12.9 Functions as Power Series

The very first function we have seen represented as a power series is the geometric series with $a=1$ and $r=x$

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots,|x|<1
$$

We can find the power series representation of other functions by algebraically manipulating them to to be some multiple of this series.
$\frac{1}{1+x}=\frac{1}{1-(-x)}$
The interval of convergence remains unchanged since this is still a type of geometric series.
$\frac{1}{1+x}=$

Represent the function as a power series and determine the interval of convergence.

$$
\frac{3}{4+x^{2}}
$$

, so the interval of convergence is

$$
\frac{3}{4+x^{2}}=
$$

(09) Math 104-Rimmer
2. 12.9 Functions as Power Series
$f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots$
If the power series representation of $f(x)$ has a radius of convergence $R>0$,
we can obtain a power series representation for $f^{\prime}(x)$ by
term-by-term \qquad :
$f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots$
$f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots$

$$
f^{\prime}(x)=\frac{d}{d x}\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right)=\sum_{n=0}^{\infty} \frac{d}{d x}\left[c_{n}(x-a)^{n}\right]=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \begin{gathered}
\text { with the same radius } \\
\text { of convergence } R
\end{gathered}
$$

we can obtain a power series representation for $\int f(x) d x$ by
term - by - term \qquad :
$\int f(x) d x=C+c_{0} x+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+c_{3} \frac{(x-a)^{4}}{4}+\cdots$
$\int\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right) d x=\sum_{n=0}^{\infty} \int\left[c_{n}(x-a)^{n}\right] d x=C+\sum_{n=0}^{\infty} \frac{c_{n}(x-a)^{n+1}}{n+1} \quad \begin{aligned} & \text { with the same radius } \\ & \text { of convergence } R\end{aligned}$
C is a constant of integration

Represent the function as a power series and determine the radius of convergence.
$f(x)=\frac{x^{3}}{(1-x)^{2}}$
$g(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ with $R=1$

Represent the function as a power series and determine the radius of convergence.

$$
\begin{aligned}
f(x) & =\arctan x \\
\frac{1}{1+x^{2}} & =\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}, \text { with } R=1 \\
& =1-x^{2}+x^{4}-x^{6}+\ldots
\end{aligned}
$$

$\arctan x=C+$

```
arctan}x
```

Represent the function as a power series and determine the radius of convergence. $f(x)=\ln (1-x)$

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \text { with } R=1
$$

$$
-\ln (1-x)=
$$

$$
\ln (1-x)=
$$

$$
\begin{array}{l|l}
\arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \text {,with } R=1 \quad \\
\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots \\
\ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \text { with } R=1 \\
\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \\
\ln \left(1-\frac{1}{2}\right)= \\
\ln \left(\frac{1}{2}\right)= \\
\ln 1-\ln 2=
\end{array}
$$

Math 104-Rimmer
Algebraically manipulate $\frac{1}{(1-x)^{2}} \quad\left(\right.$ the same way we manipulated $\left.\frac{1}{1-x}\right)$
$\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}$ with $R=1$
Represent $\frac{1}{(4-3 x)^{2}}$ as a power series and determine the radius of convergence. $\frac{1}{(4-3 x)^{2}}$

Algebraically manipulate $\ln (1-x) \quad\left(\right.$ the same way we manipulated $\left.\frac{1}{1-x}\right)$
$\ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$, with $R=1$
Represent $\ln (3+2 x)$ as a power series and determine the radius of convergence.
$\ln (3+2 x)$

