Average of n numbers:
$\frac{x_{1}+x_{2}+x_{3}+\cdots x_{n}}{n}$
Take the n numbers to be sample points for a function:
$\frac{f\left(x_{1}^{*}\right)+f\left(x_{2}{ }^{*}\right)+f\left(x_{3}{ }^{*}\right)+\cdots f\left(x_{n}^{*}\right)}{n}$
Partition the interval $[a, b]$ into n subintervals of equal length.

What is the width of each subinterval? $\quad \frac{b-a}{n}$ Call this Δx
We now have:

$$
\frac{f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+f\left(x_{3}^{*}\right)+\cdots f\left(x_{n}^{*}\right)}{\frac{b-a}{\Delta x}}=\frac{\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x}{b-a}
$$

$$
\Delta x=\frac{b-a}{n} \Rightarrow n=\frac{b-a}{\Delta x}
$$

Taking the limit as $n \rightarrow \infty$, we get $\frac{\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x}{b-a}$
Average value of $f(x)$ on an interval $[a, b]=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
Find the average value of the function $\frac{3}{(1+r)^{2}}$ on the interval $[1,6]$.

$$
\begin{aligned}
\begin{array}{c}
\text { Average value } \\
\text { of } f(x)=\frac{3}{(1+r)^{2}} \text { on }[1,6]=
\end{array} & \frac{1}{5} \int_{1}^{6} \frac{3}{(1+r)^{2}} d r \quad \begin{array}{rl}
u=1+r & r=1 \Rightarrow u=2 \\
d u=d r & r=6 \Rightarrow u=7
\end{array} \\
& =\frac{1}{5} \int_{2}^{7} \frac{3}{u^{2}} d u=\frac{3}{5} \int_{2}^{7} u^{-2} d u=\frac{3}{5}\left[\frac{-1}{u}\right]_{2}^{7}=\frac{3}{5}\left[\frac{-1}{7}-\frac{-1}{2}\right] \\
& =\frac{3}{5}\left[\frac{-2}{14}+\frac{7}{14}\right]=\frac{3}{5}\left[\frac{5}{14}\right]=\frac{3}{14}
\end{aligned}
$$

Let f be continuous on $[a, b]$,
then there is a value c in $[a, b]$ such that
$f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
or
$f(c)(b-a)=\int_{a}^{b} f(x) d x$
$\begin{aligned} & \text { area of the } \\ & \text { rectangle }\end{aligned}=\begin{aligned} & \text { area under the } \\ & \text { curve }\end{aligned}$

Proof:

Let f be continuous on $[a, b]$,
By the Extreme Value Theorem,
there is a m and M such that $m \leq f(x) \leq M$.
Then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$

$$
\Rightarrow m \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq M
$$

By the Intermediate Value Theorem,

there is a c in $[a, b]$ with $f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
(a) Find the average value of $f(x)=\sqrt{x}$ on the interval $[0,4]$.
(ax) Math 104 - Rimmer
6.5 Average Value of a Function
(b) Find c such that $f_{\text {ave }}=f(c)$.
(c) Sketch the graph of f and a rectangle whose area is the same as the area under the graph of f.

$$
=\frac{1}{4}\left[\frac{2}{3} x^{3 / 2}\right]_{0}^{4}=\frac{1}{6}\left(4^{3 / 2}\right)
$$

(b) $f(c)=\frac{4}{3} \Rightarrow \sqrt{c}=\frac{4}{3} \Rightarrow c=\frac{16}{9}$

$$
=\frac{1}{6}\left(4^{1 / 2}\right)^{3}=\frac{8}{6}=\frac{4}{3}
$$

(c)

