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6.2 Volumes
6.2 Volumes

Goal: To find the volume of a solid 

Method: “Cutting” the solid into many “pieces”, find the volume of 

the pieces and add to find the total volume. 

• The “pieces” are treated are cylinders. 

• The base of each cylinder is called a cross-section.
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• The volume of each cylinder is found by taking the area of the 

cross-section, A( xi
* ), and multiplying by the height,  ∆x. 

• Taking the limit as the number of cylinders goes to infinity 

gives the exact volume of the solid. 

• The volume of the solid can be approximated by the sum of all 

cylinders.
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A solid has a circular base of radius 4.  If every plane cross section perpendicular to the x-axis is a 

square, then find the volume of the solid.
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since the squares are moved horizontally.
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The cross-sections are squares.

The length of the side of a square is 2 16 .x−
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When you revolve a plane region about an axis, the cross-sections 

are circular and the solid generated is called a solid of revolution.

If there is no gap between the axis of rotation and the region, 

then the method used is called the disk method.

If there is a gap between the axis of rotation and the region, 

then the method used is called the washer method.
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Cross-sections are circular: ( ) ( )
2

radius as a
function of x
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Disk Method with horizontal axis of rotation (not necessarily the x-axis)
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 and 0 .y x y x= =

Calculate the volume of  the solid generated by rotating the region between 

the curves  about the - axis
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The radius in this case is the distance from the -axis to the functionx
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Calculate the volume of  the solid generated by rotating the region between 

the curves  about the - axis
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Cross-sections are circular: ( ) ( )
2

radius as a
function of y
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Volume A y dy r y dyπ  = =  ∫ ∫

Disk Method with vertical axis of rotation (not necessarily the y-axis)
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3, 8,  and 0 .y x y x y= = =

Calculate the volume of  the solid generated by rotating the region between 

the curves  about the - axis
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The radius in this case is the horizontal distance 

1
from 2 to the curve  

2
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We need to solve for  in terms of :x y

cross multiply
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Calculate the volume of  the solid generated by rotating the region between 

the curves  about the line
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Washer Method with horizontal axis of rotation (not necessarily the x-axis)

Draw a radius from the axis of rotation to the outer curve and call this outer radius

Draw a radius from the axis of rotation to the inner curve and call this inner radius
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( )outThe outside radius  can be found 

by drawing a line from the axis of 

rotation  the region.  
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rotation  the region.  

r

to

outr

in
r in 2r =

( ) ( )
2 2

outer radius as inner radius as
a function of a function of 

 

b

out in

a
x x

V r x r x dxπ

 
    = −    
 
 

∫

2

out 6r x= −

[ ]( )
2

2 22

2

6 2  x dxπ
−

 = − − ∫

( )( )
2

2 4

2

36 12 4  x x dxπ
−

= − + −∫ ( )
2

2 4

2

32 12  x x dxπ
−

= − +∫

5 2
3

5
0

2 32 4 xx xπ  = − + 

32
5

2 64 32π= − +  

( )
2

2 4

0

2 32 12  x x dxπ= − +∫
since the integrand is even

6
5

64π=   
384

 
5

π
=

24  and 0   .2yy x y= − = −=

Calculate the volume of  the solid generated by rotating the region between 

the curves  about the line
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Washer Method with vertical axis of rotation (not necessarily the y-axis)

Draw a radius from the axis of rotation to the outer curve and call this outer radius

Draw a radius from the axis of rotation to the inner curve and call this inner radius
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We need to solve for  in terms of :x y
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Calculate the volume of the solid generated by rotating the region between 

the curves  about the axis
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