
Due: May 3, 2024
Math 6030 / Problem Set 12 (two pages)

Prolongations of valuations. Let R = Rv be a valuation ring of a field K with canonical
valuation v, valuation ideal mv, valuation group vK = K×/R×

v and residue field κv = Rv/mv.
Let L|K be a field extension and Rw be a valuation ring of L with canonical valuation w,
valuation ideal mw, value group wL = L×/R×

w and residue field κw.
Recall: We say that: w prolongs v if vK ⊂ wL and v = w|K , denoted w|v, and that Rw

prolongs Rv if Rw,mw dominates Rv,mv, i.e., mv = mw ∩ R, denoted Rw|Rv. If so, define:
e(w|v) := (wL : vK) the ramification index, and f(w|v) := [κw : κv] the residue degree of w|v.
1) In the above notation, prove/disprove/answer:

a) One has: w|v iff Rw|Rv iff R× = K ∩ R×
w .

b) Suppose that w| or equivalently, Rw|Rv.
- If ui ∈ L and w(ui) ̸= w(ui′) for all i ̸= i′, then w(∑

i ui) = mini w(ui).
- If xj ∈ R and (xj)j are κv lin. indep. in κw, then (xj)j are K-lin. indep. in L.

2) Suppose that Rw|Rv, Rwl
|Rv, l ⩽ n be distinct. In the above notation/context, TFH:

I) The (weak) Fundamental Inequality.
Let (yi)i in L and (xj)j in Rw be s.t. (w(yi))i

are distinct in wL ↠ wL/vK and (xj)j

are κv-linearly independent in κw. Then (xiyj)i,j is K-linearly independent in L.
II) The Fundamental Inequality. One has ∑

l e(wl|v)f(wl|v) ⩽ [L : K].

3) In the above context, let L|K be algebraic, S|Rv be the integral closure of Rv in L,
and Xv = {w ∈ Val(L) | w|v} be the set of prolongations of v to L. Prove/disprove/answer:
a) The map Xv → Max(S), mw 7→ n := mw ∩ S is a well defined bijection and Rw = Sn.
b) For every w ∈ Xv one has: wL/vK is a torsion group, and κw|κv is algebraic.

Moreover, if L = K, then wL is divisible and κw = κw. Does the converse hold?
[Hint to a): For x ∈ L×, let MipoK(x) = tn + · · · + a0 ∈ K[t]. If i0 is maximal s.t. v(ai0 ) = mini v(ai), set bi = ai+i0 /ai0

for i ⩽ n − i0, cj = aj/ai0 for j < m. Then p(t) =
∑

i
bit

i ∈ 1 + tmv [t] (WHY) and q(t) =
∑

j
cjtj ∈ Rv [t] (WHY). Further,

p(x) = 1
x

q( 1
x

) (WHY), and p(x) ∈ 1 + mv [x] (WHY). Next, ∀ Rw|Rv have: x ∈ Rw ⇒ p(x) ∈ Rw, thus q( 1
x

) ∈ Rw;
1
x

∈ Rw ⇒ q( 1
x

) ∈ Rw, thus p(x) ∈ Rw (WHY). Conclude: ∀ x ∈ K have p(x), q( 1
x

) ∈ S (WHY). Now suppose that x ∈ mw.

Then p(x) ∈ 1 + n (WHY) and x p(x) = q( 1
x

) implies: q( 1
x

) ∈ mw ∩ R = n (WHY). Thus x = p(x)−1q( 1
x

) ∈ nn (WHY), etc.

4) In the above context/notation, let Rv be a DVR and [L :K] be finite. Prove/disprove:
a) S+ is a finite Rv-module iff the fundamental equality ∑

l e(wl|v)f(wl|v) = [L : K] holds.
b) If L|K is finite separable, the fundamental equality ∑

l e(wl|v)f(wl|v) = [L : K] holds.

More about the integral closure. Let K̂ := k((t)) endowed with v̂. Then td(K̂|k) = ∞
(WHY), and for t, u ∈ K̂ alg. indep. over k, set K = k(t, upe), L = k(t, u), and w = v̂|L, v = v̂|K .
5) In the above notation, let char(k) = p > 0. Prove/disprove:

a) L|K is a purely inseparable of degree pe.
b) w is the unique extension of v to L and e(w|v) = 1 = f(w|v).
c) Rw|Rv is the integral closure of Rv in L, but Rw is not a finite Rv-module.
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6) Complete the proof of the assertion from the class:
Let R = k[x1, . . . , xn] is a finitely generated domain over a field k, K = Quot(R), L|K is a
finite field extension, and S|R be the integral closure of R in L. Then S is a finite R-module.
[Hint: Use the explanations from the class to reduce to the case R0 = k[t1, . . . , td], hence K0 = k(t1, . . . , td) and L0|K0 purely

inseparable. Conclude by induction on [L0 :K0] as follows: If αp = p(t1,..., td), then α ∈ K1 = k1(u1, . . . , ud), where k1|k is the

finite field extension obtained by adjoining the p-th roots of all the coefficients of p(t1,..., td) and up
i = ti for 1 ⩽ i ⩽ d, etc. . . . ]

7) Describe the decomposition groups of the prime ideals p ∈ Spec(R) in S|R below:
a) R = Z, S the ring of algebraic integers in K = Q[

√
d ] with 1 < |d| < 7.

b) R = Z, S the ring of algebraic integers in K = Q[ζ3, 3
√

2 ], p = 2Z, 3Z, 5Z, 7Z.

More about fractional ideals.
8) Let R be a Noetherian domain, Min(R) minimal prime ideals p ̸= (0). Prove/disprove/answer:

a) An ideal a ⊂ R is invertible iff Spec(a) ⊂ Min(R), and all p ∈ Min(a) are invertible.
b) If p ∈ Spec(R) is invertible, then p ∈ Min(R) and Rp is integrally closed. Conversely ?
c) R is integrally closed iff all p ∈ Min(R) are invertible.

Conclude: Div(R) = ⊕p Z p with p ∈ Min(R) invertible.
[Hint to a), b): Use Krull Principal Ideal Thm combined with the Lemma from the proof of the Characterization Thm, etc. . . . ]

9) Prove the following basic facts about Dedekind domains R:

• Gauss Lemma for Dedekind domains R : For f = antn + · · · + a0 ∈ R[t] let
c(f) := (a0,..., an) ∈ Id(R) be the content of f . Then one has c(fg) = c(f)c(g).

• For a, b, c ∈ Id(R) one has: a∩ (b+c) = (a∩b)+(a∩ c), a+(b∩ c) = (a+b) ∩ (a+c).
• A finite R-module M is flat iff M is torsion free.
• Let M be a finite torsion R-module. There are (pi)i, (ei)i, i ∈ I finite s.t. M ∼=R ⊕iR/pei

i .
• For N ⊂ RN an R-submodule, ∃ a ∈ Id(R), N0 ⊂ N R-free such that N ∼=R N0 ⊕ a.

[Hint: Localize at each p ∈ Max(R), and use the fact that two modules are equal, morphisms are injective/surjective, etc. iff

the corresponding assertions hold everywhere locally, etc.... For the last assertion, show that a ⊕ b ∼=R R ⊕ c, etc....]

2


