

A power series is a series of the form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots
$$

where:
a) x is a variable
b) The c_{n} 's are constants called the coefficients of the series.

For each fixed x, the series above is a series of constants that we can test for convergence or divergence.

A power series may converge for some values of x and diverge for other values of x.

The sum of the series is a function

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}+\ldots
$$

whose domain is the set of all x for which the series converges. $f(x)$ is reminiscent of a polynomial but it has infinitely many terms

If all $c_{n}{ }^{\prime} s=1$, we have

$$
f(x)=1+x+x^{2}+\ldots+x^{n}+\ldots=\sum_{n=0}^{\infty} x^{n}
$$

This is the geometric series with $r=x$.
The power series will converge for $|x|<1$ and diverge for all other x.

$$
a=1, r=x \Rightarrow s=\frac{a}{1-r}=\frac{1}{1-x} \quad \frac{1}{1-x}=1+x+x^{2}+\ldots+x^{n}+\ldots=\sum_{n=0}^{\infty} x^{n}
$$

In general, a series of the form

$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots$
is called a power series centered at a or a power series about a

We use the Ratio Test (or the Root Test) to find for what values of x the series converges.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1 \text { for convergence } \\
& \text { solve for }|x-a| \text { to get }|x-a|<R \\
& \Rightarrow-R<x-a<R \\
& \Rightarrow a-R<x<a+R
\end{aligned}
$$

$$
R \text { is called the radius }
$$

of convergence (R.O.C.).

This is called the interval Plug in the endpoints to check for convergence of convergence (I.O.C.). or divergence at the endpoints.
use parentheses (or)

$$
\begin{aligned}
& \text { Find the radius of convergence and the interval of convergence. } \\
& \sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2} x^{n}}{2^{n}} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}}{(-1)^{n}} \cdot \frac{(n+1)^{2}}{n^{2}} \cdot \frac{2^{n}}{2^{n+1}} \cdot \frac{x^{n+1}}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n} \cdot(-1)}{(-1)} \cdot \frac{(n+1)^{2}}{n^{2}} \cdot \frac{2^{\prime}}{2^{\prime} \cdot 2} \cdot \frac{x^{\prime}}{x^{n}} \cdot x\right|=\left|\frac{x}{2}\right| \\
& \begin{array}{l}
\left|\frac{-x}{2}\right|<1 \Rightarrow \frac{1}{2}|x|<1 \Rightarrow|x|<2 \quad \text { SO, }-2<x<2
\end{array} \quad \begin{array}{l}
\text { This is the radius } \\
\text { of convergence. }
\end{array} \\
& \begin{array}{lc}
\underline{x=2} & \frac{x=-2}{\infty} \\
\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2} 2^{n}}{2^{n}}=\sum_{n=1}^{\infty}(-1)^{n} n^{2} & \sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}(-2)^{n}}{2^{n}}=\sum_{n=1}^{\infty} \frac{((-1) \cdot(-2))^{n}}{2^{n}} n^{2} \\
2^{n} & \sum_{n=1}^{\infty} n^{2}
\end{array} \\
& \text { Diverges by the Test for Divergence } \\
& \text { since } \lim _{n \rightarrow \infty}(-1)^{n} n^{2} \text { does not exist. } \\
& \text { Diverges by the Test for Divergence } \\
& \text { since } \lim _{n \rightarrow \infty} n^{2}=\infty \text {. } \\
& \text { Radius of convergence: } R=2 \\
& \text { Interval of convergence: }(-2,2)
\end{aligned}
$$

Find the radius of convergence and the interval of convergence.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{3^{n}(x+4)^{n}}{\sqrt{n}} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{3^{n+1}}{3^{n}} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} \cdot \frac{(x+4)^{n+1}}{(x+4)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{3^{n} \cdot 3}{2^{n}} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} \cdot \frac{(x+4)^{n}(x+4)}{(x+4)^{n}}\right|=|3(x+4)| \\
& \text { For convergence, this limit } \\
& |3(x+4)|<1 \Rightarrow 3|x+4|<1 \Rightarrow|x+4|<\frac{1}{3} \quad \text { so, }-\frac{1}{3}<x+4<\frac{1}{3} \\
& \text { Now we need to solve } \\
& \text { this inequality for }|x+4| \text {. } \\
& \begin{array}{l}
\text { This is the radius } \\
\text { of convergence. }
\end{array} \\
& \begin{array}{c}
-\frac{1}{3}-4<x<\frac{1}{3}-4 \\
\frac{-13}{3}<x<\frac{-11}{3} \quad \begin{array}{l}
\text { Plug in } x=\frac{-13}{3} \text { and } x=\frac{-11}{3} \\
\text { to see if there is conv. or div. } \\
\text { at the endpoints. }
\end{array}
\end{array} \\
& \frac{x=\frac{-13}{3}}{\sum_{n=1}^{\infty} \frac{3^{n}\left(\frac{-13}{3}+4\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{3^{n}\left(\frac{-1}{3}\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}} \quad \frac{\frac{-11}{3}}{\sum_{n=1}^{\infty} \frac{3^{n}\left(\frac{-11}{3}+4\right)^{n}}{\sqrt{n}}}=\sum_{n=1}^{\infty} \frac{3^{n}\left(\frac{1}{3}\right)^{n}}{\sqrt{n}} \\
& \begin{array}{l}
\text { R.O.C.: } R=\frac{1}{3} \\
\text { I.O.C. : }\left[\frac{-13}{3}, \frac{-11}{3}\right)
\end{array}
\end{aligned}
$$

