12.7 Strategies (which test to use on which series)

1) Check at a glance to see if $\lim_{n\to\infty} a_n \neq 0$.

If this is true, then the series diverges by the **Test for Divergence**.

- Series that we can find whether or not they converge rather quickly:

 - a) p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent for p > 1 and divergent if $p \le 1$.

 b) geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ or $\sum_{n=1}^{\infty} ar^n$ is convergent for |r| < 1 and divergent divergent. divergent if $|r| \ge 1$.
- Use the Comparison Test / Limit Comparison Test on series
 - a) that have the form of p series or geometric series if a_n is a fraction involving polynomials only or polynomials under radicals compare this series with a p – series
 - b) Note: make sure that the series has only positive terms to use the comp. tests

12.7 Strategies (which test to use on which series) Math 104 – Rimmer 12.7 Strategies to deal with all tests

- The Alternating Series Test might work on series of the form $\sum_{n=1}^{\infty} (-1)^n b_n$
- The Ratio Test works well on series involving factorials or constants raised to powers involving *n*
- The Root Test works well if a_n is of the form $(b_n)^n$

7) The Integral Test works well if $\int_{k}^{\infty} f(x) dx$ is not difficult to evaluate, where $\sum_{n=0}^{\infty} a_n$ with $a_n = f(n)$ and f is continuous, decreasing, and positive on $[k, \infty)$

$$i) \sum_{n=1}^{\infty} \frac{n}{n^3 + 2}$$

$$iii) \sum_{n=1}^{\infty} \frac{n^2}{e^n}$$

$$v) \sum_{n=1}^{\infty} \pi^{1/n}$$

all tests
$$vii) \sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

$$ii) \sum_{n=1}^{\infty} \frac{n^2+2}{n^3+3}$$

$$iv) \sum_{n=1}^{\infty} \frac{\cos(5n)}{1+(1.4)^n}$$

$$iv) \sum_{n=1}^{\infty} \frac{\cos(5n)}{1+(1.4)^n}$$
 $vi) \sum_{n=1}^{\infty} \frac{(-1)^{n-1}\sqrt{n}}{n+1}$ $viii) \sum_{n=2}^{\infty} \frac{n\ln n}{(n-1)^3}$

$$viii) \sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^3}$$

$$i) \sum_{n=1}^{\infty} \frac{n}{n^3 + 2}$$

$$b_n = \frac{n}{n^3} = \frac{1}{n^2}$$

$$\frac{n}{n^3 + 2} < \frac{1}{n^2} \text{ since } n^3 < n^3 + 2$$

$$\sum_{n=1}^{\infty} b_n \text{ converges so } \sum_{n=1}^{\infty} a_n$$

converges by the Comp. Test.

$$ii) \sum_{n=1}^{\infty} \frac{n^2 + 2}{n^3 + 3}$$

$$b_n = \frac{n^2}{n^3} = \frac{1}{n}$$

$$\lim_{n \to \infty} \left| \frac{a_n}{b_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{n^2 + 2}{n^3 + 3}}{\frac{1}{n}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{n^3 + 2n}{n^3 + 3} \right| = 1$$

$$\sum_{n=1}^{\infty} b_n \text{ diverges so } \sum_{n=1}^{\infty} a_n$$

$$iii)$$
 $\sum_{n=1}^{\infty} \frac{n^2}{e^n}$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^2}{n^2} \frac{e^n}{e^{n+1}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{(n+1)^2}{n^2} \cdot \frac{e^n}{e^n e} \right| = \frac{1}{e} < 1$$

so
$$\sum_{n=1}^{\infty} a_n$$
 converges

by the Ratio Test.

diverges by the Limit Comp. Test.

$$i) \sum_{n=1}^{\infty} \frac{n}{n^3 + 2}$$

$$iii) \sum_{n=1}^{\infty} \frac{n^2}{e^n}$$

$$v) \sum_{n=1}^{\infty} \pi^{1/n}$$

$$vii) \sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

$$ii) \sum_{n=1}^{\infty} \frac{n^2 + 2}{n^3 + 3} \qquad iv) \sum_{n=1}^{\infty} \frac{\cos(5n)}{1 + (1.4)^n} \qquad vi) \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sqrt{n}}{n+1}$$

$$\sum_{n=1}^{\infty} \frac{n^2 + 2}{n^3 + 3} \qquad iv) \sum_{n=1}^{\infty} \frac{\cos(5n)}{1 + (1.4)^n} \qquad vi) \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sqrt{n}}{n+1} \qquad viii) \sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^3}$$

$$iv$$
) $\sum_{n=1}^{\infty} \frac{\cos(5n)}{1+(1.4)^n}$ terms aren't all positive

