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Consider the region  that lies between two curves

 and  and between the vertical lines

 and .

S

y f x y g x

x a x b

= =

= =

( ) ( ) [ ]

Here,   and  are continuous functions

and for all  in , .

f g

f x g x x a b≥

Math 104 – Rimmer

6.1 Area between curves

( ) ( )

We divide  into  strips of equal width and approximate the

 th strip by a rectangle with base  and height * *
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The Riemann sum 

is therefore an approximation to what 

we intuitively think of as the area of
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This approximation appears to become better and better as .n → ∞

Thus, we define the area  of the region  as the limiting value 

of the sum of the areas of these approximating rectangles.
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A f x g x dx= −  ∫

Thus, we have the following formula for area :

( ) ( )
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Remember  is described as the region bounded by the curves

 and  and the lines  and ,

where,   and  are continuous and for all  in , .
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A f y g y dy= −∫

Some regions are best treated by 

regarding  as a function of .x y

( ) ( )

( ) ( ) [ ]

If a region is bouned by the curves  and 

and the lines  and , where  and  are continuous 

and for all  in , ,  then its area is:
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∫
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Find where the curves intersect:

2 4x x x− = +
2 3 4 0x x− − =
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cosy x=

sin 2y x=

Find where the curves intersect:

cos sin 2x x=

Use the trig. ident. :

sin 2 2sin cosx x x=

2sin cos cos 0x x x− =
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the integral should be done in terms of 

since the lower limit will change when you reach 3

dy⇒

We need the equation of the tangent line

the curves need to be expressed as functions of y⇒
2

y x x y= ⇒ =
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( )this is the slope of the tangent line. The tangency pt. is 6,36

2 2   evaluated at 6 12y x y x x y′ ′= ⇒ = = ⇒ =

( )using 36 12 6y mx b b= + ⇒ = + 36 72 36b b⇒ = + ⇒ = −

 the equation of the line is 12 36y x=⇒ −
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