Find the radius of convergence and the interval of convergence.
Math 104 - Rimmer
$\sum_{n=1}^{\infty} \frac{(4 x+1)^{n}}{n^{2}}$
$\lim _{n \rightarrow \infty}^{n=1}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n^{2}}{(n+1)^{2}} \cdot \frac{(4 x+1)^{n+1}}{(4 x+1)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\nearrow 1}{n^{2}} /(n+1)^{2} \cdot \frac{(4 x+1)^{n} \cdot(4 x+1)}{(4 x+1)^{n}}\right|=|4 x+1|$ needs to be less than 1
$|4 x+1|<1 \quad$ For this one, the value a isn't very obvious, so we will proceed as follows:

$$
\begin{aligned}
& \left|4\left(x+\frac{1}{4}\right)\right|<1 \\
& 4\left|x+\frac{1}{4}\right|<1 \\
& \left|x+\frac{1}{4}\right|<\frac{1}{4}
\end{aligned}
$$

Check endpoints:

$$
\begin{array}{ll|l}
\frac{x=\frac{-1}{2}}{} & \underline{x=0} \\
\sum_{n=1}^{\infty} \frac{\left(4\left(\frac{-1}{2}\right)+1\right)^{n}}{n^{2}} \\
\text { convergent Alt. series }
\end{array} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \quad \begin{array}{ll}
\sum_{n=1}^{\infty} \frac{(1)^{n}}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
\text { convergent } p-\text { series }
\end{array} \quad \text { R.O.C.: } R=\frac{1}{4},
$$

Sometimes the Root Test can be used just as the Ratio Test.

When a_{n} can be written as $\left(b_{n}\right)^{n}$, then the Root Test should be used.

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{3^{n}(x-5)^{n}}{n^{n}}=\sum_{n=1}^{\infty}\left(\frac{3(x-5)}{n}\right)^{n} \quad \begin{array}{l}
\text { No value of } x \text { will } \\
\text { make this limit }>1 \\
\text { to give divergence }
\end{array} \\
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\left(\frac{3(x-5)}{n}\right)^{n}\right|}=\lim _{n \rightarrow \infty}\left|\frac{3(x-5)}{n}\right|=0<1 \\
\begin{array}{l}
\text { We get convergence } \\
\text { no matter what } x \text { is }
\end{array} \\
\begin{array}{l}
\text { R.O.C. }=\infty \\
\text { I.O.C. }=(-\infty, \infty)
\end{array}
\end{gathered}
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0 \Rightarrow \text { R.O.C. }=\infty \Rightarrow \text { I.O.C. }(-\infty, \infty) \quad\left(\operatorname{or~}_{n \rightarrow \infty} \lim _{n} \sqrt{a_{n} \mid}=0\right)
$$

the power series only converges for all x

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{n!(x-7)^{n}}{2^{n}} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!} \cdot \frac{2^{n}}{2^{n+1}} \cdot \frac{(x-7)^{n+1}}{(x-7)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1) \not n!}{n!} \cdot \frac{2^{n}}{2^{n} \cdot 2} \cdot \frac{7) \cdot(x-7)}{(x)}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{1}{2}(n+1)(x-7)\right|=\infty>1 \\
& \text { No value of } x \text { will We get divergence } \\
& \text { make this limit }<1 \quad \text { for all values of } x \\
& \text { to give convergence except at } x=a \\
& \text { at } x=a \text {, each term of the series is } 0 \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty \Rightarrow \text { R.O.C. }=0 \Rightarrow \text { I.O.C. }\{a\} \quad\left(\operatorname{or} \lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty\right) \\
& \text { the power series only converges at the point } x=a
\end{aligned}
$$

Find the radius of convergence.
$\sum_{n=1}^{\infty} \frac{(-1)^{n}(n!)^{2} x^{2 n}}{(2 n)!\quad[(n+1) n!]^{2}}$

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}}{(-1)^{n}} \cdot \frac{[(n+1)!]^{2}}{(n!)^{2}} \cdot \frac{(2 n)!}{[2(n+1)]!} \cdot \frac{x^{2(n+1)}}{x^{2 n}}\right|
$$

$=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n}(-1)}{(-1)^{n}} \cdot \frac{(n+1)^{2}(n \cdot)^{2}}{(\underline{n} \cdot)^{2}} \cdot \frac{(2 n)!}{(2 n+2)(2 n+1)(2 \pi)!} \cdot \frac{\partial^{n} x^{2}}{x^{2 n}}\right|=\lim _{n \rightarrow \infty}\left|(-1) x^{2} \cdot \frac{n^{2}+2 n+1}{4 n^{2}+6 n+2}\right|$

$$
=\left|\frac{(-1) x^{2}}{4}\right| \begin{aligned}
& \text { For convergence, this limit } \\
& \text { needs to be less than } 1
\end{aligned}\left|\frac{(-1) x^{2}}{4}\right|<1 \Rightarrow \frac{1}{4}\left|x^{2}\right|<1 \Rightarrow|x|^{2}<4 \Rightarrow|x|<2<\substack{\text { This is the radius } \\
\text { of convergence. }}
$$

Radius of convergence: $R=2$

