6.2 Volumes

Goal: To find the volume of a solid
Method: "Cutting" the solid into many "pieces", find the volume of the pieces and add to find the total volume.

- The "pieces" are treated are cylinders.
- The base of each cylinder is called a cross-section.

6.2 Volumes

4. Math 104-Rimmer

- The volume of each cylinder is found by taking the area of the cross-section, $A\left(x_{i}^{*}\right)$, and multiplying by the height, Δx.

- The volume of the solid can be approximated by the sum of all cylinders.

$$
V \approx \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x
$$

- Taking the limit as the number of cylinders goes to infinity gives the exact volume of the solid.

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x \quad \Rightarrow V=\int_{a}^{b} A(x) d x
$$

A solid has a circular base of radius 4. If every plane cross section perpendicular to the x-axis is a square, then find the volume of the solid.

tion is :
$A(x)=\left(2 \sqrt{16-x^{2}}\right)^{2} \Rightarrow A(x)=4\left(16-x^{2}\right)$ $V=\int_{a}^{b} A(x) d x=\int_{-4}^{4} 4\left(16-x^{2}\right) d x=2 \int_{\substack{0 \\ \text { since the integrand is even }}}^{4} 4\left(16-x^{2}\right) d x$
$=8\left(16 x-\frac{x^{3}}{3}\right)_{0}^{4}=8\left(64-\frac{64}{3}\right)=8 \cdot 64\left(1-\frac{1}{3}\right)$
$=8.64\left(\frac{2}{3}\right)=\frac{1024}{3}$

Math 104 - Rimmer
6.2 Volumes

When you revolve a plane region about an axis, the cross-sections are circular and the solid generated is called a solid of revolution.

If there is no gap between the axis of rotation and the region, then the method used is called the disk method.

If there is a gap between the axis of rotation and the region, then the method used is called the washer method.

Disk Method with horizontal axis of rotation (not necessarily the x-axis)
Cross-sections are circular: $\quad A(x)=\pi \underset{\substack{\text { radius as a } \\ \text { function of } x}}{[r(x)]^{2}}$
Volume $\left.=\int_{a}^{b} A(x) d x=\pi \int_{\substack{a \\ \text { radius as a } \\ \text { function of } x}}^{b} r(x)\right]^{2} d x$

Calculate the volume of the solid generated by rotating the region between the curves $y=\sqrt{x}$ and $y=0$ about the x-axis.

\qquad (a)

Math 104 - Rimmer

 6.2 VolumesCalculate the volume of the solid generated by rotating the region between the curves $y=4-x^{2}$ and $y=0$ about the x-axis.

The radius in this case is the distance from the x-axis to the function

$$
\begin{aligned}
& r(x)=4-x^{2} \\
\text { Volume } & =\int_{a}^{b} A(x) d x=\pi \int_{a}^{b}[r(x)]^{2} d x \\
V & =\pi \int_{-2}^{2}\left[4-x^{2}\right]^{2} d x=\pi \int_{-2}^{2}\left[16-8 x^{2}+x^{4}\right] d x \\
= & 2 \pi \int_{\substack{0 \\
\text { since the integrand is even }}}^{2}\left[16-8 x^{2}+x^{4}\right] d x=2 \pi\left[16 x-\frac{8 x^{3}}{3}+\frac{x^{5}}{5}\right]_{0}^{2} \\
= & 2 \pi\left[32-\frac{64}{3}+\frac{32}{5}\right]=2 \pi \cdot 32\left[1-\frac{2}{3}+\frac{1}{5}\right]=64 \pi\left[\frac{15-10+3}{15}\right] \\
& =64 \pi\left[\frac{8}{15}\right]=\frac{512 \pi}{15}
\end{aligned}
$$

Disk Method with vertical axis of rotation (not necessarily the y-axis)
Cross-sections are circular: $\quad A(y)=\pi \underset{\substack{\text { radius as a } \\ \text { function of } y}}{[r(y)}$
function of y
Volume $=\int_{a}^{b} A(y) d y=\pi \int_{\substack{a \\ \text { ardius as a } \\ \text { function of } y}}^{b}[r(y)]^{2} d y$

\qquad (a)

(b) 6.2 Volumes

Calculate the volume of the solid generated by rotating the region between the curves $y=x^{3}, y=8$, and $x=0$ about the y-axis.
$\underbrace{x-3}_{r(y)}$

(1) $\begin{aligned} v & =\int_{0}^{8} \pi\left[\sqrt[r(y)^{2}]{y} y^{2}\right]^{8} d y \\ & \left.=\pi y_{0}^{2 / 3} d y=\pi \frac{3}{5} y^{5 / 3}\right]_{0}^{8}\end{aligned}$

$$
\begin{aligned}
& =\frac{3 \pi}{5} \cdot\left(8^{1 / 3}-0\right) \\
& \frac{1}{32} \cdot \frac{3 \pi}{5}=\frac{96 \pi}{5}
\end{aligned}
$$

Math 104 - Timer
Calculate the volume of the solid generated by rotating the region between
the curves $y=\frac{1}{x-2}$ and $x=2, y=\frac{1}{2}$, and $y=4$ about the line $x=2$.

