a valuation ring of L with canonical valuation w, valuation ideal \mathfrak{m}_w , value group $wL = L^{\times}/R_w^{\times}$ and residue field κ_w .

Recall: We say that: w prolongs v if $vK \subset wL$ and $v = w|_K$, denoted w|v, and that R_w prolongs R_v if R_w, \mathfrak{m}_w dominates R_v, \mathfrak{m}_v , i.e., $\mathfrak{m}_v = \mathfrak{m}_w \cap R$, denoted $R_w|R_v$. If so, define: e(w|v) := (wL : vK) the ramification index, and $f(w|v) := [\kappa_w : \kappa_v]$ the residue degree of w|v.

1) In the above notation, prove/disprove/answer:

- a) One has: w|v iff $R_w|R_v$ iff $R^{\times} = K \cap R_w^{\times}$.
- b) Suppose that w or equivalently, $R_w | R_v$.
 - If $u_i \in L$ and $w(u_i) \neq w(u_{i'})$ for all $i \neq i'$, then $w(\sum_i u_i) = \min_i w(u_i)$.
 - If $x_j \in R$ and $(\overline{x}_j)_j$ are κ_v lin. indep. in κ_w , then $(x_j)_j$ are K-lin. indep. in L.
- 2) Suppose that $R_w | R_v, R_{w_l} | R_v, l \leq n$ be distinct. In the above notation/context, TFH:
 - I) The (weak) Fundamental Inequality. Let $(y_i)_i$ in L and $(x_j)_j$ in R_w be s.t. $(w(y_i))_i$ are distinct in $wL \to wL/vK$ and $(\overline{x}_j)_j$ are κ_v -linearly independent in κ_w . Then $(x_iy_j)_{i,j}$ is K-linearly independent in L.
 - II) The Fundamental Inequality. One has $\sum_{l} e(w_l | v) f(w_l | v) \leq [L : K]$.
- 3) In the above context, let L|K be algebraic, $S|R_v$ be the integral closure of R_v in L, and $X_v = \{w \in \operatorname{Val}(L) \mid w \mid v\}$ be the set of prolongations of v to L. Prove/disprove/answer:
 - a) The map $X_v \to Max(S)$, $\mathfrak{m}_w \mapsto \mathfrak{n} := \mathfrak{m}_w \cap S$ is a well defined bijection and $R_w = S_{\mathfrak{n}}$.
 - b) For every $w \in X_v$ one has: wL/vK is a torsion group, and $\kappa_w | \kappa_v$ is algebraic. Moreover, if $L = \overline{K}$, then wL is divisible and $\kappa_w = \overline{\kappa}_w$. Does the converse hold?

[Hint to a): For $x \in L^{\times}$, let $\operatorname{Mipo}_{K}(x) = t^{n} + \dots + a_{0} \in K[t]$. If i_{0} is maximal s.t. $v(a_{i_{0}}) = \min_{i} v(a_{i})$, set $b_{i} = a_{i+i_{0}}/a_{i_{0}}$ for $i \leq n - i_{0}, c_{j} = a_{j}/a_{i_{0}}$ for j < m. Then $p(t) = \sum_{i} b_{i}t^{i} \in 1 + t \mathfrak{m}_{v}[t]$ (WHY) and $q(t) = \sum_{j} c_{j}t^{j} \in R_{v}[t]$ (WHY). Further, $p(x) = \frac{1}{x}q(\frac{1}{x})$ (WHY), and $p(x) \in 1 + \mathfrak{m}_{v}[x]$ (WHY). Next, $\forall R_{w}|R_{v}$ have: $x \in R_{w} \Rightarrow p(x) \in R_{w}$, thus $q(\frac{1}{x}) \in R_{w}$; $\frac{1}{x} \in R_{w} \Rightarrow q(\frac{1}{x}) \in R_{w}$, thus $p(x) \in R_{w}$ (WHY). Conclude: $\forall x \in K$ have $p(x), q(\frac{1}{x}) \in S$ (WHY). Now suppose that $x \in \mathfrak{m}_{w}$. Then $p(x) \in 1 + \mathfrak{n}$ (WHY) and $xp(x) = q(\frac{1}{x})$ implies: $q(\frac{1}{x}) \in \mathfrak{m}_{w} \cap R = \mathfrak{n}$ (WHY). Thus $x = p(x)^{-1}q(\frac{1}{x}) \in \mathfrak{n}_{\mathfrak{n}}$ (WHY), etc.

4) In the above context/notation, let R_v be a DVR and [L:K] be finite. Prove/disprove:

- a) S^+ is a finite R_v -module iff the fundamental equality $\sum_l e(w_l|v) f(w_l|v) = [L:K]$ holds.
- b) If L|K is finite separable, the fundamental equality $\sum_{l} e(w_{l}|v)f(w_{l}|v) = [L:K]$ holds.

