Section 8.4 : Partial Fraction Decomposition

Rational Function:

The _____ of a polynomial is the highest exponent on x

$$\begin{array}{c}
 x-4 \\
 2x+3
 \end{array}$$

$$\begin{array}{c}
 2x^2-5x-12 \\
 x^2-x+3
 \end{array}$$

 $2x^2-5x-12$ is called a _____ quadratic polynomial since it can be factored (over the reals)

$$2x^2 - 5x - 12 =$$
 the roots are ______, $b^2 - 4ac \ge 0$

 x^2-x+3 is called a _____ quadratic polynomial since it cannot be factored (over the reals) the roots are _____, $b^2-4ac<0$

Every polynomial of degree n > 0 with real coefficients can be written as a product of ______ factors.

Goal: To integrate _____

- Write q(x) in this manner and then express the rational function as _____
- The simpler fractions should be ______

simpler fractions: $\frac{1}{x-4}$ $\frac{1}{(x-4)^2}$ $\frac{1}{x^2+4}$

Math 104 – Rimmer 8.4 Partial Fraction Decomposition

that can be integrated :

$$\int \frac{1}{x-4} \, dx =$$

$$\int \frac{1}{\left(x-4\right)^2} dx =$$

$$\int \frac{1}{x^2 + 4} \, dx =$$

Partial Fraction Decomposition:

- 1. The degree of the denominator _____ be greater than the degree of the numerator If it is not, then _____ the denominator into the numerator.
- 2. Decompose the fraction in the following manner: (A,B,C, and D are constants)
 - i) q(x) can be written as a product of only linear polynomials

$$\frac{5x}{(x-4)(2x+3)}$$

ii) q(x) can be written as a product involving powers of linear polynoimials

$$\frac{x^2 + 6x - 4}{(x - 3)^3 (x + 5)}$$

iii) q(x) can be written as a product involving irreducible quadratic polynoimials

$$\frac{16x-5}{(x^2+10x+2)(x-7)}$$

3. Use the method of ______ to find the constants A, B, C, and D

Math 104 – Rimmer 8.4 Partial Fraction Decomposition

 $\int_{3}^{4} \frac{4}{x^2 - 4} dx$

$$\int \frac{x+8}{x(x+2)^2} dx$$

Focus only on the numerator:

This equation should be true for all x, so choose three different values of x:

Plug A in and work with this equation:

$$\int \frac{x+8}{x(x+2)^2} dx$$
 continued:

Math 104 – Rimmer 8.4 Partial Fraction Decomposition

$$\int_{2}^{3} \frac{x^3 - x^2 - 1}{x^2 - x} dx$$

$$\int \frac{3-x}{x(x^2+1)} dx$$

Math 104 – Rimmer 8.4 Partial Fraction Decomposition

Match up coefficients from the left and right hand sides