12.9 Functions as Power Series State 104-Rinner 12.9 Functions as Power Series

The very first function we have seen represented as a power series is the geometric series with a = 1 and r = x

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots , |x| < 1$$

_

We can find the power series representation of other functions by algebraically manipulating them to to be some multiple of this series.

$$\frac{1}{1+x} = \frac{1}{1-(-x)}$$
The interval of convergence remains unchanged since this is still a type of geometric series.

$$\frac{1}{1+x} =$$

$$f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$
If the power series representation of $f(x)$ has a radius of convergence $R > 0$,
we can obtain a power series representation for $f'(x)$ by
term - by - term ______:
 $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
 $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \cdots$
 $f'(x) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} c_n(x-a)^n \right) = \sum_{n=0}^{\infty} \frac{d}{dx} \left[c_n(x-a)^n \right] = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$ with the same radius
of convergence R
we can obtain a power series representation for $\int f(x) dx$ by
term - by - term _____:
 $\int f(x) dx = C + c_0 x + c_1 \frac{(x-a)^2}{2} + c_2 \frac{(x-a)^3}{3} + c_3 \frac{(x-a)^4}{4} + \cdots$
 $\int \left(\sum_{n=0}^{\infty} c_n(x-a)^n \right) dx = \sum_{n=0}^{\infty} \int \left[c_n(x-a)^n \right] dx = C + \sum_{n=0}^{\infty} \frac{c_n(x-a)^{n+1}}{n+1}$ with the same radius
of convergence R

Represent the function as a power series and determine the radius of convergence.

$$f(x) = \frac{x^3}{(1-x)^2}$$

$$g(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \text{ with } R = 1$$

Represent the function as a power series and determine the radius of convergence. $f(x) = \arctan x$ $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, \text{ with } R = 1$ $= 1 - x^2 + x^4 - x^6 + \dots$ $\arctan x = C +$ $\arctan x =$

Represent the function as a power series and determine the radius of convergence.

$$f(x) = \ln(1-x)$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n} \text{ with } R = 1$$

$$-\ln(1-x) =$$

$$\ln(1-x) =$$

Algebraically manipulate $\ln(1-x)$ (the same way we manipulate $\frac{1}{1-x}$) $\ln(1-x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$, with R = 1Represent $\ln(3+2x)$ as a power series and determine the radius of convergence. $\ln(3+2x)$