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12.1 Sequences12.1 Sequences

A __________________ is an ordered list of numbers.

A sequence can be _____ or _________. In this class we will deal 

with _______ sequences

Notation:
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a formula for the nth term

Note: the sequence 

doesn’t have to 

start at n = 1
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These isolated points make up the graph of the sequence.

It seems as though the terms of the 

sequence are approaching ____ as n → ∞
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When the lim  does not exist or is infinite, the sequence is called ________.n
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In general, if the terms of the 

sequence are approaching  as , thenL n → ∞ lim n
n

a L
→∞
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When this limit exists and is finite, we say the sequence is __________ .
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12.1 SequencesSo basically, finding the limit of a sequence 

boils down to being able to find limits at infinity.

Section 2.2 Limit Laws Section 4.4 Limits at Infinity

Section 7.8 Indeterminate forms and L'Hopitals Rule

:Thoerems

1.  Squeeze Theorem:
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bring the limit inside
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Determine whether the sequence converges or diverges.  If it converges, find the limit.
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Determine whether the sequence converges or diverges.  

If it converges, find the limit.
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Determine whether the sequence converges or diverges.  

If it converges, find the limit.
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Determine whether the sequence converges or diverges.  

If it converges, find the limit.

( ) ( )21 sin
n

n

n
a

n

−
=


