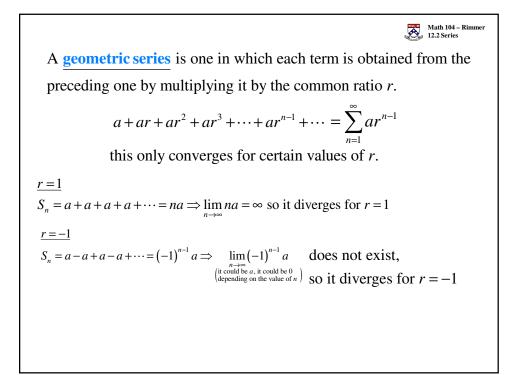
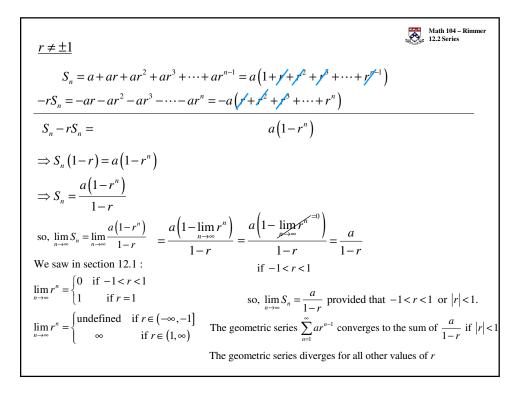
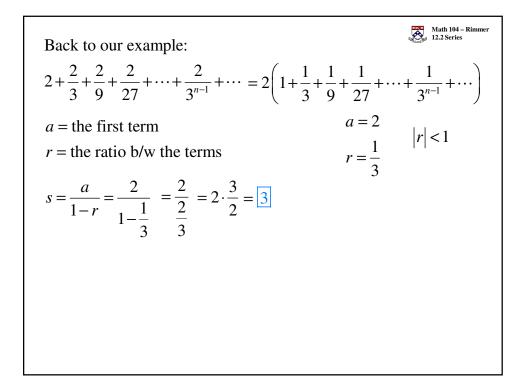
12.2 Series	AA	th 104 – Rimmer 2 Series
We will now add the terms of an infinite sequence $\{a_n\}_{n=1}^{\infty}$		
to get $\underbrace{a_1 + a_2 + a_3 + \dots + a_n + a_{n+1} + \dots}_{\text{Notation:}}$		
this is called an infinite <u>series</u> $\sum_{n=1}^{\infty} a_n$		
$2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \frac{2}{81} + \dots + \frac{2}{3^{n-1}} + \dots$		
S_n = the sum of the first <i>n</i> terms it is called the <u>nth partial sum</u> $S_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^n a_k$	n	S _n
$S_1 = 2$ The partial sums form a sequence $\left[S_1 \right]^{\infty}$	1	2 2.66666
The partial sums form a sequence $\{S_n\}_{n=1}^{\infty}$	3	2.88888
$S_2 = 2 + \frac{2}{3} = \frac{8}{3}$ (8 26 80)	4	2.96296
	5	2.98765
$S_{3} = 2 + \frac{2}{3} + \frac{2}{9} = \frac{26}{9} \qquad \left\{S_{n}\right\}_{n=1} = \left\{2, \frac{3}{3}, \frac{23}{9}, \frac{33}{27}, \cdots\right\}$	10	2.99995
(3 9 21)	15	2.99999
2, 2, 2, 80	20	2.99999
$S_4 = 2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} = \frac{80}{27}$	25	2.99999

