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12.5 Alternating Series Test
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The series  by the Test For Divergence, since  does not exist.diverges
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The size of the error is at most the size of the first omitted term.

The error has the same sign as the first omitted term.

1 1The actual sum is between  and .n n n ns b s b+ +− +
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9The error committed in using the 9th partial sum to approximate the total sum is R

The size of this error is at most the size of the first omitted term.
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The sign of the error is the sign of the first omitted term.
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