More about the integral closure. Let $\widehat{K} := k((t))$ endowed with \widehat{v} . Then $td(\widehat{K}|k) = \infty$ (WHY), and for $t, u \in \widehat{K}$ alg. indep. over k, set $K = k(t, u^{p^e})$, L = k(t, u), and $w = \widehat{v}|_L$, $v = \widehat{v}|_K$. 5) In the above notation, let char(k) = p > 0. Prove/disprove:

- a) L|K is a purely inseparable of degree p^e .
- b) w is the unique extension of v to L and e(w|v) = 1 = f(w|v).
- c) $R_w | R_v$ is the integral closure of R_v in L, but R_w is not a finite R_v -module.

6) Complete the proof of the assertion from the class:

Let $R = k[x_1, \ldots, x_n]$ is a finitely generated domain over a field k, K = Quot(R), L|K is a finite field extension, and S|R be the integral closure of R in L. Then S is a finite R-module. [Hint: Use the explanations from the class to reduce to the case $R_0 = k[t_1, \ldots, t_d]$, hence $K_0 = k(t_1, \ldots, t_d)$ and $L_0|K_0$ purely inseparable. Conclude by induction on $[L_0:K_0]$ as follows: If $\alpha^p = p(t_1, \ldots, t_d)$, then $\alpha \in K_1 = k_1(u_1, \ldots, u_d)$, where $k_1|k$ is the finite field extension obtained by adjoining the p-th roots of all the coefficients of $p(t_1, \ldots, t_d)$ and $u_i^p = t_i$ for $1 \le i \le d$, etc...]

7) Describe the decomposition groups of the prime ideals $\mathfrak{p} \in \operatorname{Spec}(R)$ in S|R below:

- a) $R = \mathbb{Z}$, S the ring of algebraic integers in $K = \mathbb{Q}[\sqrt{d}]$ with 1 < |d| < 7.
- b) $R = \mathbb{Z}$, S the ring of algebraic integers in $K = \mathbb{Q}[\zeta_3, \sqrt[3]{2}], \mathfrak{p} = 2\mathbb{Z}, 3\mathbb{Z}, 5\mathbb{Z}, 7\mathbb{Z}.$

More about fractional ideals.

8) Let R be a Noetherian domain, Min(R) minimal prime ideals $\mathfrak{p} \neq (0)$. Prove/disprove/answer:

- a) An ideal $\mathfrak{a} \subset R$ is invertible iff $\operatorname{Spec}(\mathfrak{a}) \subset \operatorname{Min}(R)$, and all $\mathfrak{p} \in \operatorname{Min}(\mathfrak{a})$ are invertible.
- b) If $\mathfrak{p} \in \operatorname{Spec}(R)$ is invertible, then $\mathfrak{p} \in \operatorname{Min}(R)$ and $R_{\mathfrak{p}}$ is integrally closed. Conversely?
- c) R is integrally closed iff all $\mathfrak{p} \in Min(R)$ are invertible.

Conclude: $\operatorname{Div}(R) = \bigoplus_{\mathfrak{p}} \mathbb{Z}\mathfrak{p}$ with $\mathfrak{p} \in \operatorname{Min}(R)$ invertible.

[Hint to a), b): Use Krull Principal Ideal Thm combined with the Lemma from the proof of the Characterization Thm, etc....]

9) Prove the following basic facts about Dedekind domains R:

- Gauss Lemma for Dedekind domains R: For $f = a_n t^n + \cdots + a_0 \in R[t]$ let $c(f) := (a_0, ..., a_n) \in \mathcal{I}d(R)$ be the content of f. Then one has c(fg) = c(f)c(g).
- For $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in \mathcal{I}d(R)$ one has: $\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) = (\mathfrak{a} \cap \mathfrak{b}) + (\mathfrak{a} \cap \mathfrak{c}), \ \mathfrak{a} + (\mathfrak{b} \cap \mathfrak{c}) = (\mathfrak{a} + \mathfrak{b}) \cap (\mathfrak{a} + \mathfrak{c}).$
- A finite R-module M is flat iff M is torsion free.
- Let M be a finite torsion R-module. There are $(\mathfrak{p}_i)_i$, $(e_i)_i$, $i \in I$ finite s.t. $M \cong_R \bigoplus_i R/\mathfrak{p}_i^{e_i}$.
- For $N \subset \mathbb{R}^N$ an \mathbb{R} -submodule, $\exists \mathfrak{a} \in \mathcal{I}d(\mathbb{R}), N_0 \subset \mathbb{N}$ \mathbb{R} -free such that $\mathbb{N} \cong_{\mathbb{R}} N_0 \oplus \mathfrak{a}$.

[Hint: Localize at each $\mathfrak{p} \in Max(R)$, and use the fact that two modules are equal, morphisms are injective/surjective, etc. iff the corresponding assertions hold everywhere locally, etc.... For the last assertion, show that $\mathfrak{a} \oplus \mathfrak{b} \cong_R R \oplus \mathfrak{c}$, etc....]