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Math 104 – Rimmer

12.8 Power Series

A power series is a series of the form
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where:  

)   is a variablea x

) The 's are constants called the coefficients of the series.nb c

For each fixed , the series above is a series of constants 

that we can test for convergence or divergence.

x

A power series may converge for some values of  

and diverge for other values of .

x

x
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The sum of the series is a function 

whose domain is the set of all  for which the series converges.x

( ) is reminiscent of a polynomial but it has infinitely many termsf x
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If all 's 1, we havenc =

This is the geometric series with .r x=

The power series will converge for 1 and diverge for all other .x x<
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In general, a series of the form

is called a power series centered at  or a power series about a a

We use the Ratio Test (or the Root Test) to find for what values of  the series converges. x

( )

This is called the 

 I.O.C. .

interval 

of  convergence

1lim 1 for convergencen

n
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solve for  to get x a x a R− − <

R x a R⇒ − < − <

a R x a R⇒ − < < +

( )

 is called the 

 R.O.C. .

R radius 

of convergence

Plug in the endpoints to check for convergence 

or divergence at the endpoints.

use square brackets [ or ]

use parentheses ( or )
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For convergence, this limit 

needs to be less than 1

1
2

x−
<

Now we need to solve 

this inequality for .x

1
1

2
x⇒ < 2x⇒ <

Find the radius of convergence and the interval of convergence.

This is the radius 

of convergence.

so, 2 2x− < <

Plug in 2 and 2 to see if there 

is conv. or div. at the endpoints.
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Diverges by the Test for Divergence

since lim 1  does not exist.
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Radius of convergence:  2

Interval of convergence:  2,2

R =

−



6/21/2011

3

Math 104 – Rimmer

12.8 Power Series

( )

1

3 4
nn

n

x

n

∞

=

+
∑

Find the radius of convergence and the interval of convergence.
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For convergence, this limit 

needs to be less than 1
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Converges by the Alt. Series Test
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Divergent series with .

2
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1
R.O.C.:  
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I.O.C. :  ,
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− − 
 
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For convergence, this limit 

needs to be less than 1

4 1 1x + < For this one, the value  isn't very obvious, so we will proceed as follows:a
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convergent Alt. series
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Find the radius of convergence and the interval of convergence.
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Sometimes the Root Test can be used just as the Ratio Test.

( )When  can be written as ,  then the Root Test should be used.
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We get convergence 

no matter what  isx
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the power series only converges for all x
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the power series only converges at the point x a=
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at ,  each term of the series is 0x a=
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For convergence, this limit 

needs to be less than 1
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This is the radius 

of convergence.

Find the radius of convergence.

Radius of convergence:  2R =
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