12.2 Series

Math 104 - Rimmer 12.2 Series

We will now add the terms of an infinite sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$
to get $\underbrace{a_{1}+a_{2}+a_{3}+\cdots+a_{n}+a_{n+1}+\cdots}$
Notation:
this is called an infinite \qquad
Example:
$2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\frac{2}{81}+\cdots+\frac{2}{3^{n-1}}+\cdots$
$\begin{aligned} & S_{n}=\text { the sum of the first } n \text { terms } \\ & \text { it is called the }\end{aligned} S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}$
$S_{1}=$
$S_{2}=2+\frac{2}{3}=$
The partial sums form a sequence $\left\{S_{n}\right\}_{n=1}^{\infty}$
$S_{3}=2+\frac{2}{3}+\frac{2}{9}=$
$\left\{S_{n}\right\}_{n=1}^{\infty}=$
$S_{4}=2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}=$

Math 104 - Rimmer 12.2 Series
$\lim S_{n}=s \Rightarrow$ We call s the \qquad of the infinite series (the limit of the sequence of partial
sums exists and is finite)

$$
\sum_{n=1}^{\infty} a_{n}=s
$$

and the series is called \qquad
(by adding sufficiently many terms of the series, we can get as close as we like to the number s.)
otherwise the series is called \qquad
The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$
We will show this in 12.3
$\left\{S_{n}\right\}_{n=1}^{\infty}=\left\{2, \frac{8}{3}, \frac{26}{9}, \frac{80}{27}, \cdots\right\} \quad$ It seems like $\lim _{n \rightarrow \infty} S_{n}=3$
$\Rightarrow 2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\cdots+\frac{2}{3^{n-1}}+\cdots=\sum_{n=1}^{\infty} \frac{2}{3^{n-1}}=3$
We can show that the sum is 3 since this series is an example of a special type of series called a \qquad series.

A \qquad is one in which each term is obtained from the preceding one by multiplying it by the common ratio r.

$$
a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}+\cdots=\sum_{n=1}^{\infty} a r^{n-1}
$$

this only converges \qquad .

$$
\begin{aligned}
& r=1 \\
& S_{n}=a+a+a+a+\cdots=n a \Rightarrow \lim _{n \rightarrow \infty} n a= \\
& r=-1
\end{aligned}
$$

$$
\begin{aligned}
& r \neq \pm 1 \\
& S_{n}=a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}=a\left(1+\not \gamma+\eta^{2}+\gamma^{\beta}+\cdots+r^{p-1}\right) \\
& r S_{n}=a r+a r^{2}+a r^{3}+\cdots+a r^{n}=a\left(\nmid+r^{2}+\beta^{\beta}+\cdots+r^{n}\right) \\
& S_{n}-r S_{n}=\quad a\left(1-r^{n}\right) \\
& \Rightarrow S_{n}(1-r)=a\left(1-r^{n}\right) \\
& \Rightarrow S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& \text { so, } \lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{a\left(1-r^{n}\right)}{1-r}=\frac{a\left(1-\lim _{n \rightarrow \infty} r^{n}\right)}{1-r}=\frac{a\left(1-\lim _{\nu \rightarrow \infty} r^{n^{=0}}\right)}{1-r}=\frac{a}{1-r} \\
& \text { We saw in section } 12.1 \text { : } \\
& \text { if }-1<r<1 \\
& \lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{cc}
0 & \text { if }-1<r<1 \\
1 & \text { if } r=1
\end{array}\right. \\
& \text { so, } \lim _{n \rightarrow \infty} S_{n}=\frac{a}{1-r} \text { provided that }-1<r<1 \text { or }|r|<1 \text {. } \\
& \lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{cc}
\text { undefined } & \text { if } r \in(-\infty,-1] \\
\infty & \text { if } r \in(1, \infty)
\end{array} \quad \text { The geometric series } \sum_{n=1}^{\infty} a r^{n-1} \text { converges to the sum of } \frac{a}{1-r} \text { if }|r|<1\right.
\end{aligned}
$$

Back to our example:

$$
\begin{aligned}
& 2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\cdots+\frac{2}{3^{n-1}}+\cdots=2\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\cdots+\frac{1}{3^{n-1}}+\cdots\right) \\
& a=\text { the first term } \\
& r=\text { the ratio b/w the terms }
\end{aligned}
$$

12.2 Series

Area of square $=1$
sum of the series should also be 1

Find $\sum_{n=1}^{\infty} a_{n}$.
$\sum_{n=1}^{\infty} a_{n}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots+\frac{1}{2^{n}}+\cdots=1$

Represent $2 . \overline{15}$ as an improper fraction by using a geometric series.

$$
\begin{aligned}
2 . \overline{15} & =2.151515 \ldots \\
& =2+
\end{aligned}
$$

a geometric series with $a=$ \qquad and $r=$ \qquad

$$
s=\frac{a}{1-r}=
$$

A telescoping series is one in which the middle terms cancel and the sum collapses into just a few terms.

Example:
$\sum_{n=1}^{\infty} \frac{3}{n(n+3)}$
$S_{n}=$

If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then \qquad Math 104 - Rimmer 12.2 Series

Converse :

If $\lim _{n \rightarrow \infty} a_{n}=0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent. This is \qquad (Just because $\lim _{n \rightarrow \infty} a_{n}=0$, you ___ conclude that the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.)

Contrapositive :

Test for Divergence :

$\sum_{n=1}^{\infty} \frac{3 n^{2}}{n(n+3)}$

If $\sum a_{n}$ and $\sum b_{n}$ are convergent series, then so are the series $\sum c a_{n}$ (where c is a constant), $\sum\left(a_{n}+b_{n}\right)$, and $\sum\left(a_{n}-b_{n}\right)$,
i) $\sum c a_{n}=$
ii) $\sum\left(a_{n}+b_{n}\right)=$
iii) $\sum\left(a_{n}-b_{n}\right)=$

