12.9 Functions as Power Series

The very first function we have seen represented as a power series is the geometric series with $a=1$ and $r=x$

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots,|x|<1
$$

We can find the power series representation of other functions by algebraically manipulating them to to be some multiple of this series.

$$
\left.\begin{array}{l}
\frac{1}{1+x}
\end{array}=\frac{1}{1-(-x)}=\sum_{n=0}^{\infty}(-x)^{n} \quad,|x|<1 \quad \begin{array}{l}
\text { The interval of convergence remains unchanged } \\
\text { since this is still a type of geometric series. }
\end{array}\right] \begin{aligned}
\frac{1}{1+x} & =\sum_{n=0}^{\infty}(-1)^{n} x^{n},|x|<1 \\
& =1-x+x^{2}-x^{3}+\cdots
\end{aligned}
$$

Represent the function as a power series and determine the interval of convergence.

$$
\begin{aligned}
& \begin{array}{l}
\frac{3}{4+x^{2}}=3\left(\frac{1}{4+x^{2}}\right)=3\left(\frac{1}{4\left(1+\frac{x^{2}}{4}\right)}\right)=\frac{3}{4}\left(\frac{1}{1+\frac{x^{2}}{4}}\right)=\frac{3}{4}\left(\frac{1}{1-\left(-\frac{x^{2}}{4}\right)}\right) \\
=\frac{3}{4}\left(\frac{1}{1-\left(-\frac{x^{2}}{4}\right)}\right)=\frac{3}{4} \sum_{n=0}^{\infty}\left(\frac{-x^{2}}{4}\right)^{n} \\
\\
\left|\frac{-x^{2}}{4}\right|<1 \quad \frac{1}{4}\left|x^{2}\right|<1 \Rightarrow|x|^{2}<4 \quad \text {, so the interval of } \\
\quad \text { convergence is }|x|<2 \\
4+x^{2}
\end{array} \\
& =\frac{3}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{4^{n}}, \quad|x|<2 \\
& =\frac{3}{4}-\frac{3}{16} x^{2}+\frac{3}{64} x^{4}-\frac{3}{128} x^{6}+\ldots
\end{aligned}
$$

$f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots$
If the power series representation of $f(x)$ has a radius of convergence $R>0$,
we can obtain a power series representation for $f^{\prime}(x)$ by term - by - term differentiation:

$$
\begin{aligned}
& f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots \\
& f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots \\
& f^{\prime}(x)=\frac{d}{d x}\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right)=\sum_{n=0}^{\infty} \frac{d}{d x}\left[c_{n}(x-a)^{n}\right]=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \text { with the same radius } \\
& \text { starts at } n=1 \\
& \text { of convergence } R
\end{aligned}
$$

we can obtain a power series representation for $\int f(x) d x$ by term - by - term integration:

$$
\begin{aligned}
& \int f(x) d x=C+c_{0} x+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+c_{3} \frac{(x-a)^{4}}{4}+\cdots \\
& \int\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right) d x=\sum_{n=0}^{\infty} \int\left[c_{n}(x-a)^{n}\right] d x=C+\sum_{n=0}^{\infty} \frac{c_{n}(x-a)^{n+1}}{n+1}
\end{aligned}
$$

with the same radius of convergence R
C is a constant of integration

Represent the function as a power series and determine the radius of convergence.

$$
\begin{aligned}
& f(x)=\frac{x^{3}}{(1-x)^{2}}=x^{3}\left[\frac{1}{(1-x)^{2}}\right] \\
& g(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \text { with } R=1 \\
& g^{\prime}(x)=\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1} \text { with } R=(1-x)^{-1} \Rightarrow g^{\prime}(x)=-1(1-x)^{-2}(-1) \\
& \frac{x^{3}}{(1-x)^{2}}=x^{3} g^{\prime}(x)=x^{3} \sum_{n=1}^{\infty} n x^{n-1}=\sum_{n=1}^{\infty} n x^{n+2} \\
& \frac{x^{3}}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n+2} \text { with } R=1
\end{aligned}
$$

Represent the function as a power series and determine the radius of convergence.

$$
\begin{aligned}
& f(x)=\arctan x \\
& \begin{aligned}
& \frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}, \text { with } R=1 \\
&=1-x^{2}+x^{4}-x^{6}+\ldots \\
& \int \frac{1}{1+x^{2}} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}, \text { with } R=1 \\
& \arctan x=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \quad \arctan 0=C+0=0 \Rightarrow C=0 \\
& \arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}, \text { with } R=1 \\
&=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots
\end{aligned}
\end{aligned}
$$

Represent the function as a power series and determine the radius of convergence.

