Section 8.4 : Partial Fraction Decomposition

Tract Math 104-Rimmer 8.4 Partial Fraction Decomposition

Rational Function :

The \qquad of a polynomial is the highest exponent on x
$\left.\begin{array}{c}x-4 \\ 2 x+3\end{array}\right\}$

$$
\left.\begin{array}{c}
2 x^{2}-5 x-12 \\
x^{2}-x+3
\end{array}\right\}
$$

$2 x^{2}-5 x-12$ is called a \qquad quadratic polynomial since it can be factored (over the reals) $2 x^{2}-5 x-12=\quad$ the roots are \qquad ,$b^{2}-4 a c \geq 0$
$x^{2}-x+3$ is called a \qquad quadratic polynomial since it cannot be factored (over the reals) the roots are \qquad $b^{2}-4 a c<0$

Every polynomial of degree $n>0$ with real coefficients can be written
as a product of \qquad factors.

Goal: To integrate \qquad

- Write $q(x)$ in this manner and then express the rational function as \qquad
- The simpler fractions should be \qquad .

$$
\text { simpler fractions : } \frac{1}{x-4} \quad \frac{1}{(x-4)^{2}} \quad \frac{1}{x^{2}+4}
$$

that can be integrated :
$\int \frac{1}{x-4} d x=$
$\int \frac{1}{(x-4)^{2}} d x=$
$\int \frac{1}{x^{2}+4} d x=$

Partial Fraction Decomposition: $\quad \frac{p(x)}{q(x)}$
 (1) Math 104-Rimmer $\begin{aligned} & \text { 8.4 Partial Fraction Decomposition }\end{aligned}$

1. The degree of the denominator \qquad be greater than the degree of the numerator If it is not, then \qquad the denominator into the numerator.
2. Decompose the fraction in the following manner: (A, B, C, and D are constants)
i) $q(x)$ can be written as a product of only linear polynoimials

$$
\frac{5 x}{(x-4)(2 x+3)}
$$

ii) $q(x)$ can be written as a product involving powers of linear polynoimials

$$
\frac{x^{2}+6 x-4}{(x-3)^{3}(x+5)}
$$

iii) $q(x)$ can be written as a product involving irreducible quadratic polynoimials

$$
\frac{16 x-5}{\left(x^{2}+10 x+2\right)(x-7)}
$$

3. Use the method of \qquad to find the constants A, B, C, and D
$\int_{3}^{4} \frac{4}{x^{2}-4} d x$

$$
\int \frac{x+8}{x(x+2)^{2}} d x
$$

Focus only on the numerator

This equation should be true for all x, so choose three different values of x :

Plug A in and work with this equation:
$\int \frac{x+8}{x(x+2)^{2}} d x$ continued:

Math 104 - Rimmer
8.4 Partial Fraction Decomposition
$\int_{2}^{3} \frac{x^{3}-x^{2}-1}{x^{2}-x} d x$

$$
\int \frac{3-x}{x\left(x^{2}+1\right)} d x
$$

Match up coefficients from the left and right hand sides

