6.1 Area Between Curves

Consider the region S that lies between two curves $y=f(x)$ and $y=g(x)$ and between the vertical lines $x=a$ and $x=b$.

Here, f and g are continuous functions and $f(x) \geq g(x)$ for all x in $[a, b]$.

We divide S into n strips of equal width and approximate the i th strip by a rectangle with base Δx and height $f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)$

The Riemann sum $\sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x$
is therefore an approximation to what we intuitively think of as the area of S.

This approximation appears to become better and better as $n \rightarrow \infty$.

Thus, we define the area A of the region S as the limiting value of the sum of the areas of these approximating rectangles.

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x
$$

Thus, we have the following formula for area:

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Remember S is described as the region bounded by the curves $y=f(x)$ and $y=g(x)$ and the lines $x=a$ and $x=b$, where, f and g are continuous and $f(x) \geq g(x)$ for all x in $[a, b]$.

$$
A=\text { the area of } S
$$

$$
A=\int_{a}^{b}\left[\binom{\text { upper }}{\text { function }}-\binom{\text { lower }}{\text { function }}\right] d x
$$

Some regions are best treated by regarding x as a function of y.

If a region is bouned by the curves $x=f(y)$ and $x=g(y)$ and the lines $y=c$ and $y=d$, where f and g are continuous and $f(y) \geq g(y)$ for all y in $[c, d]$, then its area is:

$$
\begin{array}{r}
A=\int_{c}^{d}[f(y)-g(y)] d y \\
A=\int_{c}^{d}\left[\binom{\text { right }}{\text { function }}-\binom{\text { left }}{\text { function }}\right] d y
\end{array}
$$

Find the area of the region bounded by the curves.
$y=x^{2}-2 x, y=x+4$
Select the correct answer.
a. $\frac{125}{3}$
b. $\frac{25}{3}$
c. 5
d. 20
e. $\frac{125}{6}$

Find where the curves intersect:

$$
\left.\begin{array}{rl}
& \begin{array}{rl}
x^{2}-2 x=x+4 \\
x^{2}-3 x-4=0 \\
(x-4)(x+1)=0
\end{array} \\
\Rightarrow x=4, x=-1
\end{array}\right) \quad \begin{aligned}
& \Rightarrow A=\int_{-1}^{4}\left[(x+4)-\left(x^{2}-2 x\right)\right] d x=\int_{-1}^{4}\left[-x^{2}+3 x+4\right] d x=\left[\frac{-x^{3}}{3}+\frac{3 x^{2}}{2}+4 x\right]_{-1}^{4} \\
&=\left[\frac{-4^{3}}{3}+\frac{3 \cdot 4^{2}}{2}+4 \cdot 4\right]-\left[\frac{-(-1)^{3}}{3}+\frac{3 \cdot(-1)^{2}}{2}+4 \cdot(-1)\right] \\
&=\left[\frac{-64}{3}+24+16\right]-\left[\frac{1}{3}+\frac{3}{2}-4\right] \\
&=\frac{-65}{3}+44-\frac{3}{2}=\frac{-130+264-9}{6}=\frac{125}{6}
\end{aligned}
$$

Find the area of the region bounded by the curves.
$y=\cos x, y=\sin 2 x, x=0, x=\pi / 2$
Select the correct answer.
a. $\frac{1}{4}$
b. $\frac{1}{2}$
c. $\frac{1}{3}$
d. 2
e. 4

Find where the curves intersect:
$\cos x=\sin 2 x$
$\sin 2 x-\cos x=0$
Use the trig. ident. :
$\sin 2 x=2 \sin x \cos x$
$2 \sin x \cos x-\cos x=0$ $\cos x(2 \sin x-1)=0$
$\cos x=0$ or $2 \sin x-1=0$
$\Rightarrow x=\frac{\pi}{2}$ or $\sin x=\frac{1}{2} \Rightarrow x=\frac{\pi}{6}$

$$
\begin{aligned}
\Rightarrow A & =\int_{0}^{\pi / 6}[\cos x-\sin 2 x] d x+\int_{\pi / 6}^{\pi / 2}[\sin 2 x-\cos x] d x \\
& =\left[\sin x+\frac{1}{2} \cos 2 x\right]_{0}^{\pi / 6}+\left[-\frac{1}{2} \cos 2 x-\sin x\right]_{\pi / 6}^{\pi / 2}
\end{aligned}
$$