$$
f(x)=\ln (1-x)
$$

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \text { with } R=1
$$

$$
\int \frac{1}{1-x} d x=C+\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}
$$

$$
-\ln (1-x)=C+\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \quad-\ln (1-0)=C+0 \Rightarrow C=0
$$

$$
\ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \text { with } R=1
$$

$$
=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots
$$

$$
\begin{aligned}
& \arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \quad \text {,with } R=1 \\
& \arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots \\
& \arctan 1=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots \\
& \frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots \\
& \pi=4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\ldots \\
& \ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \text {, with } R=1 \\
& \ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \\
& \ln \left(1-\frac{1}{2}\right)=-\frac{1}{2}-\frac{\left(\frac{1}{2}\right)^{2}}{2}-\frac{\left(\frac{1}{2}\right)^{3}}{3}-\frac{\left(\frac{1}{2}\right)^{4}}{4}+\ldots \\
& \ln \left(\frac{1}{2}\right)=-\frac{1}{2}-\frac{1}{2 \cdot 2^{2}}-\frac{1}{3 \cdot 2^{3}}-\frac{1}{4 \cdot 2^{4}}+\ldots \\
& \ln 1-\ln 2=-\frac{1}{2}-\frac{1}{2 \cdot 2^{2}}-\frac{1}{3 \cdot 2^{3}}-\frac{1}{4 \cdot 2^{4}}+\ldots \\
& \ln 2=\frac{1}{2}+\frac{1}{2 \cdot 2^{2}}+\frac{1}{3 \cdot 2^{3}}+\frac{1}{4 \cdot 2^{4}}+\ldots
\end{aligned}
$$

Algebraically manipulate $\frac{1}{(1-x)^{2}} \quad\left(\right.$ the same way we manipulated $\left.\frac{1}{1-x}\right)$
$\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}$ with $R=1$
Represent $\frac{1}{(4-3 x)^{2}}$ as a power series and determine the radius of convergence.
$\frac{1}{(4-3 x)^{2}}=\frac{1}{\left(4\left[1-\frac{3 x}{4}\right]\right)^{2}}=\frac{1}{16} \cdot \frac{1}{\left(1-\frac{3 x}{4}\right)^{2}} \quad \frac{1}{\left(1-\frac{3 x}{4}\right)^{2}}=\sum_{n=1}^{\infty} n\left(\frac{3 x}{4}\right)^{n-1}$

$$
\begin{aligned}
=\frac{1}{16} \cdot \sum_{n=1}^{\infty} n\left(\frac{3 x}{4}\right)^{n-1} & =\frac{1}{4^{2}} \cdot \sum_{n=1}^{\infty} \frac{n 3^{n-1} x^{n-1}}{4^{n-1}} \\
& =\sum_{n=1}^{\infty} \frac{n 3^{n-1} x^{n-1}}{4^{n-1+2}}
\end{aligned}
$$

$$
\left|\frac{3 x}{4}\right|<1 \Rightarrow \frac{3}{4}|x|<1
$$

$$
|x|<\frac{4}{3}, \quad R=\frac{4}{3}
$$

$\frac{1}{(4-3 x)^{2}}=\sum_{n=1}^{\infty} \frac{n 3^{n-1} x^{n-1}}{4^{n+1}}, R=\frac{4}{3}$

Algebraically manipulate $\ln (1-x) \quad\left(\right.$ the same way we manipulated $\left.\frac{1}{1-x}\right)$
$\ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$, with $R=1$
Represent $\ln (3+2 x)$ as a power series and determine the radius of convergence.

$$
\begin{array}{rlr}
\ln (3+2 x)= & \ln \left(3\left[1+\frac{2 x}{3}\right]\right)=\ln \left(3\left[1-\frac{-2 x}{3}\right]\right) & \ln \left(1-\frac{-2 x}{3}\right)=-\sum_{n=0}^{\infty} \frac{\left(\frac{-2 x}{3}\right)^{n+1}}{n+1} \\
= & \ln 3+\ln \left(1-\frac{-2 x}{3}\right) \operatorname{since} \ln (a b)=\ln a+\ln b & \left|\frac{-2 x}{3}\right|<1 \Rightarrow \frac{2}{3}|x|<1 \\
=\ln 3+\left[-\sum_{n=0}^{\infty} \frac{\left(\frac{-2 x}{3}\right)^{n+1}}{n+1}\right] & |x|<\frac{3}{2}, \quad R=\frac{3}{2} \\
& (-1)(-1)^{n+1}=(-1)^{n+2}=(-1)^{n} \\
\ln (3+2 x)= & \ln 3+\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n+1} x^{n+1}}{3^{n+1}(n+1)}, \quad R=\frac{3}{2}
\end{array}
$$

