Average of n numbers:
$\frac{x_{1}+x_{2}+x_{3}+\cdots x_{n}}{n}$
Take the n numbers to be sample points for a function:
$\frac{f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+f\left(x_{3}{ }^{*}\right)+\cdots f\left(x_{n}{ }^{*}\right)}{n}$
Partition the interval $[a, b]$ into n subintervals of equal length.

What is the width of each subinterval?
Call this

We now have:
$\Rightarrow n=$
$\underline{f\left(x_{1}^{*}\right)+f\left(x_{2}{ }^{*}\right)+f\left(x_{3}^{*}\right)+\cdots f\left(x_{n}^{*}\right)}=$ \qquad

Taking the limit as $n \rightarrow \infty$, we get $\frac{\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x}{b-a}$
Average value of $f(x)$ on an interval $[a, b]$

Find the average value of the function $\frac{3}{(1+r)^{2}}$ on the interval $[1,6]$.

Let f be \qquad on $[a, b]$,
then there is a value c in $[a, b]$ such that

$$
f(c)=
$$

$$
\begin{aligned}
f(c)(b-a) & =\int_{a}^{b} f(x) d x \\
& =
\end{aligned}
$$

Proof:
Let f be continuous on $[a, b]$,
By the \qquad Value Theorem, there is a m and M such that
Then $\leq \int_{a}^{b} f(x) d x \leq$ \Rightarrow

By the \qquad Value Theorem,

there is a c in $[a, b]$ with $f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
(a) Find the average value of $f(x)=\sqrt{x}$ on the interval $[0,4]$.
(b) Find c such that $f_{\text {ave }}=f(c)$.
(c) Sketch the graph of f and a rectangle whose area is the same as the area under the graph of f.

