12.6 Absolute Convergence

An infinite series
$\sum_{n=1}^{\infty} a_{n}$ is called absolutely convergent if the positive series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.

Absolute convergence implies converges.
(If the series of absolute value converges, then the original series also converges)

If the series of absolute value diverges, it is still possible for the original series to converge.

Use the Alternating Series Test on the original series.
If the Alternating Series Test gives convergence, then this is a special type of convergence.

An infinite series

$$
\sum_{n=1}^{\infty} a_{n} \text { is called conditionally convergent if it converges but } \sum_{n=1}^{\infty}\left|a_{n}\right| \text { diverges. }
$$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a_{n} \text { is absolutely convergent } \\
& \qquad \sum_{n=1}^{\infty} a_{n} \text { is convergent }
\end{aligned}
$$

If the Alternating Series Test gives convergence,
$\sum_{n=1}^{\infty} a_{n}$ is conditionally convergent

If the Test for Divergence gives divergence,

$$
\sum_{n=1}^{\infty} a_{n} \text { is divergent }
$$

A major difference between absolutely convergent and conditionally convergent comes in the rearrangement of the terms.

If $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent with sum s, then any rearrangement of the sum $\sum_{n=1}^{\infty} a_{n}$ will have the same sum s.

If $\sum_{n=1}^{\infty} a_{n}$ is conditionally convergent and r is any real number, then there is a rearrangement of the sum $\sum_{n=1}^{\infty} a_{n}$ that has the sum r.

$$
\begin{array}{rlrl}
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} & =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2(\text { We will show this later) } & \frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots\right)=\frac{1}{2} \ln 2 \\
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\cdots & =\ln 2 & \frac{1}{2}-\frac{1}{4}+\frac{1}{6}+\cdots=\frac{1}{2} \ln 2 \\
+ & 0+\frac{1}{2}+0-\frac{1}{4}+0+\frac{1}{6}+0+-\frac{1}{8}+\cdots & =\frac{1}{2} \ln 2 & 0+\frac{1}{2}+0-\frac{1}{4}+0+\frac{1}{6}+\cdots=\frac{1}{2} \ln 2
\end{array}
$$

$$
1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\quad \frac{1}{7}-\frac{1}{4}+\cdots=\frac{3}{2} \ln 2 \quad \text { different sums }
$$

same terms

Determine whether the series is absolutely convergent, conditionally convergent, or divergent.
i) $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{\sqrt{n^{3}}}$
$\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}}}=\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$
convergent p-series
$\Rightarrow \sum_{n=1}^{\infty} \frac{\cos (n \pi)}{\sqrt{n^{3}}}$ is
absolutely convergent

$$
\begin{aligned}
& \text { ii) } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}} \\
& \sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}
\end{aligned}
$$

divergent p-series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}} \text { use A.S.T.: }
$$

$$
b_{n}=\frac{1}{\sqrt{n}} \text { is decreasing, }
$$

$$
\text { and } \lim _{n \rightarrow \infty} b_{n}=0
$$

convergent by A.S.T.

$$
\begin{aligned}
& \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}} \text { is } \\
& \text { conditionally convergent } \\
& \hline
\end{aligned}
$$

iii) $\sum_{n=1}^{\infty} \frac{(-4)^{n+1}}{3^{n}}$
$\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{4^{n+1}}{3^{n}}=4 \sum_{n=1}^{\infty}\left(\frac{4}{3}\right)^{n}$
divergent geom. series
$\sum_{n=1}^{\infty} \frac{(-4)^{n+1}}{3^{n}}$ use T.F.D. $:$
$\lim _{n \rightarrow \infty} \frac{(-4)^{n+1}}{3^{n}}$ does not exist

$$
\begin{aligned}
& \Rightarrow \sum_{n=1}^{\infty} \frac{(-4)^{n+1}}{3^{n}} \text { is } \\
& \text { divergent }
\end{aligned}
$$

12.6 The Ratio Test

Let $\left\{a_{n}\right\}$ be a sequence and assume that the following limit exists: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$
i) If $L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
ii) If $L>1$ or if the limit is infinite, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
iii) If $L=1$, the Ratio Test is inconclusive.
(the series could be absolutely convergent, conditionally convergent, or divergent)

12.6 The Root Test

Let $\left\{a_{n}\right\}$ be a sequence and assume that the following limit exists: $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L$
i) If $L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
ii) If $L>1$ or if the limit is infinite, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
iii) If $L=1$, the Root Test is inconclusive.
(the series could be absolutely convergent, conditionally convergent, or divergent)

Determine whether the series is convergent or divergent.

$$
\begin{aligned}
& \text { i) } \sum_{n=1}^{\infty} \frac{n^{3}}{4^{n}} \quad \text { ii) } \sum_{n=1}^{\infty} \frac{n!}{4^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ii) } \lim _{n \rightarrow \infty}\left|\frac{a_{n+\infty}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)!}{4^{n+1}}}{\frac{n!}{4^{n}}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!} \cdot \frac{4^{n}}{4^{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1) \not n!}{n!} \cdot \frac{\mathcal{A}^{n}}{4 \cdot \mathcal{H}^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{4}=\infty
\end{aligned}
$$

Determine whether the series is convergent or divergent.

$$
\text { iii) } \sum_{n=1}^{\infty} \frac{(2 n+1)^{n}}{n^{2 n}} \quad \text { iv) } \sum_{n=1}^{\infty} \frac{n^{2}}{(2 n+1)!}
$$

$$
\text { iii) } \lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{(2 n+1)^{n}}{\left(n^{2}\right)^{n}}\right|}=\lim _{n \rightarrow \infty}\left[\left(\frac{2 n+1}{n^{2}}\right)^{n}\right]^{1 / n}=\lim _{n \rightarrow \infty} \frac{2 n+1}{n^{2}}=0
$$

$$
\sum_{n=1}^{\infty} \frac{(2 n+1)^{n}}{n^{2 n}} \text { is convergent }
$$

$$
\begin{aligned}
& \text { iv) } \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)^{2}}{(2[n+1]+1)!}}{\frac{n^{2}}{(2 n+1)!}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}}{n^{2}} \cdot \frac{(2 n+1)!}{(2 n+3)!}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}}{n^{2}} \cdot \frac{(2 n+1)!}{(2 n+3) \cdot(2 n+2)(2 n+1)!}\right|=\lim _{n \rightarrow \infty} \frac{1}{(2 n+3) \cdot(2 n+2)}=0 \\
& \sum_{n=1}^{\infty} \frac{n^{2}}{(2 n+1)!} \text { is convergent }
\end{aligned}
$$