 $\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{|\cos(5n)|}{1 + (1.4)^n}$

$$v) \sum_{n=1}^{\infty} \pi^{1/n}$$

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \pi^{1/n} = \pi^0 = 1 \neq 0$$

$$b_n = \frac{1}{(1.4)^n} = \frac{1}{(\frac{7}{5})^n} = \left(\frac{5}{7}\right)^n$$

$$\Rightarrow \sum_{n=1}^{\infty} a_n$$
 diverges by the

$$\sum_{n=1}^{\infty} b_n \quad \text{converges} \\ \text{geom. series w/ } r = 5/7$$

$$\frac{\left|\cos(5n)\right|}{1+(1.4)^{n}} < \frac{1}{(1.4)^{n}}$$

Test For Divergence

$$\lim_{n\to\infty}b_n=0$$

 b_n is decreasing

 $vi) \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sqrt{n}}{n+1}$

 $b_n = \frac{\sqrt{n}}{n+1} > 0$

 $\Rightarrow \sum a_n$ converges by the

Alternating Series Test

so $\sum a_n$ converges absolutely by the Comp. Test.

$$i) \sum_{n=1}^{\infty} \frac{n}{n^3 + 2}$$

$$iii) \sum_{n=1}^{\infty} \frac{n^2}{e^n}$$

$$v) \sum_{n=1}^{\infty} \pi^{1/n}$$

$$vii) \sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

$$ii) \sum_{n=1}^{\infty} \frac{n^2+2}{n^3+3}$$

$$iv) \sum_{n=1}^{\infty} \frac{\cos(5n)}{1+(1.4)^n}$$

$$vi) \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sqrt{n}}{n+1}$$
 $viii) \sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^3}$

$$viii) \sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^3}$$

vii)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$
 $f(x) = \frac{\ln x}{x^2} > 0$, continuous, decreasing

$$f\left(x\right) = \frac{mx}{x^2} > 0,$$

$$\int_{2}^{\infty} \frac{\ln x}{x^{2}} dx = \lim_{b \to \infty} \frac{-\ln x}{x} \Big|_{2}^{b} + \int_{2}^{b} \frac{1}{x^{2}} dx$$

$$u = \ln x \quad dv = \frac{1}{x^2} dx$$
$$du = \frac{1}{x} dx \quad v = -\frac{1}{x}$$

$$= \lim_{b \to \infty} \frac{-\ln b}{b} + \frac{\ln 2}{2} + \frac{-1}{b} + \frac{1}{2}$$

$$= \frac{1 + \ln 2}{2} \text{ since } \lim_{b \to \infty} \frac{-\ln b}{b} = \lim_{b \to \infty} \frac{-\frac{1}{b}}{1} = 0$$

$$\Rightarrow \sum_{n=1}^{\infty} a_n \text{ converges} \qquad \text{and } \lim_{b \to \infty} \frac{-1}{b} = 0$$

and
$$\lim_{b\to\infty} \frac{-1}{b} = 0$$

by the Integral Test

viii)
$$\sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^3}$$
 $b_n = \frac{n \ln n}{n^3} = \frac{\ln n}{n^2}$

$$b_n = \frac{n \ln n}{n^3} = \frac{\ln n}{n^2}$$

$$\lim_{n \to \infty} \left| \frac{a_n}{b_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{n \ln n}{(n-1)^3}}{\frac{\ln n}{n^2}} \right|$$

$$\frac{u = \ln x}{du = \frac{1}{x} dx} \quad v = -\frac{1}{x}$$

$$= \lim_{b \to \infty} \frac{-\ln b}{b} + \frac{\ln 2}{2} + \frac{-1}{b} + \frac{1}{2}$$

$$= \lim_{b \to \infty} \frac{-\ln b}{b} = \lim_{b \to \infty} \frac{-\ln b}{b} = \lim_{b \to \infty} \frac{-\ln b}{1} = 0$$

$$= \lim_{n \to \infty} \left| \frac{n \ln n}{(n-1)^3} \cdot \frac{n^2}{\ln n} \right| = \lim_{n \to \infty} \left| \frac{n^3}{(n-1)^3} \right| = 1$$

$$\sum_{n=1}^{\infty} b_n$$
 converges so $\sum_{n=1}^{\infty} a_n$

converges by the Limit Comp. Test.