Math 6030 / Problem Set 12 (two pages)

Prolongations of valuations. Let $R=R_{v}$ be a valuation ring of a field K with canonical valuation v, valuation ideal \mathfrak{m}_{v}, valuation group $v K=K^{\times} / R_{v}^{\times}$and residue field $\kappa_{v}=R_{v} / \mathfrak{m}_{v}$. Let $L \mid K$ be a field extension and R_{w} be a valuation ring of L with canonical valuation w, valuation ideal \mathfrak{m}_{w}, value group $w L=L^{\times} / R_{w}^{\times}$and residue field κ_{w}.
Recall: We say that: w prolongs v if $v K \subset w L$ and $v=\left.w\right|_{K}$, denoted $w \mid v$, and that R_{w} prolongs R_{v} if R_{w}, \mathfrak{m}_{w} dominates R_{v}, \mathfrak{m}_{v}, i.e., $\mathfrak{m}_{v}=\mathfrak{m}_{w} \cap R$, denoted $R_{w} \mid R_{v}$. If so, define: $e(w \mid v):=(w L: v K)$ the ramification index, and $f(w \mid v):=\left[\kappa_{w}: \kappa_{v}\right]$ the residue degree of $w \mid v$.

1) In the above notation, prove/disprove/answer:
a) One has: $w \mid v$ iff $R_{w} \mid R_{v}$ iff $R^{\times}=K \cap R_{w}^{\times}$.
b) Suppose that $w \mid$ or equivalently, $R_{w} \mid R_{v}$.

- If $u_{i} \in L$ and $w\left(u_{i}\right) \neq w\left(u_{i^{\prime}}\right)$ for all $i \neq i^{\prime}$, then $w\left(\sum_{i} u_{i}\right)=\min _{i} w\left(u_{i}\right)$.
- If $x_{j} \in R$ and $\left(\bar{x}_{j}\right)_{j}$ are κ_{v} lin. indep. in κ_{w}, then $\left(x_{j}\right)_{j}$ are K-lin. indep. in L.

2) Suppose that $R_{w}\left|R_{v}, R_{w_{l}}\right| R_{v}, l \leqslant n$ be distinct. In the above notation/context, TFH:
I) The (weak) Fundamental Inequality.

