‘ ‘ Math 104 — Rimmer
@ 12.7 Strategies to deal with
"EZE" all tests

12.7 Strategies (which test to use on which series)

1) Check at a glance to see if lima, # 0.

n—»oo

If this is true, then the series diverges by the Test for Divergence.

2) Series that we can find whether or not they converge rather quickly:

: - 1. : :
a) p —series 7—]) 1s convergent for p > 1 and divergent if p <1.

I’lzl n %) [e%)
. . -1 .
b) |geometric series Zar” or Zar” is convergent for |r| <1 and
n=lI n=lI

divergent if ‘r‘ >1.
3) Use the Comparison Test / Limit Comparison Test on series

a) that have the form of p —series or geometric series
if a, 1s a fraction involving polynomials only or polynomials under radicals

compare this series with a p —series

b) Note: make sure that the series has only positive terms to use the comp. tests
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4) The Alternating Series Test might work on series of the form ) (-1)" b,

n=1

5) The Ratio Test works well on series involving factorials

or constants raised to powers involving n

n

6) The Root Test works well if a, is of the form (b, )

7) The Integral Test works well if I f (x)dx is not difficult to evaluate,
k

where Zan with a, = f (n) and f is continuous, decreasing, and positive on [k,oo)
n=k
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Zb converges so Za _nlfi a3 SO Z_;an converges
p—series w/ p=2 n=
converges by the Comp. Test. Z b diverges so Z a by the Ratio Test.

n=1 Harmonic series n=l1

diverges by the Limit Comp. Test.
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converges
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‘cos( nl _ ! n
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n=l1

SO Zan converges absolutely

n=l1

by the Comp. Test.

— Z a, diverges by the
n=l

Test For Divergence

b, 1s decreasing

limb, =0

n—»oo

= Zan converges by the

n=1

Alternating Series Test
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by the Integral Test converges by the Limit Comp. Test.