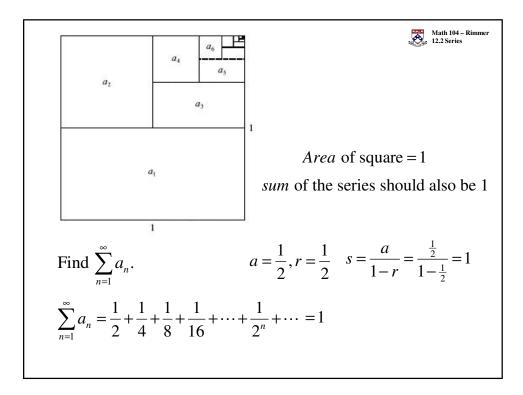
 $\lim_{n \to \infty} S_n = s \implies \text{We call } s \text{ the sum of the infinite series}$ $\lim_{n \to \infty} S_n = s \implies \text{We call } s \text{ the sum of the infinite series}$ $\sum_{n=1}^{\infty} a_n = s$ and the series is called **convergent**(by adding sufficiently many terms of the series, we can get as close as we like to the number s.)
otherwise the series is called **divergent** $\lim_{n \to \infty} S_{n=1} = \left\{ 2, \frac{8}{3}, \frac{26}{9}, \frac{80}{27}, \cdots \right\} \quad \text{It seems like } \lim_{n \to \infty} S_n = 3$ $\Rightarrow 2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \cdots + \frac{2}{3^{n-1}} + \cdots = \sum_{n=1}^{\infty} \frac{2}{3^{n-1}} = 3$ We can show that the sum is 3 since this series is an example of a special type of series called a geometric series.

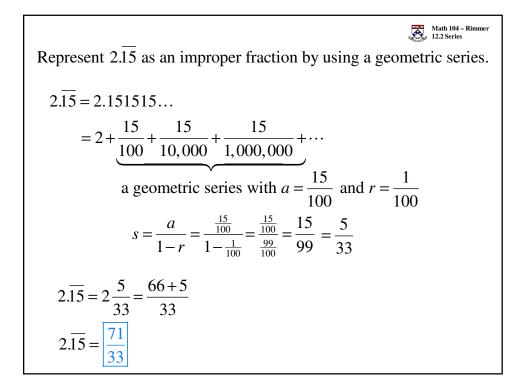


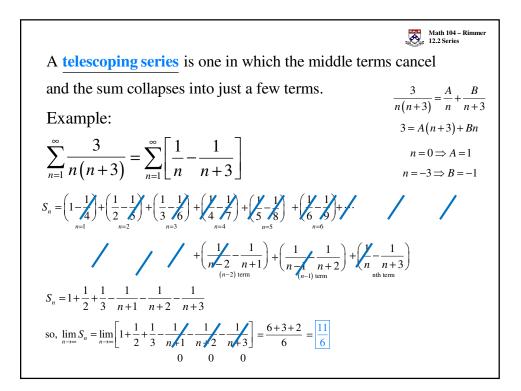


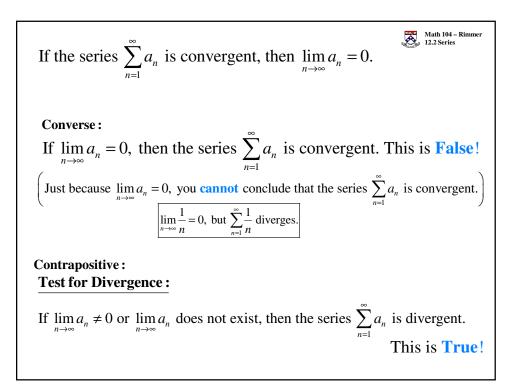
10/28/2009











$$\sum_{n=1}^{\infty} \frac{3n^2}{n(n+3)} = \frac{3}{4} + \frac{6}{5} + \dots + \frac{150}{53} + \dots + \frac{300}{103} + \dots$$
There is no way that this sum could
converge to some finite number since
the terms approach 3 as $n \to \infty$.
sum = $0.75 + 1.2 + \dots + 3 + 3 + 3 + \dots + 3 + 3 + 3 + \dots$

$$\sum_{n=1}^{\infty} \frac{3n^2}{n(n+3)} \qquad \lim_{n \to \infty} \frac{3n^2}{n(n+3)} = 3 \neq 0$$
so this series diverges by the **Test for Divergence**.
Just remember that if you get 0 for the limit, you **can't** conclude that
the series converges. This just means that it has a chance to converge.