Let $\left(y_{i}\right)_{i}$ in L and $\left(x_{j}\right)_{j}$ in R_{w} be s.t. $\left(w\left(y_{i}\right)\right)_{i}$ are distinct in $w L \rightarrow w L / v K$ and $\left(\bar{x}_{j}\right)_{j}$ are κ_{v}-linearly independent in κ_{w}. Then $\left(x_{i} y_{j}\right)_{i, j}$ is K-linearly independent in L.
II) The Fundamental Inequality. One has $\sum_{l} e\left(w_{l} \mid v\right) f\left(w_{l} \mid v\right) \leqslant[L: K]$.
3) In the above context, let $L \mid K$ be algebraic, $S \mid R_{v}$ be the integral closure of R_{v} in L, and $X_{v}=\{w \in \operatorname{Val}(L)|w| v\}$ be the set of prolongations of v to L. Prove/disprove/answer:
a) The map $X_{v} \rightarrow \operatorname{Max}(S), \mathfrak{m}_{w} \mapsto \mathfrak{n}:=\mathfrak{m}_{w} \cap S$ is a well defined bijection and $R_{w}=S_{\mathfrak{n}}$.
b) For every $w \in X_{v}$ one has: $w L / v K$ is a torsion group, and $\kappa_{w} \mid \kappa_{v}$ is algebraic. Moreover, if $L=\bar{K}$, then $w L$ is divisible and $\kappa_{w}=\bar{\kappa}_{w}$. Does the converse hold?
[Hint to a): For $x \in L^{\times}$, let $\operatorname{Mipo}_{K}(x)=t^{n}+\cdots+a_{0} \in K[t]$. If i_{0} is maximal s.t. $v\left(a_{i_{0}}\right)=\min _{i} v\left(a_{i}\right)$, set $b_{i}=a_{i+i_{0}} / a_{i_{0}}$ for $i \leqslant n-i_{0}, c_{j}=a_{j} / a_{i_{0}}$ for $j<m$. Then $p(t)=\sum_{i} b_{i} t^{i} \in 1+t \mathfrak{m}_{v}[t]$ (WHY) and $q(t)=\sum_{j} c_{j} t^{j} \in R_{v}[t]$ (WHY). Further, $p(x)=\frac{1}{x} q\left(\frac{1}{x}\right)$ (WHY), and $p(x) \in 1+\mathfrak{m}_{v}[x]$ (WHY). Next, $\forall R_{w} \mid R_{v}$ have: $x \in R_{w} \Rightarrow p(x) \in R_{w}$, thus $q\left(\frac{1}{x}\right) \in R_{w}$; $\frac{1}{x} \in R_{w} \Rightarrow q\left(\frac{1}{x}\right) \in R_{w}$, thus $p(x) \in R_{w}$ (WHY). Conclude: $\forall x \in K$ have $p(x), q\left(\frac{1}{x}\right) \in S$ (WHY). Now suppose that $x \in \mathfrak{m}_{w}$. Then $p(x) \in 1+\mathfrak{n}\left(\right.$ WHY) and $x p(x)=q\left(\frac{1}{x}\right)$ implies: $q\left(\frac{1}{x}\right) \in \mathfrak{m}_{w} \cap R=\mathfrak{n}$ (WHY). Thus $x=p(x)^{-1} q\left(\frac{1}{x}\right) \in \mathfrak{n}_{\mathfrak{n}}$ (WHY), etc.
4) In the above context/notation, let R_{v} be a DVR and [$L: K$] be finite. Prove/disprove:
a) S^{+}is a finite R_{v}-module iff the fundamental equality $\sum_{l} e\left(w_{l} \mid v\right) f\left(w_{l} \mid v\right)=[L: K]$ holds.
b) If $L \mid K$ is finite separable, the fundamental equality $\sum_{l} e\left(w_{l} \mid v\right) f\left(w_{l} \mid v\right)=[L: K]$ holds.

More about the integral closure. Let $\widehat{K}:=k((t))$ endowed with \widehat{v}. Then $\operatorname{td}(\widehat{K} \mid k)=\infty$ (WHY), and for $t, u \in \widehat{K}$ alg. indep. over k, set $K=k\left(t, u^{p^{e}}\right), L=k(t, u)$, and $w=\left.\widehat{v}\right|_{L}, v=\left.\widehat{v}\right|_{K}$.
5) In the above notation, let $\operatorname{char}(k)=p>0$. Prove/disprove:
a) $L \mid K$ is a purely inseparable of degree p^{e}.
b) w is the unique extension of v to L and $e(w \mid v)=1=f(w \mid v)$.
c) $R_{w} \mid R_{v}$ is the integral closure of R_{v} in L, but R_{w} is not a finite R_{v}-module.
6) Complete the proof of the assertion from the class:

Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ is a finitely generated domain over a field $k, K=\operatorname{Quot}(R), L \mid K$ is a finite field extension, and $S \mid R$ be the integral closure of R in L. Then S is a finite R-module.
[Hint: Use the explanations from the class to reduce to the case $R_{0}=k\left[t_{1}, \ldots, t_{d}\right]$, hence $K_{0}=k\left(t_{1}, \ldots, t_{d}\right)$ and $L_{0} \mid K_{0}$ purely inseparable. Conclude by induction on $\left[L_{0}: K_{0}\right]$ as follows: If $\alpha^{p}=p\left(t_{1}, \ldots, t_{d}\right)$, then $\alpha \in K_{1}=k_{1}\left(u_{1}, \ldots, u_{d}\right)$, where $k_{1} \mid k$ is the finite field extension obtained by adjoining the p-th roots of all the coefficients of $p\left(t_{1}, \ldots, t_{d}\right)$ and $u_{i}^{p}=t_{i}$ for $1 \leqslant i \leqslant d$, etc. \ldots]
7) Describe the decomposition groups of the prime ideals $\mathfrak{p} \in \operatorname{Spec}(R)$ in $S \mid R$ below:
a) $R=\mathbb{Z}, S$ the ring of algebraic integers in $K=\mathbb{Q}[\sqrt{d}]$ with $1<|d|<7$.
b) $R=\mathbb{Z}, S$ the ring of algebraic integers in $K=\mathbb{Q}\left[\zeta_{3}, \sqrt[3]{2}\right], \mathfrak{p}=2 \mathbb{Z}, 3 \mathbb{Z}, 5 \mathbb{Z}, 7 \mathbb{Z}$.

More about fractional ideals.
8) Let R be a Noetherian domain, $\operatorname{Min}(R)$ minimal prime ideals $\mathfrak{p} \neq(0)$. Prove/disprove/answer:
a) An ideal $\mathfrak{a} \subset R$ is invertible iff $\operatorname{Spec}(\mathfrak{a}) \subset \operatorname{Min}(R)$, and all $\mathfrak{p} \in \operatorname{Min}(\mathfrak{a})$ are invertible.
b) If $\mathfrak{p} \in \operatorname{Spec}(R)$ is invertible, then $\mathfrak{p} \in \operatorname{Min}(R)$ and $R_{\mathfrak{p}}$ is integrally closed. Conversely?
c) R is integrally closed iff all $\mathfrak{p} \in \operatorname{Min}(R)$ are invertible.

Conclude: $\operatorname{Div}(R)=\oplus_{\mathfrak{p}} \mathbb{Z} \mathfrak{p}$ with $\mathfrak{p} \in \operatorname{Min}(R)$ invertible.
[Hint to a), b): Use Krull Principal Ideal Thm combined with the Lemma from the proof of the Characterization Thm, etc. ...]
9) Prove the following basic facts about Dedekind domains R :

- Gauss Lemma for Dedekind domains R : For $f=a_{n} t^{n}+\cdots+a_{0} \in R[t]$ let $c(f):=\left(a_{0}, \ldots, a_{n}\right) \in \mathcal{I} d(R)$ be the content of f. Then one has $c(f g)=c(f) c(g)$.
- For $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in \mathcal{I} d(R)$ one has: $\mathfrak{a} \cap(\mathfrak{b}+\mathfrak{c})=(\mathfrak{a} \cap \mathfrak{b})+(\mathfrak{a} \cap \mathfrak{c}), \mathfrak{a}+(\mathfrak{b} \cap \mathfrak{c})=(\mathfrak{a}+\mathfrak{b}) \cap(\mathfrak{a}+\mathfrak{c})$.
- A finite R-module M is flat iff M is torsion free.
- Let M be a finite torsion R-module. There are $\left(\mathfrak{p}_{i}\right)_{i},\left(e_{i}\right)_{i}, i \in I$ finite s.t. $M \cong \cong_{R} \oplus_{i} R / \mathfrak{p}_{i}^{e_{i}}$.
- For $N \subset R^{N}$ an R-submodule, $\exists \mathfrak{a} \in \mathcal{I} d(R), N_{0} \subset N R$-free such that $N \cong{ }_{R} N_{0} \oplus \mathfrak{a}$.
[Hint: Localize at each $\mathfrak{p} \in \operatorname{Max}(R)$, and use the fact that two modules are equal, morphisms are injective/surjective, etc. iff the corresponding assertions hold everywhere locally, etc.... For the last assertion, show that $\mathfrak{a} \oplus \mathfrak{b} \cong_{R} R \oplus \mathfrak{c}$, etc....]

