Sometimes finding the volume of a solid of revolution is impossible by the disk or washer method

Since there is a gap b/w the region and the axis of rotation, we would try \qquad

We would have to solve for \qquad as a function of \qquad since the axis of rotation is \qquad .
Sometimes this is the problem, but we can do it here.

$$
x=
$$

Our problem is that the outer radius and the inner radius use the \qquad .

In order to find the volume of this solid of revolution we need a different technique.

The \qquad uses the volume of \qquad to find the volume of a solid of revolution.

To understand the formula, lets first look at one of the cylindrical shells:

There are two cylinders, an outer cylinder and an inner cylinder.

The volume of the "shell" we use is found by taking the volume of the inner cylinder and
\ldots the volume of the outer cylinder.

$$
\begin{array}{r}
V_{\text {shell }}= \\
V_{\text {shell }}= \\
V_{\text {shell }}= \\
V_{\text {shell }}= \\
V_{\text {shell }}=
\end{array}
$$

Let $r=r_{\text {average }} \quad$ Let $\Delta r=r_{\text {outer }}-r_{\text {inner }}$
$V_{\text {shell }}=$

In general,

$$
V=\int_{a}^{b} 2 \pi(\text { radius })(\text { height }) d x
$$

	Typical rectangle	Vertical axis of rotation	Horizontal axis of rotation
Disk or Washer			
Cylindrical Shells			

Set up, but do not evaluate, an integral for the volume obtained by rotating the region bounded by $y=\cos ^{2} x, y=\frac{1}{4}$, about the line $x=\frac{\pi}{2}$
(below $y=\cos ^{2} x$ and above $y=\frac{1}{4}$, from $-a$ to a where these are the intersection pts. closest to the y-axis)

radius $=$
height $=$
limits of integration \Rightarrow
$V=\int_{a}^{b} 2 \pi($ radius $)($ height $) d x$

