12.3 The Integral Test

If f(x) is: a) continuous, on the interval $[k,\infty)$

- b) positive,
- c) and decreasing

,then the series $\sum_{n=k}^{\infty} a_n$ (with $a_n = f(n)$)

- i) is convergent when $\int_{k}^{\infty} f(x) dx$ is convergent.
- ii) is divergent when $\int_{t}^{\infty} f(x) dx$ is divergent.

Note:

the function does not necessarily have to be decreasing for all $x \in [k, \infty)$ as long as the function is decreasing "eventually"

(there is some number N so that f is decreasing for all x > N)

The next two slides give you a feeling of **how** the integral test works.

on $[1,\infty)$

approximately $1, \infty$)

ontinuous,

ontinu

approximate the area $\int_{-X}^{\infty} \frac{1}{x} dx$ with rectangles

of width 1 using the left endpoint

$$A \approx 1(1) + 1(\frac{1}{2}) + 1(\frac{1}{3}) + \dots = 1 + \frac{1}{2} + \frac{1}{3} + \dots$$

- b) positive,
- $A \approx \sum_{n=1}^{\infty} \frac{1}{n}$ but this is an **overestimate**
- c) and decreasing

$$\Rightarrow \int_{1}^{\infty} \frac{1}{x} dx < \sum_{n=1}^{\infty} \frac{1}{n}$$

But
$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} dx = \lim_{b \to \infty} \ln x \Big|_{1}^{b} = \lim_{b \to \infty} \ln b = \infty$$

The integral $\int_{1}^{\infty} \frac{1}{x} dx$ diverges and $\int_{1}^{\infty} \frac{1}{x} dx < \sum_{n=1}^{\infty} \frac{1}{n}$

 \Rightarrow The series $\sum_{n=1}^{\infty} \frac{1}{n}$ must also diverge

the harmonic series

approximate the area $\int_{-\infty}^{\infty} \frac{1}{x^2} dx$ with rectangles

of width 1 using the right endpoint
$$A \approx 1\left(\frac{1}{4}\right) + 1\left(\frac{1}{9}\right) + 1\left(\frac{1}{16}\right) + \dots = \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots$$

- b) positive,

 $A \approx \sum_{n=0}^{\infty} \frac{1}{n^2}$ but this is an **underestimate**

c) and decreasing
$$\Rightarrow \sum_{n=2}^{\infty} \frac{1}{n^2} < \int_{1}^{\infty} \frac{1}{x^2} dx \Rightarrow 1 + \sum_{n=2}^{\infty} \frac{1}{n^2} < 1 + \int_{1}^{\infty} \frac{1}{x^2} dx$$
$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} < 1 + \int_{1}^{\infty} \frac{1}{x^2} dx$$

But
$$\int_{1}^{\infty} \frac{1}{x^2} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-2} dx = \lim_{b \to \infty} \frac{-1}{x} \Big|_{1}^{b} = \lim_{b \to \infty} \frac{-1}{b} + 1 = 1$$

The integral $\int_{1}^{\infty} \frac{1}{x^2} dx$ converges and $\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} < 2$ (The sequence of partial sums S_n is a bounded increasing sequence \Rightarrow this sequence converges)

 \Rightarrow The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ also converges

 $f(x) = \frac{1}{x^p}$ For what values of p does the integral converge?

on $[1, \infty)$ $\int_{1}^{\infty} \frac{1}{x^p} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-p} dx = \lim_{b \to \infty} \frac{x^{-p+1}}{-p+1} \Big|_{1}^{b}$ a) continuous, $\int_{1}^{\infty} \frac{1}{x^p} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-p} dx = \lim_{b \to \infty} \frac{x^{-p+1}}{-p+1} \Big|_{1}^{b}$

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-p} dx = \lim_{b \to \infty} \frac{x^{-p+1}}{-p+1} \Big|_{1}^{b}$$

need -p+1 to be negative so that

b) positive,

we can get convergence by moving

c) and decreasing

the x – term to the denominator

$$-p+1 < 0 \Longrightarrow \boxed{p > 1}$$

corresponding to this function is the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$

this is called a p – series

i)
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges when $p > 1$

ii)
$$\sum_{p=1}^{\infty} \frac{1}{n^p}$$
 diverges when $p \le 1$

Which of these converge?

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^{5/2}}$$
 b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ c) $\sum_{n=1}^{\infty} \frac{3}{2n^3}$ d) $\sum_{n=1}^{\infty} n^{-e}$

$$b) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

$$c) \sum_{n=1}^{\infty} \frac{3}{2n^3}$$

$$d$$
) $\sum_{n=1}^{\infty} n^{-n}$

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^{5/2}}$$
 converges p – series with $p = 2.5$

b)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 diverges p – series with $p = \frac{1}{2}$

c)
$$\sum_{n=1}^{\infty} \frac{3}{2n^3} = \frac{3}{2} \sum_{n=1}^{\infty} \frac{1}{n^3}$$
 converges p – series with $p = 3$

d)
$$\sum_{n=1}^{\infty} n^{-e} = \sum_{n=1}^{\infty} \frac{1}{n^{e}}$$
 converges p – series with $p = e$

Which of these converge?

