
Math 104 – Rimmer

12.6 Absolute Convergence 

and the Ratio and Root Tests

An infinite series 

Absolute convergence implies converges.
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 is called  if the positive series   converges.n n
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( )If the series of absolute value converges, then the original series also converges

If the series of absolute value , it is still possible diverges

An infinite series

If the series of absolute value , it is still possible 

for the original series to converge.

diverges

Use the Alternating Series Test on the original series.

If the Alternating Series Test gives convergence, then this is a special 

type of convergence.
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On  try :

a)  the Alternating Series Test, or

b)  the Test for Divergence
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A major difference between absolutely convergent and conditionally convergent

comes in the rearrangement of the terms.
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Determine whether the series is absolutely convergent, 

conditionally convergent, or divergent.
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{ } 1Let  be a sequence and assume that the following limit exists: lim n
n
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  If 1,  then the series  is absolutely convergent.n
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  If 1 or if the limit is infinite,  then the series  is divergent.n
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( )

  If 1,  the Ratio Test is inconclusive.

the series could be absolutely convergent, conditionally convergent, or divergent

iii L =
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Determine whether the series is convergent or divergent.
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Determine whether the series is convergent or divergent.
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