Due: March 18, 2024

Math 6030 / Problem Set 6 (two pages)

More about Hom_R and Exactness (continued)

Recall that an R-module Q is called injective, if Q has the colifting property, i.e., if for any injective morphism $f: M' \to M$ of R-modules, $\operatorname{Hom}_R(M,Q) \to \operatorname{Hom}_R(M',Q)$ is surjective. Make sure that you know/checked the characterizations of Q being injective, e.g. Q injective iff $\mathcal{H}^Q = \operatorname{Hom}_R(\bullet,Q)$ is exact iff Q is direct summand in every R-module containing Q iff Q satisfies Baer's criterion...

- 1) Let M, M_i be R-modules, S be a commutative R-algebra. Prove/disprove/answer:
 - a) Q is injective iff $Q_{\mathfrak{p}}$ is injective $\forall \mathfrak{p} \in \operatorname{Spec}(R)$ iff $M_{\mathfrak{m}}$ is injective $\forall \mathfrak{m} \in \operatorname{Max}(R)$.
 - b) $M = \prod_{\alpha} M_{\alpha}$ is injective iff all M_{α} are injective. Does the same hold for $M = \bigoplus_{\alpha} M_{\alpha}$?
 - c) If M is a injective, then M is flat. Does the converse hold?
- 2) Let S be a commutative R-algebra. Prove the assertion from class:
 - a) If Q is and injective S-module, then Q is (by restriction of scalars) injective over R.
 - b) If Q is an injective R-module, the co-induced S-module $M^S := \operatorname{Hom}_R(S, M)$ is injective.
- 3) Prove the assertions form class:
 - a) An abelian group A is an injective \mathbb{Z} -modules iff A is divisible, e.g., \mathbb{Q}/\mathbb{Z} , + is so.
 - b) If R-Mod $\rightsquigarrow R$ -Mod, $M \bowtie M^D := \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ is a contravariant exact functor.
 - c) $M \to M^{DD} := (M^D)^D$, $x \mapsto \varphi(x) \ \forall \varphi \in M^D$ is an injective morphism of R-modules.

Resolutions of R-modules /// Tor_i^R and Ext_R^i

Recall that given an R-module M, a projective/free/flat resolution of M is any exact sequence of the form $(\mathcal{P}_M): \ldots \to P_1 \to P_0 \to M \to 0$, where P_0, P_1, \ldots are projective/free/flat R-modules. Similarly, an exact sequence $(\mathcal{Q}_N): 0 \to M \to Q_0 \to Q_1 \to \ldots$ with Q_0, Q_2, \ldots injective R-modules is called an injective resolution of a given R-module N. Notice that both multiple projective/free/flat resolutions (\mathcal{P}_M) and/or injective resolutions (\mathcal{Q}_N) exist (WHY). Finally, resolutions \mathcal{P}_M and/or \mathcal{Q}_N as above, consider the resulting sequences in R-Mod:

- a) $\mathcal{P}_M \otimes_R N$: $\dots \longrightarrow P_2 \otimes_R N \xrightarrow{\pi_2} P_1 \otimes_R N \xrightarrow{\pi_1} P_0 \otimes N \xrightarrow{\pi_0} 0$
- b) $\operatorname{Hom}_R(\mathcal{P}_M, N) : 0 \to \operatorname{Hom}_R(P_0, N) \xrightarrow{p_0} \operatorname{Hom}_R(P_1, N) \xrightarrow{p_1} \operatorname{Hom}_R(P_2, N) \xrightarrow{p_2} \dots$
- c) $\operatorname{Hom}_R(M, \mathcal{Q}_N) : 0 \to \operatorname{Hom}_R(Q_0, N) \xrightarrow{q_0} \operatorname{Hom}_R(Q_1, N) \xrightarrow{q_1} \operatorname{Hom}_R(Q_2, N) \xrightarrow{q_2} \dots$
- 4) Prove the above sequences of R-modules at a), b), c) above are complexes.

Recall: The homology groups of the complex $\mathcal{P}_M \otimes_R N$ are called the Tor-groups of M, N, denoted $\operatorname{Tor}_i^R(M, N) := \operatorname{Ker}(\pi_i) / \operatorname{Im}(\pi_{i+1})$. The cohomology groups of the complex $\operatorname{Hom}_R(\mathcal{P}_M, N)$ are called the Ext-groups of M, N, denoted $\operatorname{Ext}_R^i(M, N) := \operatorname{Ker}(p_i) / \operatorname{Im}(p_{i-1})$. The following fundamental facts hold (try to study the proofs, which are a little bit technical!):

Thm (Baer; Eilenberg, MacLane). $\operatorname{Tor}_{i}^{R}(M, N)$ and $\operatorname{Ext}_{R}^{i}(M, N)$ are <u>independent</u> of the resolutions used to compute them, and $\operatorname{Ext}_{R}^{i}(M, N)$ equal the cohomology groups of $\operatorname{Hom}_{R}(M, \mathcal{Q}_{N})$,

that is,
$$\operatorname{Ext}_{R}^{i}(M, N) = \operatorname{Ker}(q_{i}) / \operatorname{Im}(q_{i-1}).$$