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$
 b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ c) $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$

b)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

c)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$
 $f(x) = \frac{1}{x^2 + 4}$ continuous, positive, and decreasing on $[1, \infty)$

$$\int_{1}^{\infty} \frac{1}{x^{2} + 4} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{2} + 4} dx = \lim_{b \to \infty} \frac{1}{2} \arctan\left(\frac{x}{2}\right)\Big|_{1}^{b}$$

$$= \lim_{b \to \infty} \frac{1}{2} \arctan\left(\frac{b}{2}\right) - \arctan\left(\frac{1}{2}\right) \qquad \left(\arctan x \to \frac{\pi}{2} \text{ as } x \to \infty\right)$$

$$= \frac{\pi}{4} - \frac{1}{2} \arctan\left(\frac{1}{2}\right) \implies \text{ the integral converges}$$

so,
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$
 converges by the integral test.

Which of these converge?

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$
 b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ c) $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$

$$b) \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

c)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

b)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
 $f(x) = \frac{1}{x \ln x}$ continuous, positive, and decreasing on $[2, \infty)$
$$\left[f'(x) = \frac{-\left[\ln(x) + 1\right]}{(x \ln x)^2} \text{ always negative on } [2, \infty) \right]$$

$$\int_{2}^{\infty} \frac{1}{x \ln x} dx = \lim_{b \to \infty} \int_{2}^{b} \frac{1}{x \ln x} dx = \lim_{b \to \infty} \ln \left(\ln x\right) \Big|_{2}^{b} = \lim_{b \to \infty} \ln \left(\ln b\right) - \ln \left(\ln 2\right)$$

$$u = \ln x$$

$$du = \frac{1}{x} dx \int_{u}^{1} du = \ln |u| + C$$

$$= \infty \qquad (\ln x \to \infty \text{ as } x \to \infty)$$

⇒ the integral diverges

so, $\sum_{n=0}^{\infty} \frac{1}{n \ln n}$ diverges by the integral test.

Which of these converge?

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$

$$b) \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

$$c) \sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$
 b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ c) $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$
$$\begin{cases} f'(x) = \frac{x - 2x \ln(x)}{x^4} = \frac{1 - 2\ln(x)}{x^3} \\ 1 - 2\ln x < 0 \Rightarrow \ln x > \frac{1}{2} \Rightarrow x > e^{1/2} \\ f \text{ is decreasing for } x > \sqrt{e} \sim 1.65 \end{cases}$$

c)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$
 $f(x) = \frac{\ln x}{x^2}$ continuous, positive, and decreasing on $[2,\infty)$

$$\int_{2}^{\infty} \frac{\ln x}{x^{2}} dx = \lim_{b \to \infty} \int_{2}^{b} \frac{\ln x}{x^{2}} dx = \lim_{b \to \infty} \frac{-(1 + \ln x)}{x} \Big|_{2}^{b} = \lim_{b \to \infty} \frac{-(1 + \ln b)}{b} + \frac{1 + \ln 2}{2} = \frac{1 + \ln 2}{2}$$

$$u = \ln x \quad dv = \frac{1}{x^2} dx$$
$$du = \frac{1}{x} dx \quad v = \frac{-1}{x}$$

since,
$$\lim_{b \to \infty} \frac{-\left(\ln b + 1\right)}{b} = \frac{-\infty}{\infty} = \lim_{b \to \infty} \frac{-\frac{1}{b}}{1} = 0$$

so,
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$
 converges by the integral test.

Remainder Estimate for the Integral Test

If f(x) is: a) continuous, on the interval $[k,\infty)$

b) positive,

- c) and decreasing

(with
$$a_n = f(n)$$
)

and the series $\sum a_n$ is convergent.

, then the remainder $R_n = s_n - s$ can be bounded above by $\int f(x) dx$.

$$s = \underbrace{a_1 + a_2 + a_3 + \dots + a_n}_{s_n} + \underbrace{a_{n+1} + a_{n+2} + a_{n+3} + \dots}_{R_n} \qquad \left(\text{and below by } \int_{n+1}^{n} f(x) dx.\right)$$

and below by
$$\int_{n+1}^{\infty} f(x) dx$$
.

$$\Rightarrow R_n = a_{n+1} + a_{n+2} + a_{n+3} + \cdots$$

Exercise # 34

Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^5}$ correct to 3 decimal places.

First find the value of n so that s_n is within 0.0005.

$$\int_{n}^{\infty} \frac{1}{x^{5}} dx = \lim_{b \to \infty} \left(\frac{-1}{4x^{4}} \right)_{n}^{b} = \lim_{b \to \infty} \left(\frac{-1}{4b^{4}} \right) - \left(\frac{-1}{4n^{4}} \right) = \frac{1}{4n^{4}}$$

$$R_n \le \int_0^\infty f(x) dx = \frac{1}{4n^4} = \frac{5}{10,000} = \frac{1}{2,000}$$

$$\frac{1}{4n^4} = \frac{1}{2,000} \Rightarrow 4n^4 = 2,000 \Rightarrow n^4 = 500 \Rightarrow n = \sqrt[4]{500} \approx 4.73$$

So we need to go out to 5 terms.

$$\sum_{n=1}^{\infty} \frac{1}{n^5} \approx 1 + \frac{1}{32} + \frac{1}{243} + \frac{1}{1024} + \frac{1}{3125} \approx 1.036661789$$

The actual value is $\zeta(5) \approx 1.036927755$ (look up the Riemann Zeta Function)