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6.3 Volumes by Cylindrical Shells

Sometimes finding the volume of a solid of revolution is impossible

by the disk or washer method

( )2
siny x=

π

Since there is a gap b/w the region and the axis 

of rotation, we would try washer method

We would have to solve for  as a function of 

since the axis of rotation is vertical.

Sometimes this is the problem, but we can do it here.
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Our problem is that the outer radius and the inner

radius use the .same curve

In order to find the volume of this solid of revolution we need a 

different technique.
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The Method of Cylindrical Shells uses the volume of nested 

cylinders to find the volume of a solid of revolution.

To understand the formula, lets first look at one of the cylindrical shells:

There are two cylinders, an outer cylinder 

and an inner cylinder.

The volume of the “shell” we use is found by taking 

the volume of the inner cylinder and subtracting it 

from the volume of the outer cylinder.
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2shellV r h rπ= ⋅ ⋅ ∆
thicknesscircumference height
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now add up the volume 

of all the shells
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siny x=

π

you get a better approx. as the number of shells → ∞
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by rotating the region under 
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In general, 

Disk or

Washer

Cylindrical

Shells

Typical

rectangle

perpendicular to

axis of rotation

parallel to

axis of rotation

Vertical axis 

of  rotation
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( )2
siny x=

π

( )2height sin x=

( )( )2 radius height
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[ ]cos cos 0π π= − −

[ ]1 1π= − − −

2π=

radius x=
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6.3 Volumes by Cylindrical ShellsSet up, but do not evaluate, an integral for the volume 

obtained by rotating the region bounded by
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http://mathdemos.gcsu.edu/mathdemos/shellmethod/gallery/gallery.html

Website with volumes by shells animation:

Rihanna rides into the 2008 VMA Awards Show on a shell volume float

Type: “rihanna disturbia 2008 VMA performance”

into the YouTube search, use the first link