- The following (quite obvious) properties of Tor^R and Ext_R hold (try to prove!):
 - a) $\operatorname{Tor}_0^R(M,N)=M\otimes_R N$ and $\operatorname{Ext}_R^0(M,N)=\operatorname{Hom}_R(M,N)$ (WHY).
 - b) If M or N is flat, $\operatorname{Tor}_1^R(M,N)=(0)$ (WHY). What about $\operatorname{Tor}_i^R(M,N)$?
 - c) If M or N is projective/injective, $\operatorname{Ext}_R^1(M,N)=(0)$. What about $\operatorname{Ext}_R^i(M,N)$?
 - d) $\operatorname{Tor}_{i}^{R}(\bigoplus_{\alpha}M_{\alpha}, N) = \bigoplus_{\alpha}\operatorname{Tor}_{i}^{R}(M_{\alpha}, N)$ and $\operatorname{Tor}_{i}^{R}(\varinjlim_{\alpha}M_{\alpha}, N) = \varinjlim_{\alpha}\operatorname{Tor}_{i}^{R}(M_{\alpha}, N)$.
 - e) $\operatorname{Ext}_{R}^{i}(\bigoplus_{\alpha} M_{\alpha}, N) = \prod_{\alpha} \operatorname{Ext}_{R}^{i}(M_{\alpha}, N)$ and $\operatorname{Ext}_{i}^{R}(M, \prod_{\alpha} N_{\alpha}) = \prod_{\alpha} \operatorname{Ext}_{R}^{i}(M, N_{\alpha})$.
- 5) Prove/disprove:
 - a) Tor_i^R and Ext_R^i are compatible with taking rings of fractions $R\operatorname{-}\mathbf{Mod} \leadsto R_\Sigma\operatorname{-}\mathbf{Mod}$, i.e., $\left(\operatorname{Tor}_i^R(M,N)\right)_\Sigma=\operatorname{Tor}^{R_\Sigma}(M_\Sigma,N_\Sigma)$, and $\left(\operatorname{Ext}_R^i(M,N)\right)_\Sigma=\operatorname{Ext}_{R_\Sigma}^i(M_\Sigma,N_\Sigma)$.
 - b) What about the behavior of $\operatorname{Tor}_{i}^{R}$ and $\operatorname{Ext}_{R}^{i}$ under localization?
- Finally, given short exact sequences $0 \to M' \to M \to M'' \to 0$, $0 \to N' \to N \to N'' \to 0$, Tor^R and Ext_R give rise to long exact sequences as follows (check the proof!):

$$\cdots \to \operatorname{Tor}_{2}^{R}(M'',N) \to \operatorname{Tor}_{1}^{R}(M',N) \to \operatorname{Tor}_{1}^{R}(M,N) \to \operatorname{Tor}_{1}^{R}(M'',N) \to \operatorname{Tor}_{0}^{R}(M',N) \to \operatorname{Tor}_{0}^{R}(M,N) \to \operatorname{Tor}_{0}^{R}(M',N) \to \operatorname{Tor}_{0}^{R}(M',N) \to \operatorname{Tor}_{0}^{R}(M',N) \to \operatorname{Tor}_{0}^{R}(M',N) \to \operatorname{Ext}_{0}^{R}(M',N) \to \operatorname{Ext}_{0}^{R}(N',M) \to \operatorname{Ext}_{0}^{R}(N$$

- **6)** For $r \in R$ and an R-module N, we denote ${}_rN := \{x \in N \mid rx = 0_N\}$. Supposing that $r \in R$ is not a zero-divisor, prove/disprove:
 - a) $\operatorname{Tor}_{0}^{R}(R/rR, N) = N/rN$; $\operatorname{Tor}_{1}^{R}(R/rR, N) = {}_{r}N$; $\operatorname{Tor}_{i}^{R}(R/rR, N) = (0)$ for i > 1.
 - b) $\operatorname{Ext}_{R}^{0}(R/rR, N) = {}_{r}N; \operatorname{Ext}_{R}^{1}(R/rR, N) = N/rN; \operatorname{Ext}_{R}^{i}(R/rR, N) = (0) \text{ for } i > 1.$

Make educated guesses: What should be the above assertions for $r_1, \ldots, r_n \in R$, $n = 2, \ldots$

[Hint: $0 \rightarrow rR \rightarrow R \rightarrow R/rR \rightarrow 0$ is a projective resolution of M := R/rR (WHY), $0 \rightarrow rN \rightarrow N \rightarrow N/rN \rightarrow 0$ is exact, etc. . . .]

- Recall that given a group G acting on an abelian group A, we defined the cohomology groups $H^i(G,A) = Z^i(G,A)/B^i(G,A)$ for i=1,2. Supposing that G,A are R-modules and G acts trivially on A, consider $B^i_{R\text{-}\mathrm{Mod}}(G,A) \subset Z^i_{R\text{-}\mathrm{Mod}}(G,A)$ as R-modules (WHY).
- 7) In the above notation, prove/disprove: $H^i_{R\text{-Mod}}(G,A) = \operatorname{Ext}^{i-1}_R(G,A)$ for i=1,2.