12.7 Strategies (which test to use on which series) Adath 104 - Rimmer 12.7 Strategies to deal with

1) Check at a glance to see if $\lim a_n \neq 0$.

If this is true, then the series diverges by the **Test for Divergence**.

- 2) Series that we can find whether or not they converge rather quickly:

 - a) p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent for p>1 and divergent if $p \le 1$. b) p-geometric series $p-\text{ge$ divergent if $|r| \ge 1$.

3) Use the Comparison Test / Limit Comparison Test on series

- a) that have the form of p series or geometric series if a_n is a fraction involving polynomials only or polynomials under radicals compare this series with a p – series
- b) Note: make sure that the series has only positive terms to use the comp. tests

12.7 Strategies (which test to use on which series) Auth 104 - Rimmer 12.7 Strategies to deal with

- 4) The Alternating Series Test might work on series of the form $\sum (-1)^n b_n$
- 5) The Ratio Test works well on series involving factorials or constants raised to powers involving n
- 6) The Root Test works well if a_n is of the form $(b_n)^n$
- 7) The Integral Test works well if $\int f(x)dx$ is not difficult to evaluate,

where $\sum_{n=0}^{\infty} a_n$ with $a_n = f(n)$ and f is continuous, decreasing, and positive on $[k, \infty)$

$$i) \sum_{n=1}^{\infty} \frac{n}{n^3 + 2}$$

$$iii)$$
 $\sum_{n=1}^{\infty} \frac{n^2}{e^n}$

$$v) \sum_{n=1}^{\infty} \pi^{1/n}$$

$$vii) \sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

$$ii) \sum_{n=1}^{\infty} \frac{n^2 + 2}{n^3 + 3}$$

$$iv) \sum_{n=1}^{\infty} \frac{\cos(5n)}{1+(1.4)^n}$$

i)
$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 2}$$
 iii) $\sum_{n=1}^{\infty} \frac{n^2}{e^n}$ v) $\sum_{n=1}^{\infty} \pi^{1/n}$ vii) $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$ ii) $\sum_{n=1}^{\infty} \frac{n^2 + 2}{n^3 + 3}$ iv) $\sum_{n=1}^{\infty} \frac{\cos(5n)}{1 + (1.4)^n}$ vi) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sqrt{n}}{n+1}$ viii) $\sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^3}$ i) $\sum_{n=1}^{\infty} \frac{n}{n^3 + 2}$ iii) $\sum_{n=1}^{\infty} \frac{n^2 + 2}{n^3 + 3}$ iii) $\sum_{n=1}^{\infty} \frac{n^2}{e^n}$

$$viii) \sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^3}$$

$$i) \sum_{n=1}^{\infty} \frac{n}{n^3 + 2}$$

$$ii) \sum_{n=1}^{\infty} \frac{n^2 + 2}{n^3 + 3}$$

$$iii) \sum_{n=1}^{\infty} \frac{n^2}{e^n}$$

$$i) \sum_{n=1}^{\infty} \frac{n}{n^3 + 2}$$

$$iii) \sum_{n=1}^{\infty} \frac{n^2}{e^n}$$

$$v) \sum_{n=1}^{\infty} \pi^{1/n}$$

$$vii) \sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

$$ii) \sum_{n=1}^{\infty} \frac{n^2 + 2}{n^3 + 3}$$

$$iv) \sum_{n=1}^{\infty} \frac{\cos(5n)}{1+(1.4)^n}$$

i)
$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 2}$$
 iii) $\sum_{n=1}^{\infty} \frac{n^2}{e^n}$ v) $\sum_{n=1}^{\infty} \pi^{1/n}$ vii) $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$ ii) $\sum_{n=1}^{\infty} \frac{n^2 + 2}{n^3 + 3}$ iv) $\sum_{n=1}^{\infty} \frac{\cos(5n)}{1 + (1.4)^n}$ vi) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sqrt{n}}{n+1}$ viii) $\sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^3}$

$$viii) \sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^3}$$

$$iv) \sum_{n=1}^{\infty} \frac{\cos(5n)}{1+(1.4)^n}$$
 $v) \sum_{n=1}^{\infty} \pi^{1/n}$

