

1) Check at a glance to see if $\lim _{n \rightarrow \infty} a_{n} \neq 0$.

If this is true, then the series diverges by the Test for Divergence.
2) Series that we can find whether or not they converge rather quickly:
a) $p-$ series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent for $p>1$ and divergent if $p \leq 1$.
b) geometric series $\sum_{n=1}^{\infty} a r^{n-1}$ or $\sum_{n=1}^{\infty} a r^{n}$ is convergent for $|r|<1$ and $\begin{aligned} & \text { divergent if }|r| \geq 1 .\end{aligned}$
3) Use the Comparison Test / Limit Comparison Test on series
a) that have the form of p-series or geometric series if a_{n} is a fraction involving polynomials only or polynomials under radicals compare this series with a p-series
b) Note: make sure that the series has only positive terms to use the comp. tests

4) The Alternating Series Test might work on series of the form $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$
5) The Ratio Test works well on series involving factorials or constants raised to powers involving n
6) The Root Test works well if a_{n} is of the form $\left(b_{n}\right)^{n}$
7) The Integral Test works well if $\int_{k}^{\infty} f(x) d x$ is not difficult to evaluate, where $\sum_{n=k}^{\infty} a_{n}$ with $a_{n}=f(n)$ and f is continuous, decreasing, and positive on $[k, \infty)$
i) $\sum_{n=1}^{\infty} \frac{n}{n^{3}+2}$
iii) $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{n}}$
v) $\sum_{n=1}^{\infty} \pi^{1 / n}$ Math 104-Rimmer 12.7 Strategies to deal with all tests
vii) $\sum_{n=2}^{\infty} \frac{\ln n}{n^{2}}$
ii) $\sum_{n=1}^{\infty} \frac{n^{2}+2}{n^{3}+3}$
iv) $\sum_{n=1}^{\infty} \frac{\cos (5 n)}{1+(1.4)^{n}}$
vi) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sqrt{n}}{n+1}$
viii) $\sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^{3}}$
i) $\sum_{n=1}^{\infty} \frac{n}{n^{3}+2}$
ii) $\sum_{n=1}^{\infty} \frac{n^{2}+2}{n^{3}+3}$
iii) $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{n}}$
i) $\sum_{n=1}^{\infty} \frac{n}{n^{3}+2}$
iii) $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{n}}$
v) $\sum_{n=1}^{\infty} \pi^{1 / n}$
Math 104 - Rimmer 12.7 Strategies to deal with all tests
vii) $\sum_{n=2}^{\infty} \frac{\ln n}{n^{2}}$
ii) $\sum_{n=1}^{\infty} \frac{n^{2}+2}{n^{3}+3} \quad$ iv) $\sum_{n=1}^{\infty} \frac{\cos (5 n)}{1+(1.4)^{n}}$
vi) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sqrt{n}}{n+1}$
viii) $\sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^{3}}$
iv) $\sum_{n=1}^{\infty} \frac{\cos (5 n)}{1+(1.4)^{n}}$
v) $\sum_{n=1}^{\infty} \pi^{1 / n}$
vi) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sqrt{n}}{n+1}$
i) $\sum_{n=1}^{\infty} \frac{n}{n^{3}+2}$
iii) $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{n}}$
v) $\sum_{n=1}^{\infty} \pi^{1 / n}$ Math 104-Rimmer 12.7 Strategies to deal with all tests
vii) $\sum_{n=2}^{\infty} \frac{\ln n}{n^{2}}$
ii) $\sum_{n=1}^{\infty} \frac{n^{2}+2}{n^{3}+3}$
iv) $\sum_{n=1}^{\infty} \frac{\cos (5 n)}{1+(1.4)^{n}}$
vi) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sqrt{n}}{n+1}$
viii) $\sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^{3}}$
vii) $\sum_{n=2}^{\infty} \frac{\ln n}{n^{2}}$
viii) $\sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^{3}} \quad b_{n}=\frac{n \ln n}{n^{3}}=\frac{\ln n}{n^{2}}$

Test for Divergence :

If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

$$
\text { geometric series } \sum_{n=1}^{\infty} a r^{n-1} \text { or } \sum_{n=1}^{\infty} a r^{n} \text { is convergent for }|r|<1 \text { and } \quad \text { divergent if }|r| \geq 1 .
$$

12.3 The Integral Test 玉ixw

If $f(x)$ is: \quad a) continuous, on the interval $\underset{\text { constant } k>0}{[k, \infty)}$
$b)$ positive,
c) and decreasing
,then the series $\sum_{n=k}^{\infty} a_{n}\left(\right.$ with $\left.a_{n}=f(n)\right)$
$i)$ is convergent when $\int_{k}^{\infty} f(x) d x$ is convergent.
ii) is divergent when $\int_{k}^{\infty} f(x) d x$ is divergent.
$p-$ series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent for $p>1$ and divergent if $p \leq 1$.

12.4

The Comparison Test:
Given the series $\sum_{n=1}^{\infty} a_{n},\left(a_{n} \geq 0\right)$
(i) if the terms a_{n} are smaller than the terms b_{n} of a known convergent series $\sum_{n=1}^{\infty} b_{n}\left(b_{n} \geq 0\right)$, then our series $\sum_{n=1}^{\infty} a_{n}$ is also convergent.
(ii) if the terms a_{n} are larger than the terms b_{n} of a known divergent series $\sum_{n=1}^{\infty} b_{n}\left(b_{n} \geq 0\right)$, then our series $\sum_{n=1}^{\infty} a_{n}$ is also divergent.

The Limit Comparison Test:

Given the series $\sum_{n=1}^{\infty} a_{n},\left(a_{n}>0\right)$ and a known convergent or divergent series $\sum_{n=1}^{\infty} b_{n},\left(b_{n}>0\right)$
If the $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$ where c is a finite positive number, then the series will behave alike, i.e. either both converge or both diverge.

12.5 The Alternating Series Test

If the alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n} \quad\left(\right.$ where $\left.b_{n}>0\right)$ satisfies:
i) $\lim b_{n}=0$
ii) $\left\{b_{n}\right\}$ is a decreasing sequence, and ,then the series is convergent.

12.6 The Ratio Test

Let $\left\{a_{n}\right\}$ be a sequence and assume that the following limit exists: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$
i) If $L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
ii) If $L>1$ or if the limit is infinite, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
iii) If $L=1$, the Ratio Test is inconclusive.
(the series could be absolutely convergent, conditionally convergent, or divergent)

12.6 The Root Test

Let $\left\{a_{n}\right\}$ be a sequence and assume that the following limit exists: $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L$
i) If $L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
ii) If $L>1$ or if the limit is infinite, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
iii) If $L=1$, the Root Test is inconclusive.
(the series could be absolutely convergent, conditionally convergent, or divergent)

