12.1 Sequences

A \qquad is an ordered list of numbers.
 with ____ sequences

$$
a_{n}=\frac{n}{(n+1)^{2}} \quad \begin{aligned}
& \text { input }: \\
& \text { output }:
\end{aligned}
$$

$$
\left(1, \frac{1}{4}\right),\left(2, \frac{2}{9}\right),\left(3, \frac{3}{16}\right),\left(4, \frac{4}{25}\right),\left(5, \frac{5}{36}\right), \ldots
$$

These isolated points make up the graph of the sequence.

It seems as though the terms of the sequence are approaching ___ as $n \rightarrow \infty$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n}{(n+1)^{2}} \\
& \lim _{n \rightarrow \infty} \frac{p(n)}{q(n)}=0 \quad(p \text { and } q \text { polynomials })
\end{aligned}
$$

when \qquad .

$$
\begin{aligned}
& \text { Note: the sequence } \\
& \text { doesn't have to } \\
& \text { Notation: } \\
& \text { start at } n=1 \\
& \left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}, a_{n+1}, \ldots\right\} \\
& \left\{a_{n}\right\} \text { or }\left\{a_{n}\right\}_{n=1}^{\infty} \\
& \text { a formula for the } \mathrm{n}^{\text {th }} \text { term } \\
& \left\{\frac{1}{4}, \frac{2}{9}, \frac{3}{16}, \frac{4}{25}, \frac{5}{36}, \ldots\right\}
\end{aligned}
$$

In general, if the terms of the
Math 104 - Rimmer 12.1 Sequences
sequence are approaching L as $n \rightarrow \infty$, then $\lim _{n \rightarrow \infty} a_{n}=L$
When this limit exists and is finite, we say the sequence is \qquad .

When the $\lim _{n \rightarrow \infty} a_{n}$ does not exist or is infinite, the sequence is called \qquad -.

$$
\begin{aligned}
& \left\{\cos \left(\frac{n \pi}{2}\right)\right\} \\
& \Rightarrow\left\{\cos \left(\frac{n \pi}{2}\right)\right\} \text { is } \quad \text { since the } \lim _{n \rightarrow \infty} \cos \left(\frac{n \pi}{2}\right) \ldots \\
& \\
& \left\{\frac{n^{2}}{n+2}\right\} \quad \lim _{n \rightarrow \infty} \frac{n^{2}}{n+2}=\infty \quad \lim _{n \rightarrow \infty} \frac{p(n)}{q(n)}=\infty \quad(p \text { and } q \text { polynomials }) \\
& \Rightarrow \\
& \left\{\begin{array}{ll}
n^{2} \\
n+2
\end{array}\right. \text { when }
\end{aligned}
$$

So basically, finding the limit of a sequence
boils down to being able to find limits at infinity.

Tools:

Section 2.2 Limit Laws Section 4.4 Limits at Infinity

Section 7.8 Indeterminate forms and L'Hopitals Rule

Thoerems:

1. Squeeze Theorem:
$\left.\begin{array}{c}a_{n} \leq c_{n} \leq b_{n} \text { for all } n>N \\ \text { and } \\ \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=L\end{array}\right\} \Rightarrow \lim _{n \rightarrow \infty} c_{n}=L$
$\left.\begin{array}{c}\text { 4. } \lim _{n \rightarrow \infty} a_{n}=L \\ \text { and } \\ f \text { is contin. at } L\end{array}\right\} \Rightarrow \lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{\substack{n \rightarrow \infty \\ \text { bring the limiti inside }}}\right)=f(L)$
2. Every bounded and increasing
sequence and every bounded and
decreasing sequence is convergent.
3. The sequence $\left\{r^{n}\right\}$ is $\left\{\begin{array}{cc}\text { convergent } & \text { if }-1<r \leq 1 \\ \text { divergent } & \text { for all other values of } r\end{array}\right.$
$\lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{cc}0 & \text { if }-1<r<1 \\ 1 & \text { if } r=1\end{array}\right.$

Determine whether the sequence converges or diverges. If it converges, find the limit.
$a_{n}=\frac{3+5 n^{2}}{n+n^{2}}$

$$
a_{n}=\left(\frac{1}{\pi}\right)^{n}
$$

Determine whether the sequence converges or diverges.
If it converges, find the limit.
$a_{n}=\sqrt{\frac{n+1}{9 n+1}}$
$a_{n}=\frac{(-1)^{n-1} n}{n^{2}+1}$

Determine whether the sequence converges or diverges.

If it converges, find the limit.
$a_{n}=\left(\frac{n+1}{n}\right)^{n}$
\qquad
\qquad

Determine whether the sequence converges or diverges.
If it converges, find the limit.
$a_{n}=\frac{(-1)^{n} \sin \left(n^{2}\right)}{n}$