$$v) \sum_{n=1}^{\infty} \pi^{1/2}$$

$$vi) \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1} \sqrt{n}}{n+1}$$

$$i) \sum_{n=1}^{\infty} \frac{n}{n^3 + 2}$$

$$iii) \sum_{n=1}^{\infty} \frac{n^2}{e^n}$$

$$v) \sum_{n=1}^{\infty} \pi^{1/n}$$

$$vii) \sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

$$ii) \sum_{n=1}^{\infty} \frac{n^2 + 2}{n^3 + 3}$$

$$iv) \sum_{n=1}^{\infty} \frac{\cos(5n)}{1+(1.4)^n}$$

$$i) \sum_{n=1}^{\infty} \frac{n}{n^{3} + 2} \qquad iii) \sum_{n=1}^{\infty} \frac{n^{2}}{e^{n}} \qquad v) \sum_{n=1}^{\infty} \pi^{1/n} \qquad vii) \sum_{n=2}^{\infty} \frac{\ln n}{n^{2}}$$

$$ii) \sum_{n=1}^{\infty} \frac{n^{2} + 2}{n^{3} + 3} \qquad iv) \sum_{n=1}^{\infty} \frac{\cos(5n)}{1 + (1.4)^{n}} \qquad vi) \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sqrt{n}}{n+1} \qquad viii) \sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^{3}}$$

$$viii) \sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^3}$$

$$vii) \sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

$$viii) \sum_{n=2}^{\infty} \frac{n \ln n}{(n-1)^3} \qquad b_n = \frac{n \ln n}{n^3} = \frac{\ln n}{n^2}$$

Test for Divergence:

If $\lim_{n\to\infty} a_n \neq 0$ or $\lim_{n\to\infty} a_n$ does not exist, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ or $\sum_{n=1}^{\infty} ar^n$ is convergent for |r| < 1 and divergent if $|r| \ge 1$.

12.3 The Integral Test All 164- Rinmer 12.7 Strategies to deal with

If f(x) is: a) continuous, on the interval $[k,\infty)$

b) positive,

c) and decreasing

,then the series $\sum_{n=1}^{\infty} a_n$ (with $a_n = f(n)$)

- i) is convergent when $\int f(x)dx$ is convergent.
- ii) is divergent when $\int f(x)dx$ is divergent.

p - series $\sum_{p=1}^{\infty} \frac{1}{n^p}$ is convergent for p > 1 and divergent if $p \le 1$.

12.4

Given the series $\sum_{n=1}^{\infty} a_n$, $(a_n \ge 0)$

- (i) if the terms a_n are smaller than the terms b_n of a known convergent series $\sum_{n=1}^{\infty} b_n$ $(b_n \ge 0)$, then our series $\sum_{n=1}^{\infty} a_n$ is also **convergent**.
- (ii) if the terms a_n are larger than the terms b_n of a known **divergent** series $\sum_{n=1}^{\infty} b_n (b_n \ge 0)$, then our series $\sum_{n=1}^{\infty} a_n$ is also **divergent**.

12.4

The Limit Comparison Test:

Given the series $\sum_{n=1}^{\infty} a_n$, $(a_n > 0)$ and a known convergent or divergent series $\sum_{n=1}^{\infty} b_n$, $(b_n > 0)$ If the $\lim_{n \to \infty} \frac{a_n}{b_n} = c$ where c is a finite positive number, then

the series will behave alike, i.e. either both converge or both diverge.

12.5 The Alternating Series Test

If the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ (where $b_n > 0$) satisfies:

- $i) \lim_{n\to\infty} b_n = 0$
- ii) $\{b_n\}$ is a decreasing sequence, and

,then the series is convergent.

12.6 The Ratio Test

Let $\{a_n\}$ be a sequence and assume that the following limit exists: $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L$

- i) If L < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- *ii*) If L > 1 or if the limit is infinite, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- iii) If L = 1, the Ratio Test is inconclusive.

(the series could be absolutely convergent, conditionally convergent, or divergent)

12.6 The Root Test

Let $\{a_n\}$ be a sequence and assume that the following limit exists: $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$

- i) If L < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- *ii*) If L > 1 or if the limit is infinite, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- *iii*) If L=1, the Root Test is inconclusive. (the series could be absolutely convergent, conditionally convergent, or divergent)