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12.6 Absolute Convergence 

and the Ratio and Root Tests

An infinite series 

__________________ implies ______________.

An infinite series

1 1

 is called  if the positive se______________ ries  converges._____
n n

n n

a a

∞ ∞

= =

∑ ∑

( )If the series of absolute value converges, then the original series also converges

If the series of absolute value ________ , it is still possible 

for the original series to converge.

Use the __________________ on the original series.

If the Alternating Series Test gives convergence, then this is a special 

type of convergence.

1 1

 is called  if it converge__________ s but__________    diverges.
n n

n n
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∑ ∑

Math 104 – Rimmer

12.6 Absolute Convergence 

and the Ratio and Root Tests

1

n

n

a

∞

=

∑



2

Math 104 – Rimmer

12.6 Absolute Convergence 

and the Ratio and Root Tests

1

If  is ___________________ with sum ,
n

n

a s

∞

=

∑

A major difference between absolutely convergent and conditionally convergent

comes in the ______________________.

1

then any rearrangement of the sum  will _______________ .
n

n

a

∞

=

∑

1

If  is _________________ and  is any real number,
n

n

a r

∞

=

∑

1

then there is a rearrangement of the sum  that ____________ .
n

n

a

∞

=

∑
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1 ln 2  We will show this later
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same terms

 different sums
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Determine whether the series is absolutely convergent, 

conditionally convergent, or divergent.
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{ } 1Let  be a sequence and assume that the following limit exists: lim n

n
n

n

a
a L

a

+

→∞
=

)
1

  If 1,  then the series  is ________________.
n

n

i L a

∞

=

< ∑

)
1

  If 1 or if the limit is infinite,  then the series  is ___________.
n

n

ii L a

∞

=

> ∑

)

( )

  If 1,  ________________.

the series could be absolutely convergent, conditionally convergent, or divergent

iii L =
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Determine whether the series is convergent or divergent.
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Determine whether the series is convergent or divergent.
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