

A power series is a series of the form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=
$$

where:
a)
b)

For each fixed x, the series above is a series of constants that we can test for convergence or divergence.

A power series may converge for some values of x and diverge for other values of x.

The sum of the series is a function
whose \qquad is the set of all x for which the series converges. $f(x)$ is reminiscent of a \qquad but it has infinitely many terms

If all $c_{n}{ }^{\prime} \mathrm{s}=1$, we have

$$
f(x)=1+x+x^{2}+\ldots+x^{n}+\ldots=\sum_{n=0}^{\infty} x^{n}
$$

This is the \qquad with \qquad .

The power series will converge for \qquad and diverge for all other x.

In general, a series of the form

is called a power series \qquad or a power series about a

We use the \qquad to find for what values of x the series converges.
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$ \qquad

solve for $|x-a|$ to get $|x-a|<R$
$\Rightarrow-R<x-a<R$
$\Rightarrow a-R<x<a+R$
This is called the \qquad Plug in the endpoints to check for convergence
\qquad (I.O.C.). or divergence at the endpoints.

Find the radius of convergence and the interval of convergence.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2} x^{n}}{2^{n}}
$$

\qquad Interval of convergence:

Find the radius of convergence and the interval of convergence.

$$
\sum_{n=1}^{\infty} \frac{3^{n}(x+4)^{n}}{\sqrt{n}}
$$

\qquad $x=$
R.O.C.:
I.O.C. :

Find the radius of convergence and the interval of convergence.

$$
\sum_{n=1}^{\infty} \frac{(4 x+1)^{n}}{n^{2}}
$$

Check endpoints:
\qquad $x=$ $x=$
R.O.C.: \qquad
I.O.C. : \qquad

Sometimes the Root Test can be used just as the Ratio Test.
When a_{n} can be written as $\left(b_{n}\right)^{n}$, then the Root Test should be used.

$$
\sum_{n=1}^{\infty} \frac{3^{n}(x-5)^{n}}{n^{n}}
$$

R.O.C. $=$ \qquad I.O.C. = \qquad
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0 \Rightarrow$

$$
\sum_{n=1}^{\infty} \frac{n!(x-7)^{n}}{2^{n}}
$$

R.O.C. $=$ \qquad
I.O.C. =
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty \Rightarrow$

Find the radius of convergence.
$\sum_{n=1}^{\infty} \frac{(-1)^{n}(n!)^{2} x^{2 n}}{(2 n)!}$

Math 104 - Rimmer 12.8 Power Series

Radius of convergence:

