12.3 The Integral Test

If f(x) is: a)

on the interval $[k,\infty)$

- c) and

,then the series $\sum_{n=1}^{\infty} a_n$ (with $a_n = f(n)$)

- i) is _____ when $\int_{-\infty}^{\infty} f(x) dx$ is _____.
- ii) is _____ when $\int_{-\infty}^{\infty} f(x) dx$ is _____.

Note:

the function does not necessarily have to be decreasing for all $x \in [k, \infty)$ as long as the function is decreasing "eventually"

(there is some number N so that f is decreasing for all x > N)

The next two slides give you a feeling of **how** the integral test works.

approximate the area $\int_{-x}^{\infty} \frac{1}{x} dx$ with rectangles

of width 1 using the left endpoint

b) positive,

 $A \approx 1(1) + 1(\frac{1}{2}) + 1(\frac{1}{3}) + \dots = 1 + \frac{1}{2} + \frac{1}{3} + \dots$

$$A \approx \sum_{n=1}^{\infty} \frac{1}{n} \quad \text{but this is an }$$

$$\Rightarrow \int_{-\infty}^{\infty} \frac{1}{x} dx \quad \square \quad \sum_{n=1}^{\infty} \frac{1}{n}$$

$$t \int_{-x}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \int_{-x}^{b} \frac{1}{x} dx$$

But
$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} dx$$

The integral $\int_{1}^{\infty} \frac{1}{x} dx$ and $\int_{1}^{\infty} \frac{1}{x} dx < \sum_{n=1}^{\infty} \frac{1}{n}$

$$\Rightarrow$$
 The series $\sum_{n=1}^{\infty} \frac{1}{n}$ must also ______. the _____.

approximate the area $\int_{-\infty}^{\infty} \frac{1}{x^2} dx$ with rectangles

$$A \approx 1\left(\frac{1}{4}\right) + 1\left(\frac{1}{9}\right) + 1\left(\frac{1}{16}\right) + \dots = \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots$$

- b) positive,

 $A \approx \sum_{n=0}^{\infty} \frac{1}{n^2}$ but this is an _____

c) and decreasing
$$\Rightarrow \sum_{n=2}^{\infty} \frac{1}{n^2} < \int_{1}^{\infty} \frac{1}{x^2} dx \Rightarrow 1 + \sum_{n=2}^{\infty} \frac{1}{n^2} < 1 + \int_{1}^{\infty} \frac{1}{x^2} dx$$
$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} < 1 + \int_{1}^{\infty} \frac{1}{x^2} dx$$

But
$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-2} dx$$

The integral $\int_{1}^{\infty} \frac{1}{x^2} dx$ and $\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} < 1 + 1 = 2$ (The sequence of partial sums S_n is a bounded increasing sequence \Rightarrow this sequence converges)

 \Rightarrow The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ also ______.

 $f(x) = \frac{1}{x^p}$ For what values of p does the integral converge? on $[1, \infty)$ $\int_{1}^{\infty} \frac{1}{x^p} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-p} dx$ a) continuous, $\int_{1}^{\infty} \frac{1}{x^p} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-p} dx$ so that

- need -p+1 to be _____ so that
- b) positive, we can get convergence by moving
- c) and decreasing the x – term to the _____

corresponding to this function is the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$

this is called a _____

- i) $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges when _____
- ii) $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges when _____

Which of these converge?

- a) $\sum_{n=1}^{\infty} \frac{1}{n^{5/2}}$ b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ c) $\sum_{n=1}^{\infty} \frac{3}{2n^3}$ d) $\sum_{n=1}^{\infty} n^{-e}$

- $b) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
- $c) \sum_{n=1}^{\infty} \frac{3}{2n^3}$ $d) \sum_{n=1}^{\infty} n^{-e}$

Which of these converge?

- a) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$ b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ c) $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$ a) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$

so, $\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$ _____ by the _____.

Which of these converge?

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$
 b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ c) $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$ b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$

c)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

$$b) \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

so,
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
 by the _____.

Which of these converge?

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$
 b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ c) $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$

$$b) \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

c)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

$$c) \sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

so,
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$
 _____ by the _____.