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Notation:

Example:
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The partial sums form a sequence 
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and the series is ____call __ed ____

(the limit of the 

sequence of partial 

sums exists and is finite)

(by adding sufficiently many terms of the series, we can get as close as we like to the number .)s
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We can show that the sum is 3 since this series is an example 

of a special type of series called a __________ series.

otherwise the series is called _________

1

1
The harmonic series  ________.

We will show this in 12.3
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A  is one in which each term is obtained from the 

preceding one by multiply

                  

ing it by the comm
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We saw in section 12.1 :
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The geometric series  converges to the sum of  if 1
1

n

n

a
ar r

r

∞
−

=

<
−

∑
( ]

( )

undefined if , 1  
lim

if 1,

n

n

r
r

r→∞

 ∈ −∞ −
= 

∞ ∈ ∞

1

a

r
=

−

The geometric series diverges for all other values of r
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Back to our example:
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the first term

the ratio b/w the terms
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 of the series should also be 1sum
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Represent 2.15 as an improper fraction by using a geometric series.

2.15 2.151515= …

2= +

a geometric series with ____  and ____a r= =
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A  is one in which the middle terms cancel

and the sum collapses into just a few terms.

telescoping series

( )1

Example:
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If the series  is convergent, then _____________.
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Test for Divergence :
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If lim 0,  then the series  is convergent. This is _______
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Converse :
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If   and  are convergent series, 

then so are the series  (where c is a constant), 

, and ,

n n

n

n n n n

a b

ca

a b a b+ −

∑ ∑
∑

∑ ∑

i)  
n

ca =∑

( )

( )

ii)  

iii)  

n n

n n

a b

a b

+ =

− =

∑
∑


