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12.9 Functions as Power Series
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The very first function we have seen represented as a power series is

the geometric series with 1 and a r x= =

We can find the power series representation of other functions by 

algebraically manipulating them to to be some multiple of this series.
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The interval of convergence remains unchanged 

since this is still a type of geometric series.
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Represent the function as a power series and determine the interval of convergence.
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( )If the power series representation of  has a radius of convergence 0,f x R >

( )we can obtain a power series representation for  by f x′

:term - by - term differentiation

( )

( )

2 3

0 1 2 3

2

1 2 3

( ) ( ) ( )

2 ( ) 3 ( )

f x c c x a c x a c x a

f x c c x a c x a

= + − + − + − +

′ = + − + − +

�

�

( )
0 0

( ) ( )n n

n n

n n

d d
f x c x a c x a

dx dx= =

 
′  = − = −   

 
∑ ∑ 1

1

( )n

n

n

nc x a
−

=

= −∑

0 0

( )  ( )  n n

n n

n n

c x a dx c x a dx
∞ ∞

= =

 
 − = −   

 
∑ ∑∫ ∫

1

0

( )

1

n

n

n

c x a
C

n

+∞

=

−
= +

+
∑

:term - by - term integration

starts at 1n =

( )we can obtain a power series representation for  by f x dx∫
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 is a constant of integrationC

with the same radius 

of convergence R

with the same radius 

of convergence R
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Represent the function as a power series and determine the radius of convergence.
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Represent the function as a power series and determine the radius of convergence.
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Represent the function as a power series and determine the radius of convergence.

( ) ( )ln 1f x x= −

( )
1

0

ln 1  
1

n

n

x
x C

n

+∞

=

− − = +
+

∑ ( )ln 1 0 0 0 C C− − = + ⇒ =

( )
1

0

ln 1  ,with 1
1

n

n

x
x R

n

+∞

=

− = − =
+

∑
2 3 4

...
2 3 4

x x x
x= − − − − +



Math 104 – Rimmer

12.9 Functions as Power Series

( )
( ) ( ) ( )

2 3 4
1 1 1
2 2 21 1

2 2
ln 1 ...

2 3 4
− = − − − − +

1 1 1
arctan1 1 ...

3 5 7
= − + − +

( )
2 1

0

arctan 1   ,with 1
2 1

n
n

n

x
x R

n

+∞

=

= − =
+

∑

3 5 7

arctan ...
3 5 7

x x x
x x= − + − +

( )
1

0

ln 1  ,with 1
1

n

n

x
x R

n

+∞

=

− = − =
+

∑

( )
2 3 4

ln 1 ...
2 3 4

x x x
x x− = − − − − +

( )1 1
2 2 2 3 4

1 1 1
ln ...

2 2 3 2 4 2
= − − − − +

⋅ ⋅ ⋅

1
2 2 3 4

1 1 1
ln1 ln 2 ...

2 2 3 2 4 2
− = − − − − +

⋅ ⋅ ⋅

1
2 2 3 4

1 1 1
ln 2 ...

2 2 3 2 4 2
= + + + +

⋅ ⋅ ⋅

1 1 1
1 ...

4 3 5 7

π
= − + − +

4 4 4
4 ...

3 5 7
π = − + − +



Math 104 – Rimmer

12.9 Functions as Power Series

( )
1

2
1

1
  with 1

1

n

n

nx R
x

∞
−

=

= =
−

∑

( )
2

1

4 3x− [ ]( )
2

3
4

1

4 1 x

=
− ( )

2
3
4

1 1

16 1 x
= ⋅

− ( )
( )

1
3
42

3
14

1
 

1

n
x

x
n

n
∞

−

=

=
−

∑

( )
2

1
Algebraically manipulate  

1 x−

1
the same way we manipulated 

1 x

 
 

− 

( )
2

1
Represent  as a power series and determine the radius of convergence.

4 3x−

( )4 3x− [ ]( )3
4

4 1 x− ( )4
16 1− ( )3

14
1 x

n=−

3
4

1x < 3
4

1x⇒ <

4 4
,   

3 3
x R< =

( )
1

3
4

1

1
 

16

n
x

n

n
∞

−

=

= ⋅∑
1 1

2 1
1

1 3
 

4 4

n n

n
n

n x
− −∞

−
=

= ⋅∑
1 1

1 2
1

3
 

4

n n

n
n

n x
− −∞

− +
=

=∑

( )

1 1

2 1
1

1 3 4
  , 

4 34 3

n n

n
n

n x
R

x

− −∞

+
=

= =
−

∑



Math 104 – Rimmer

12.9 Functions as Power Series

( )
1

0

ln 1  ,with 1
1

n

n

x
x R

n

+∞

=

− = − =
+

∑

( )ln 3 2x+

( )Algebraically manipulate ln 1 x− 1
the same way we manipulated 

1 x

 
 

− 

( )2
3

ln 3 1 x= +   ( )
( )

1
2
32

3

0

ln 1
1

n
x

x

n n

+
−∞

−

=

− = −
+

∑

( )Represent ln 3 2  as a power series and determine the radius of convergence.x+
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