The radius in this case is the horizontal distance
from $x=2$ to the curve $y=\frac{1}{x-2}$
We need to solve for x in terms of y :

$$
y=\frac{1}{x-2} \Rightarrow \frac{y}{\substack{\text { cross multiply }}}=\frac{1}{x-2} \Rightarrow y(x-2)=1 \Rightarrow x-2=\frac{1}{y} \Rightarrow x=\frac{1}{y}+2
$$

The radius is then:
$r(y)=\left(\frac{1}{y}+2\right)-2 \Rightarrow r(y)=\frac{1}{y}$
Volume $=\int_{a}^{b} A(y) d x=\pi \int_{a}^{b}[r(y)]^{2} d y=\pi \int_{1 / 2}^{4}\left(\frac{1}{y}\right)^{2} d y=\pi \int_{1 / 2}^{4} y^{-2} d y$

$$
=\pi\left[\frac{-1}{y}\right]_{1 / 2}^{4}=\pi\left[\frac{-1}{4}+2\right]=\frac{7 \pi}{4}
$$

Washer Method with horizontal axis of rotation (not necessarily the x-axis)
Draw a radius from the axis of rotation to the outer curve and call this outer radius
Draw a radius from the axis of rotation to the inner curve and call this inner radius

$$
\text { Volume }=\int_{a}^{b} A(x) d x=\pi \int_{a}^{b}\left(\left[\begin{array}{c}
\text { anter } \\
\text { outr radius as } \\
\text { a function of } x
\end{array} r_{\substack{\text { inner radius as } \\
\text { a function of } x}}(x]^{2}\left[r_{r}(x)\right]^{2}\right) d x\right.
$$

Math 104 - Rimmer

Calculate the volume of the solid generated by rotating the region between
the curves $y=4-x^{2}$ and $y=0$ about the line $y=-2$.

The outside radius $\left(r_{\text {out }}\right)$ can be found $r_{\text {out }}=2+\left(4-x^{2}\right)$ by drawing a line from the axis of rotation through the region.

$$
r_{\text {out }}=6-x^{2}
$$

The inside radius ($r_{\text {in }}$) can be found by drawing a line from the axis of $\quad r_{\text {in }}=2$
rotation to the region.

Washer Method with vertical axis of rotation (not necessarily the y-axis)
Draw a radius from the axis of rotation to the outer curve and call this outer radius
Draw a radius from the axis of rotation to the inner curve and call this inner radius

Calculate the volume of the solid generated by rotating the region between
(10.1 Math 104-Rimmer 6.2 Volumes the curves $y=\frac{x}{2}$ and $y=\sqrt{x}$ about the $y-$ axis.

We need to solve for x in terms of y :

$$
\frac{x}{2}=\frac{\sqrt{x}}{1}
$$

$$
\begin{aligned}
& x=2 \sqrt{x} \\
& x^{2}=4 x \\
& x^{2}-4 x=0 \\
& x(x-4)=0 \\
& k \quad D_{x}=4 \\
& x=0 \quad \Downarrow \\
& \Downarrow \quad \Downarrow \\
& y=0 \quad y=2
\end{aligned}
$$

$$
V=\pi \int_{0}^{2}\left([2 y]^{2}-\left[y^{2}\right]^{2}\right) d y=\pi \int_{0}^{2}\left(4 y^{2}-y^{4}\right) d y
$$

$$
=\pi\left[\frac{4 y^{3}}{3}-\frac{y^{5}}{5}\right]_{0}^{2}=\pi\left[\frac{32}{3}-\frac{32}{5}\right]=32 \pi\left[\frac{1}{3}-\frac{1}{5}\right]
$$

$$
=32 \pi\left[\frac{5-3}{15}\right]=\frac{64 \pi}{15}
$$

$$
\begin{aligned}
& r_{\text {out }}=2 y \quad y=\frac{x}{2} \Rightarrow x=2 y \\
& r_{\text {in }}=y^{2} \quad y=\sqrt{x} \Rightarrow x=y^{2}
\end{aligned}
$$

