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12.7 Strategies to deal with 

all tests

)1   Check at a glance to see if lim 0.
n

n
a

→∞
≠

If this is true, then the series diverges by the   .Test for Divergence

)2   Series that we can find whether or not they converge rather quickly:

)
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1
  series   is convergent for 1 and divergent if 1.

p
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a p p p
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∞

=
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  geometric series   or  is convergent for 1 andn n

n n

b ar ar r
∞ ∞
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= =

<∑ ∑
divergent if 1.r ≥

)3   Use the Comparison Test / Limit Comparison Test on series

)  that have the form of series or geometric series a p −

if  is a fraction involving polynomials only or polynomials under radicalsna

compare this series with a seriesp −

)  Note: make sure that the series has only positive terms to use the comp. testsb
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)5   The Ratio Test works well on series involving factorials

or constants raised to powers involving n

) ( )6   The Root Test works well if  is of the form 
n

n na b

) ( )
1

4   The Alternating Series Test might work on series of the form 1
n

n

n

b
∞

=

−∑

) ( )7   The Integral Test works well if  is not difficult to evaluate, 
k

f x dx

∞

∫

( ) [ )where  with  and  is continuous, decreasing, and positive on ,n n

n k

a a f n f k
∞

=
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1

If lim 0 or lim  does not exist, then the series  is divergent.n n n
n n

n

a a a
∞

→∞ →∞
=

≠ ∑

Test for Divergence :
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 geometric series   or  is convergent for 1 andn n
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divergent if 1.r ≥
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( )If  is:f x )  continuous,a

)  positive,b

)  and decreasingc

[ )
constant 0

on the interval ,
k

k
>

∞

( )( ),then the series  with n n

n k
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=
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) ( )  is convergent when  is convergent.
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∞
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) ( )  is divergent when  is divergent.
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∫
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 series   is convergent for 1 and divergent if 1.
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( )
1

Given the series ,  0n n
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=

≥∑
( )
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 if the terms  are  than the terms  of a known 

series  0 , then our series  is also .
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The Comparison Test:
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( ) ( )
1

1

If the alternating series 1  where 0  satisfies:
n

n n

n
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∞
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) { }  is a decreasing sequence, andnii b

)  lim 0n
n
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,then the series is .convergent

( )
1

Given the series ,  0  and a n n
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If the lim  where  is a finite positive number, then n

n
n

a
c c

b→∞
=

The Limit Comparison Test:

the series will behave alike, i.e. either both converge or both diverge.

( )
1

known convergent or divergent series ,  0n n
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{ } 1Let  be a sequence and assume that the following limit exists: lim n
n

n
n

a
a L

a

+

→∞
=

)
1

  If 1,  then the series  is absolutely convergent.n

n

i L a
∞

=

< ∑

)
1

  If 1 or if the limit is infinite,  then the series  is divergent.n

n

ii L a
∞

=

> ∑

)

( )

  If 1,  the Ratio Test is inconclusive.

the series could be absolutely convergent, conditionally convergent, or divergent

iii L =
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{ }Let  be a sequence and assume that the following limit exists: lim n
n n

n
a a L

→∞
=

)
1

  If 1,  then the series  is absolutely convergent.n

n

i L a
∞

=

< ∑

)
1

  If 1 or if the limit is infinite,  then the series  is divergent.n

n

ii L a
∞

=

> ∑

)

( )

  If 1,  the Root Test is inconclusive.

the series could be absolutely convergent, conditionally convergent, or divergent

iii L =