$=\left[\sin (\pi / 6)+\frac{1}{2} \cos (\pi / 3)\right]-\left[\sin (0)+\frac{1}{2} \cos (0)\right]+\left[-\frac{1}{2} \cos (\pi)-\sin (\pi / 2)\right]-\left[-\frac{1}{2} \cos (\pi / 3)-\sin (\pi / 6)\right]$
$=\left[\frac{1}{2}+\frac{1}{4}\right]-\left[0+\frac{1}{2}\right]+\left[\frac{1}{2}-1\right]-\left[-\frac{1}{4}-\frac{1}{2}\right]=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$

埊 Math 104-Rimmer
 6.1 Area between curves

Find the area of the region bounded by the parabola $y=x^{2}$, the tangent line to this parabola at $(6,36)$, and the x-axis.

We need the equation of the tangent line

$$
y=x^{2} \Rightarrow y^{\prime}=2 x \text { evaluated at } x=6 \Rightarrow y^{\prime}=12
$$

this is the slope of the tangent line. The tangency pt. is $(6,36)$
using $y=m x+b \Rightarrow 36=12(6)+b \Rightarrow 36=72+b \Rightarrow b=-36$ \Rightarrow the equation of the line is $y=12 x-36$
\Rightarrow the integral should be done in terms of $d y$
since the lower limit will change when you reach 3
\Rightarrow the curves need to be expressed as functions of y

$$
y=12 x-36 \Rightarrow x=\frac{y+36}{12} \Rightarrow x=\frac{y}{12}+3
$$

$\Rightarrow A=\int_{0}^{36}\left[\left(\frac{y}{12}+3\right)-(\sqrt{y})\right] d y=\left(\frac{y^{2}}{24}+3 y-\frac{2 y^{3 / 2}}{3}\right)_{0}^{36}$
$=\left(\frac{36^{2}}{24}+3 \cdot 36-\frac{2 \cdot 36^{3 / 2}}{3}\right)=36\left(\frac{36}{24}+3-\frac{2 \cdot 36^{1 / 2}}{3}\right)=36\left(\frac{3}{2}+3-4\right)=36\left(\frac{1}{2}\right)=18$

Find the number b such that the line $y=b$ divides the region bounded by the curves $y=x^{2}$ and $y=4$ into two regions with equal area.

$$
\text { Area } \mathrm{b} / \mathrm{w} y=4 \text { and } y=x^{2}
$$

Select the correct answer.

d. $2^{1 / 2}$
e. $2 / 3$
$=2 \int_{0}^{2}\left(4-x^{2}\right) d x \quad($ since it is even $)$
$=2\left(4 x-\frac{x^{3}}{3}\right)_{0}^{2}=2\left(8-\frac{8}{3}\right)=\frac{32}{3}$
\Rightarrow Area $\mathrm{b} / \mathrm{w} y=b$ and $y=x^{2}$ equals $\frac{16}{3} \Rightarrow A=\int_{-\sqrt{b}}^{\sqrt{b}}\left(b-x^{2}\right) d x=\frac{16}{3}$
$\Rightarrow 2 \int_{0}^{\sqrt{b}}\left(b-x^{2}\right) d x=\frac{16}{3} \Rightarrow\left(b x-\frac{x^{3}}{3}\right)_{0}^{\sqrt{b}}=\frac{8}{3} \Rightarrow\left(b^{3 / 2}-\frac{b^{3 / 2}}{3}\right)=\frac{8}{3}$
(since it is even)

$$
\begin{aligned}
\Rightarrow b^{3 / 2}\left(1-\frac{1}{3}\right)=\frac{8}{3} \Rightarrow b^{3 / 2}\left(\frac{2}{3}\right)=\frac{8}{3} \Rightarrow b^{3 / 2}=\frac{8}{3} \cdot \frac{3}{2} & \Rightarrow b^{3 / 2}=4 \\
& \Rightarrow b=4^{2 / 3}
\end{aligned}
$$

$\Rightarrow A=\int_{-2}^{2}\left(4-x^{2}\right) d x$

